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abstract

An injective coloring of a given graph G = (V,E) is a vertex coloring of G such that any two vertices
with common neighbor receive distinct colors. An e-injective coloring of a graph G is a vertex coloring
of G in which, any two vertices v, u with common edge e (e ̸= uv) receive distinct colors, in other
words, any two end vertices of a path P4 of G achieve di�erent colors. With this new de�nition, we
want to take a review at injective coloring of a graph from the new point of view. For this purpose,
we review the conjectures raised so far in the literature of injective coloring and 2-distance coloring,
from the new approach, e-injective coloring. As well, we prove that, for disjoint graphs G,H, with
E(G) ̸= ∅ and E(H) ̸= ∅, χei(G ∪ H) = max{χei(G), χei(H)} and χei(G ∨ H) = |V (G)|+|V (H)|.
The e-injective chromatic number of G versus of the maximum degree and packing number of G
is investigated, and we denote max{χei(G), χei(H)} ≤ χei(G□H) ≤ χ2(G)χ2(H). Finally, we prove
that, for any tree T (T is not a star), χei(T ) = χ(T ), and we obtain the exact value of e-injective
chromatic number of some speci�ed graphs.

Keywords: Injective coloring conjecture, 2-distance coloring conjecture, e-injective coloring

1. Introduction

Graph coloring has many applications in various �elds of life, such as timetabling, scheduling daily life
activities, scheduling computer processes, registering allocations to di�erent institutions and libraries,
manufacturing tools, printed circuit testing, routing and wavelength, bag rationalization for a food
manufacturer, satellite range scheduling, and frequency assignment. These are many applications
that are out there right now and many more come in the follow.
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A proper k-coloring (hereafter k-coloring) of a graph G is a function f : V (G) → {1, 2, 3, . . . , k}
such that for all edge xy ∈ E, f(x) ̸= f(y). The chromatic number of G, denoted by χ(G), is
the minimum integer k such that G has a k-coloring. There are many research works on the graph
coloring parameters that is not possible to name all of them here. For instance see [4, 17].
In 1969, Kramer and Kramer introduced the notion of 2-distance coloring of a graph G or the

usual proper coloring of G2 [9], we can some of its applications in [10]. A 2-distance k-coloring of
a graph G is a function f : V → {1, 2, 3, . . . , k}, such that no pair of vertices at distance at most
2, receive the same color, in the other words, the colors of the vertices of all P3 paths in the graph
are distinct. The 2-distance chromatic number of G, denoted by χ2(G) = χ(G2), is the minimum
positive integer k such that G has a 2-distance k-coloring. The 2-distance coloring of G, is a proper
coloring [3, 2, 5].
For a graph G, the subset S of V (G) is said to be a dominating set if any vertex x ∈ V \ S is

adjacent to a vertex y in S. A dominating set of G with minimum cardinality is called the domination
number of G and is denoted by γ(G). A subset D of V (G) is said to be 2-distance dominating set if
any vertex d ∈ V \D, is in at most 2-distance of to a vertex in D. A 2-distance dominating set of G
with minimum cardinality is called the 2-distance domination number of G and is denoted by γ2(G).
The injective coloring was �rst introduced in 2002 by Hahn et al. [6] and it was also further studied

in [1, 8, 11, 12, 15, 16, 18]. An injective k-coloring of a graph G is a function f : V → {1, 2, 3, . . . , k}
such that no vertex v is adjacent to two vertices u and w with f(u) = f(w), in the other words, for
any path P3 = xyz, we have f(x) ̸= f(z). The injective chromatic number of G, denoted by χi(G),
is the minimum positive integer k such that G has an injective k-coloring. The injective chromatic
number of the hypercube has important applications in the theory of error-correcting codes. As it
is well known, the injective coloring of G, is not necessarily proper coloring. Injective coloring of a
graph G is related to the usual coloring of the square G2. The inequality χi(G) ≤ χ2(G) obviously
holds.
There are several results related to injective coloring that review the usual coloring results in graph

theory from a new point of view, in particular on the injective chromatic number of planar graphs.
As well, many conjectures on planar graphs have been posed and studied by authors so far. In this
regard, we bring up some of them as follows.
From the relation between the injective coloring of a graph G and the usual coloring of the square

G2, Wegner [19] posed the following conjecture.

Conjecture 1.1. [19] Let G be a planar graph with maximum degree ∆. Then,

1. χ(G2) ≤ 7 if ∆ = 3,

2. χ(G2) ≤ ∆+ 5 if 4 ≤ ∆ ≤ 7,

3. χ(G2) ≤ ⌊3
2
∆⌋+ 1 otherwise.

Luºar and �krekovski in [11] showed that:

Theorem 1.2. ([11] Theorem 2.1) There exist planar graphs G of maximum degree ∆ ≥ 3 satisfying

the following,

1. χi(G) = 5 if ∆ = 3,

2. χi(G) = ∆ + 5 if 4 ≤ ∆ ≤ 7,

3. χi(G) = ⌊3
2
∆⌋+ 1 if ∆ ≥ 8.
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Adapted from Theorem 1.2, they proposed the following Wegner type conjecture for the injective
chromatic number of planar graphs.

Conjecture 1.3. [11] Let G be a planar graph with maximum degree ∆. Then,

(i). χi(G) ≤ 5 if ∆ = 3,

(ii). χi(G) ≤ ∆+ 5 if 4 ≤ ∆ ≤ 7,

(iii). χi(G) ≤ ⌊3
2
∆⌋+ 1 otherwise.

By the relation between injective chromatic number and 2-distance chromatic number of a graph;
showing the truth of Conjecture 1.1 (parts (2), (3)), will deduce the truth of Conjecture 1.3 (parts
(ii), (iii)).
Now we introduce a new concept of vertex coloring (near to injective coloring) as an e-injective

coloring of a graph. The motivation of the alleging is to study, how it behaves against of the injective
graph coloring, usual graph coloring, 2-distance graph coloring, packing set, dominating set and 2-
distance dominating set of graphs. As well, in particular we investigate the posed conjectures from
the point of view of e-injective colorings. Also since the notion of e-injective coloring is near to
injective coloring, one can predict, it has applications in various �elds of life in real world and would
also be useful in coding theory as so did injective coloring.
This concept is introduced in next de�nition.
Hereafter, we say that, two vertices u, v have a common edge neighbor if there exist an edge e in

which, u is adjacent to one end vertex of e and v is adjacent to another end vertex of e.

De�nition 1.4. Let G be a graph. A function f : V (G) → {1, 2, 3, . . . , k} is an e-injective k-coloring
function if any two vertices u and v are the ends of a path P4 = uxyv in G, then f(u) ̸= f(v).
The e-injective chromatic number of G, denoted by χei(G), is the minimum positive integer k such

that G has an e-injective k-coloring.

The e-injective coloring of G, is not necessarily proper coloring. This concept can be expressed as
new discourse.

De�nition 1.5. For a given graph G, the three-step graph S3(G) = G(3) of a graph G is the graph
having the same vertex set as G with an edge joining two vertices in S3(G) if and only if there is a
path of length 3 between them in G.
Taking into account, the fact that a vertex subset S is independent in S3(G) if and only if there is

no path of length 3 between any two vertices corresponding of S in G, we can readily observe that:

χei(G) = χ(S3(G)).

From the point of view of e-injective coloring, the type of Conjectures 1.1 and 1.3 can be declared
as a problem, which can be argued in next section.

Problem 1.6. Let G be a planar graph with maximum degree ∆. Then,

1. χei(G) ≤ 5 if ∆ = 3,

2. χei(G) ≤ ∆+ 5 if 4 ≤ ∆ ≤ 7,

3. χei(G) ≤ ⌊3
2
∆⌋+ 1 otherwise.
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In the sequence, we assume that all graphs in this paper are �nite, simple, and undirected. We use
[4, 20] as a reference for terminology and notation which are not explicitly de�ned here. Throughout
the paper, we consider G = (V,E) be a �nite simple graph with vertex set V = V (G) and edge
set E = E(G). The open neighborhood of a vertex v ∈ V is the set N(v) = {u|uv ∈ E}, and its
closed neighborhood is the set N [v] = N(v) ∪ {v}. The cardinality of |N(v)| is called the degree of
v, denoted by deg(v). The minimum degree of G is denoted by δ(G) and the maximum degree by
∆(G). A vertex v of degree 1 is called a pendant vertex or a leaf, and its neighbor is called a support
vertex. A vertex of degree n− 1 is called a full or universal vertex while a vertex of degree 0 is called
an isolated vertex.
For any two vertices u and v of G, we denote by dG(u, v) the distance between u and v, that is

the length of a shortest path joining u and v. The path, cycle and complete graph with n vertices
are denoted by Pn, Cn and Kn respectively. The complete bipartite graph with n and m vertices in
their partite sets is denoted by Kn,m, while the wheel graph with n+1 vertices is denoted by Wn. A
star graph with n+1 vertices, denoted by Sn, consists of n leaves and one support vertex. A double
star graph is a graph consisting of the union of two star graphs Sm and Sn, with one edge joining
their support vertices; the double star graph with m+ n+ 2 vertices is denoted by Sm,n.
The join of two graphs G and H, denoted by G∨H, is the graph obtained from the disjoint union of

G and H with vertex set V (G∨H) = V (G)∪V (H) and edge set E(G∨H) = E(G)∪E(H)∪{xy | x ∈
V (G), y ∈ V (H)}. A fan graph is a simple graph consisting of joining Km and Pn; the fan graph
with m+ n vertices is denoted by Fm,n. For two sets of vertices X and Y , the set [X, Y ] denotes the
set of edges e = uv such that u ∈ X and v ∈ Y .
The square graph G2 is a graph with the same vertex set as G and with its edge set given by

E(G2) = {uv| dist(u, v) ≤ 2}. The chromatic number χ(G2) of G2 (or 2-distance chromatic number
χ2(G) of G) has been studied extensively in planar graph [7, 14].
A subsetB ⊆ V (G) is a packing set inG if for every pair of distinct vertices u, v ∈ B, NG[u]

⋂
NG[v] =

∅. The packing number ρ(G) is the maximum cardinality of a packing set in G.
A subset B ⊆ V (G) is an open packing set in G if for every pair of distinct vertices u, v ∈ B,
NG(u)

⋂
NG(v) = ∅. The open packing number ρ◦(G) is the maximum cardinality among all open

packing sets in G.
Let G and H be simple graphs. For three standard products of graphs G and H, the vertex set of

the product is V (G)× V (H) and their edge set is de�ned as follows:

� In the Cartesian product G□H, two vertices are adjacent if they are adjacent in one coordinate
and equal in the other.

� In the direct product G×H, two vertices are adjacent if they are adjacent in both coordinates.

� The edge set of the strong product G⊠H, is the union of E(G□H) and E(G×H).

In the end of this section, we explore the purpose of the paper as follows. In Section 2, we study
χei(G) versus to the χ(G), χ2(G) and χi(G), as well, we review the conjectures raised so far in
the literature of injective and 2-distance colorings, from the new approach, e-injective coloring, and
by disproving the Problem 1.6, we show that the Conjectures 1.1 and 1.3 maybe wrong under the
conditions. For disjoint graphs G,H, with non-empty edge sets, χei(G ∪H) = max{χei(G), χei(H)}
and χei(G ∨H) = |V (G)|+|V (H)|. The e-injective chromatic number of G versus of the maximum
degree and packing number of G is investigated, and denote max{χei(G), χei(H)} ≤ χei(G□H) ≤
χ2(G)χ2(H) in Section 3. In Section 4, we prove that, for any tree T (T ̸= Sn), χei(T ) = χ(T ), and
we obtain the exact value of e-injective chromatic number of some special graphs and �nally, we end
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the paper with discussion on research problems.

2. On the Two Conjectures

We maybe cannot compare χei(G) with χ(G), ∆(G), χi(G) or χ2(G) in general. For instance,
χei(K3) = 1 while χ(K3) = 3 = χi(K3) = χ2(G); or χei(K1,n) = 1 while χ(K1,n) = 2, χi(K1,n) = n

and χ2(K1,n) = n+ 1. But in the Figure 1, χei(G) = 12, χi(G) ≤ 7, χ2(G) ≤ 7, χ(G) = 3.

54 6

7

3

119 1210

2

1

8

Fig. 1. The graph G with χei(G) ≥ max{χi(G), χ2(G), χ(G)}

Also let H = Km ⊚ Kn be a graph obtain from two complete graphs Km and Kn (m ≥ n ≥ 4)
with joining one vertex of Km to one vertex of Kn. Then χ(H) = m = χi(H), χ2(H) = m + 1 and
χei(H) = m+ n− 1 (see Proposition 4.4). On the other hand, for Complete graph Kn (n ≥ 4), odd
cycle C3k for odd k ≥ 1, we have χei(Kn) = n = χ(Kn) = χi(Kn) = χ2(Kn), and χei(C3k) = 3 =

χ(C3k) = χi(C3k) = χ2(C3k).
In the same way, we have ∆(K3) = 2, ∆(H) = m, and for graph G in Figure 1, ∆(G) = 4, while

χei(K3) = 1, χei(H) = m+ n− 1, and χei(G) = 12. On the other hand, for graph Kn ⊚K1 (n ≥ 4)
and even cycle C2k, we have χei(Kn ⊚ K1) = n = ∆(Kn ⊚ K1), and χei(C2k) = 2 = ∆(C2k) (see
Proposition 4.3).
However we have the following.

Proposition 2.1. Let G be a graph in which any two adjacent vertices be the end vertices of a path

P4 in G. Then χ(G) ≤ χei(G).

Conversely, if any two end vertices of each path P4 in G are adjacent, then χei(G) ≤ χ(G).

Proof. Since any two adjacent vertices of given graph G are the end vertices of a path P4 in G,
these two vertices must be colored with distinct colors by any e-injective coloring. Therefore, any
e-injective coloring for this graph can be a usual coloring. Then χ(G) ≤ χei(G).
Conversely, by the construction of graph G, usual coloring of G deduces that any two end vertices

of each path P4 has di�erent colors. Thus, the usual coloring of given G is an e-injective coloring.
Therefore, χei(G) ≤ χ(G).

Proposition 2.2. Let G be a graph and v in V (G) be any vertex. If every two vertices in N(v) are

the end vertices of a path P4, then χi(G) ≤ χei(G).

Conversely, if end vertices of each path P4 in a graph G have a common neighbor, then χei(G) ≤
χi(G).

Proof. Since any two vertices of graph G are the end vertices of a path P4, these vertices have
distinct colors by e-injective coloring. Therefore, an e-injective coloring for this graph is an injective
coloring. Then χi(G) ≤ χei(G).
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Conversely, let any two end vertices of path P4 have a common neighbor. Then by injective coloring
of G, two end vertices of any path P4 take di�erent colors. Thus, this will be an e-injective coloring
of G and χei(G) ≤ χi(G).

Also, we may have.

Proposition 2.3. Let G be a graph with the property that, for any two adjacent vertices or two

vertices with a common neighbor are the end vertices of a path P4 in G. Then χ2(G) ≤ χei(G).

Conversely, if G is a graph and any two end vertices of each path P4 in G are adjacent or have a

common neighbor, then χei(G) ≤ χ2(G).

Proof. Let v, u, w be three vertices of P3 in G. Since both of them are the end vertices of a path
P4 in G, then e-injective coloring of the given graph G assign three distinct colors to v, u, w. This
implies that, this coloring is a 2-distance coloring of G. Thus, χ2(G) ≤ χei(G).
Conversely, let any two end vertices of each path P4 are adjacent or have a common neighbor.

Then, from a 2-distance coloring of G, we deduce that, any two end vertices of the path P4 are
vertices of a P2 or a P3 in graph G and so their colors are distinct. Therefore this coloring is an
e-injective coloring of the given graph G and χei(G) ≤ χ2(G).

Now we discuss on the Problem 1.6. Below �gures denote that the Problem 1.6 is not necessarily
true. On the other hand the type of Conjectures 1.1, 1.3 are not true for e-injective coloring. But if we
use the Propositions 2.2, 2.3, then maybe characterize graphs G in which, satisfy on the Conjectures
1.1, 1.3 and also characterize graphs G in which, the Conjectures 1.1, 1.3 are not true for them.
Disprove of Problem 1.6
Let G be a planar graph with maximum degree ∆. Then we present counterexample that denote the
Problem 1.6 is not true.
As we observe the Figure 2, for (3 ≤ ∆ ≤ 8) we have.
The graph M3 denotes a planar graph in which ∆(M3) = 3 and χei(M3) = 6 > 5.
The graph M4 denotes a planar graph in which ∆(M4) = 4 and χei(M4) = 12 > ∆(M4) + 5.
The graph M5 denotes a planar graph in which ∆(M5) = 5 and χei(M5) = 13 > ∆(M5) + 5.
The graph M6 denotes a planar graph in which ∆(M6) = 6 and χei(M6) = 16 > ∆(M6) + 5.
The graph M7 denotes a planar graph in which ∆(M7) = 7 and χei(M7) = 16 > ∆(M7) + 5.
For ∆(G) = 8, consider the graph M8 of order 16, which is seen ∆(G) = 8 and χei(Mn) = 16 >

⌊24
2
⌋+ 1 = 13 = ⌊3∆

2
⌋+ 1.

For ∆(G) ≥ 9 consider, the graph Mn (n ≥ 9) of order 2n, Figure 2, which is seen ∆(G) = n and
χei(Mn) = 2n > ⌊3n

2
⌋+ 1 = ⌊3∆

2
⌋+ 1.

With this regard, the Problem 1.6 is disproved. In the other words the type of Conjecture 1.3 for
e-injective coloring is rejected. However, from the Propositions 2.2 and 2.3, we can have.

Proposition 2.4. 1. Let G be a graph with the property that the given data in Proposition, 2.3
(Conversely part) hold. Then, the Conjecture 1.1 is wrong.

2. Let G be a graph with the property that the given data in Proposition, 2.2 (Conversely part)

hold. Then, the Conjecture 1.3 is wrong.
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Fig. 2. The graphs G related to Problem 1.6 for ∆ ≥ 3

3. e-Injective Chromatic Number on Operation of Graphs

In this section we prove some results on e-injective coloring using some operations.
For graphs G and H, let G ∪ H be the disjoint union of G and H. Then it is easy to see that

χei(G ∪H) = max{χei(G), χei(H)}.
For the join of two graphs, we have the following.

Theorem 3.1. Let G and H be two graphs of order m and n respectively, with the property that,

E(G) and E(H) are non-empty sets. Then χei(G ∨H) = m+ n

Proof. Let e1 = v1w1 ∈ E(G) and e2 = v2w2 ∈ E(H) be two edges. We show that any two vertices
x, y in G ∨H, there is a path of length 3, with end vertices x, y. For observing the result, we bring
up �ve positions.
1. For x, y ∈ V (G), consider the path xv2w2y in G ∨H.
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2. For x, y ∈ V (H), consider the path xv1w1y in G ∨H.
3. For x ∈ V (G) \ {v1, w1} and y ∈ V (H) \ {v2, w2}, consider the path xv2v1y in G ∨H.
4. For x ∈ {v1, w1}, say v1 and y ∈ V (H) \ {v2, w2}, consider the path v1v2w1y in G ∨H.
5. For x ∈ {v1, w1} and y ∈ {v2, w2} and without loss of generality, say x = v1 and y = v2, consider

the path v1w1w2v2 in G ∨H.
The other positions are similar. Therefore, for any two vertices x, y ∈ G ∨ H there is a path of

length 3, with end vertices x, y. Therefore the result is observed.

Let G be a graph and B be a maximum packing set of G. If v ∈ V (G) \B, then there is a vertex
u ∈ B such that N(v) ∩N(u) ̸= ∅. This shows that, d(v, u) ≤ 2. Thus B is a 2-distance dominating
set. Therefore we have.

Theorem 3.2. Let G be a graph of diameter 3. Then χei(G) ≥ ρ(G) ≥ γ2(G). One can have the

equalities.

Proof. Let B be maximum packing set of graph G. Since two vertices of B has distance 3, they are
assigned with two distinct colors. Thus χei(G) ≥ ρ.
For equalities, consider the cycles C6 and C8, (see Propositions 4.3).

We now give an upper bound on χei(G) that may be slightly important.

Theorem 3.3. Let G have maximum degree ∆. Then, χei(G) ≤ ∆(∆−1)2+1. This bound is sharp

for odd cycle Cn (n ≥ 5).

Proof. Let G be a graph and v ∈ V (S3(G)) = V (G). It is well known that there are at most
∆(∆− 1)2 vertices in G such that any of them with v form two end vertices of path P4. This shows
that degS3(G)

(v) ≤ ∆(∆ − 1)2. On the other hand χei(G) = χ(S3(G)) and from Brooks Theorem in
usual coloring of graphs, χ(S3(G)) ≤ ∆(S3(G))+1 ≤ ∆(∆−1)2+1. Therefore χei(G) ≤ ∆(∆−1)2+1.
For seeing the sharpness observe Proposition 4.3.

Also we want to drive bounds for the e-injective coloring of Cartesian product of two graphs G,
H in terms of 2-distance coloring of the of G and H. For this we explore a result from [13] and a
lemma.

Theorem 3.4. ([13] Theorem 1) For any graphs G and H with no isolated vertices,

(∆(G) + 1)(∆(H) + 1) ≤ χ2(G⊠H) ≤ χ2(G)χ2(H).

Lemma 3.5. Let G and H be two graphs with no isolated vertices. If two end vertices of each path

P4 in G and H are adjacent or have a common neighbor, then so does G⊠H.

Proof. Suppose that the end vertices of each path P4 in graphs G and H are adjacent or have a
common neighbor. We would to be show any two end vertices of a path P4 in G⊠H are adjacent or
have a common neighbor. For this, we can bring up the possible paths P4 in graph G⊠H.

1.1. (a, u)(a, v)(a, w)(a, t); 1.2. (a, u)(a, v)(a, w)(b, w); 1.3. (a, u)(a, v)(a, w)(b, t).
2.1. (a, u)(a, v)(b, v)(b, w); 2.2. (a, u)(a, v)(b, v)(c, v); 2.3 (a, u)(a, v)(b, v)(c, w).
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3.1. (a, u)(a, v)(b, w)(b, t); 3.2. (a, u)(a, v)(b, w)(c, w); 3.3. (a, u)(a, v)(b, w)(c, t).
4.1. (a, u)(b, u)(b, v)(b, w); 4.2. (a, u)(b, u)(b, v)(c, v); 4.3. (a, u)(b, u)(b, v)(c, w).
5.1. (a, u)(b, u)(c, u)(c, v); 5.2. (a, u)(b, u)(c, u)(d, u); 5.3. (a, u)(b, u)(c, u)(d, v).
6.1. (a, u)(b, u)(c, v)(c, w); 6.2. (a, u)(b, u)(c, v)(d, v); 6.3. (a, u)(b, u)(c, v)(d, w).
7.1. (a, u)(b, v)(b, w)(b, t); 7.2. (a, u)(b, v)(b, w)(c, w); 7.3. (a, u)(b, v)(b, w)(c, t).
8.1. (a, u)(b, v)(c, v)(c, w); 8.2. (a, u)(b, v)(c, v)(d, v); 8.3. (a, u)(b, v)(c, v)(d, w).
9.1. (a, u)(b, v)(c, w)(d, w); 9.2. (a, u)(b, v)(c, w)(c, t); 9.3. (a, u)(b, v)(c, w)(d, t).

Now we observe that, all these paths type P4 are adjacent or have a common neighbor.
1.1. Since uvwt is a path P4 in H, the vertices u and t are adjacent or have a common neighbor.

If u and t are adjacent, then the vertices (a, u) and (a, t) are adjacent in G ⊠H. If u and t have a
common neighbor s, then (a, s) is a common neighbor of (a, u) and (a, t).
1.2. (a, v) is a common neighbor of (a, u) and (b, w) in G⊠H.
1.3. The uvwt is a path P4 in H. If u and t are adjacent, then the vertices (a, u) and (b, t) are

adjacent in G⊠H. If u and t have a common neighbor s, then (a, s) is a common neighbor of (a, u)
and (b, t).
2.1. The vertex (b, v) is a common neighbor of (a, u) and (b, w) in G⊠H.
2.2. The vertex (b, v) is a common neighbor of (a, u) and (c, v) in G⊠H.
2.3. The vertex (b, v) is a common neighbor of (a, u) and (c, w) in G⊠H.
3.1. Its proof is readily and similar to the proof of 1.3.
3.2. The vertex (b, v) is a common neighbor of (a, u) and (c, w) in G⊠H.
3.3. Its proof is readily, and is similar to the proof of 1.3.
4.1. The vertex (b, v) is a common neighbor of (a, u) and (b, w) in G⊠H.
4.2. The vertex (b, v) is a common neighbor of (a, u) and (c, v) in G⊠H.
4.3. The vertex (b, v) is a common neighbor of (a, u) and (c, w) in G⊠H.
5.1. The vertex (b, u) is a common neighbor of (a, u) and (c, v) in G⊠H.
5.2. Since abcd is a path P4 in G, the vertices a and d are adjacent or have a common neighbor.

If a and d are adjacent, then the vertices (a, u) and (d, u) are adjacent in G⊠H. If a and d have a
common neighbor r, then (r, u) is a common neighbor of (a, u) and (d, u).
5.3. Its proof is obvious and it is similar to the proof of 5.2.
6.1. The vertex (b, v) is a common neighbor of (a, u) and (c, v) in G⊠H.
6.2. Its proof is obvious and it is similar to the proof of 5.2.
6.3. Its proof is obvious and it is similar to the proof of 5.2.
7.1. Its proof is similar to the proof of 1.3.
7.2. The vertex (b, v) is a common neighbor of (a, u) and (c, w) in G⊠H.
7.3. Its proof is similar to the proof of 1.3.
8.1. The vertex (b, v) is a common neighbor of (a, u) and (c, w) in G⊠H.
8.2. Its proof is similar to the proof of 5.2.
8.3. Its proof is similar to the proof of 5.2.
9.1. Its proof is similar to the proof of 5.2.
9.2. Its proof is similar to the proof of 1.3.
9.3. There are two paths abcd and uvwt in G and H respectively. If ad ∈ E(G) and ut ∈ E(H),

then (a, d) and (u, t) are adjacent in G ⊠ H. If ad ∈ E(G) and s is a common neighbor of u and
t, then (a, s) is a common neighbor of (a, u) and (d, t) in G ⊠H. If ut ∈ E(H) and r is a common
neighbor of a and d, then (r, u) is a common neighbor of (a, u) and (d, t) in G⊠H. If a and d have
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a common neighbor r, and similarly, s is a common neighbor of u and t, then (r, s) is a common
neighbor of (a, u) and (d, t) in G⊠H.
It is observed that, both end vertices of every path P4 in G ⊠H are adjacent or have a common

neighbor. Therefore the proof is complete.

Now we have the following.

Theorem 3.6. For any graphs G and H with no isolated vertices, with the property that, any two

end vertices of each path P4 in G and H are adjacent or have a common neighbor, we have

Max{χei(G), χei(H)} ≤ χei(G□H) ≤ χ2(G)χ2(H).

The bounds are sharp.

Proof. For the �rst inequality, since G and H have no isolated vertices, and any path of length 3 of
G and H gives at least one path of length 3 of G□H, thus the �rst inequality holds. For seeing the
sharpness, consider G = Pm and H = Pn where m ≥ 4 or n ≥ 4.
We now prove the second inequality. From the de�nitions of Cartesian and strong products,

we may have G□H as a subgraph of G ⊠ H, and next any path P4 of (G□H) is a path P4 of
(G ⊠ H). Therefore, χei(G□H) ≤ χei(G ⊠ H). As the same way, χ2(G□H) ≤ χ2(G ⊠ H). From
Proposition 2.3 and Lemma 3.5 χei(G ⊠ H) ≤ χ2(G ⊠ H). On the other hand, from Theorem 3.4,
χ2(G⊠H) ≤ χ2(G)χ2(H). These deduce that χei(G□H) ≤ χ2(G)χ2(H). It is easy to see that, this
bound is sharp for G = C3 and H = C5 and also G = C3 and H = C7.

4. e-Injective Chromatic Number of Special Graphs

In this section we investigate the e-injective coloring of some special graphs, such as trees, path,
cycle, complete graphs, wheel graphs, star, complete bipartite graphs, k-regular bipartite graphs,
multipartite graphs and fan graphs.

Theorem 4.1. Let T be a tree. Then,

1. χei(T ) = 1 if and only if diam(T ) ≤ 2.

2. χei(T ) = 2 if and only if diam(T ) ≥ 3.

Proof. 1. If diam(T ) = 1, then T = P2 and if diam(T ) = 2, then T is a star and since there is no
path of length 3 between any two vertices, χei(T ) = 1.
Conversely, let χei(T ) = 1. Then there is no path of length 3 in T . Thus diam(T ) ≤ 2.
2. Let diam(T ) ≥ 3 and v0 be a vertex of maximum degree in T . We assign color 1 to the v0 and

to the vertex u if d(u, v0) is even, and color 2 to the vertex u if d(u, v0) is odd. Since there is only
one path between any two vertices in any tree T , so if two vertices x, y are in distance 3 and two
vertices x, z are in distance 3, then two vertices y, z are not in distance 3. This shows that, we can
use color 1 for x and color 2 for y, z. Therefore χei(T ) ≤ 2. On the other hand, if diam(T ) ≥ 3, then
χei(T ) ≥ 2. Therefore, if diam(T ) ≥ 3, then χei(T ) = 2.
Conversely, if χei(T ) = 2, there is two vertices v, w in T so that the path vxyw is of length 3 in T .

This shows that diam(T ) ≥ 3.

As an immediate from Theorem 4.1 we have.
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Proposition 4.2. For Path Pn, we have

χei(Pn) =

{
1 n ≤ 3,

2 n ≥ 4.

Proposition 4.3. For cycle Cn, we have

χei(Cn) =


1 n = 3,

2 n ≥ 4, 2|n,
3 n ≥ 4, 2 ∤ n.

Proof. Let n = 3. It is obvious that χei(C3) = 1.
Let n ≥ 4. There are two cases to be considered.
Case 1. If n is even.
We assign the color 1 to the odd vertices and color 2 to the even vertices. Therefore χei(C2k) = 2.
Case 2. If n is odd.
Let n = 5. We assign the color 1 to the vertices v1, v2 and color 2 to the vertices v3, v4 and we

assign color 3 to the vertex v5. This assignments is an e-injective coloring of C5.
Let n ≥ 7 . We assign the color 1 to the odd vertices vis, for i ≤ n − 4 and color 2 to the even

vertices vis, for i ≤ n− 3 and we assign color 3 to the vertices vn−2, vn−1, vn. This assignments is an
e-injective coloring of Cn for odd n ≥ 7. On the other hand, since there are two paths of length 3

between vn−2 with two vertices v1, vn−5, as well as vn−1 with two vertices v2, vn−4 and also vn with
two vertices v3, vn−3. It is clear that, one cannot e-injective color to the vertices cycle Cn withe two
colors for odd n. Therefore the result holds.

Since for n ≥ 4, any two vertices of Kn are end of a path P4, then we have.

Proposition 4.4. For complete graph Kn, we have

χei(Kn) =

{
1 n ≤ 3,

n n ≥ 4.

Proposition 4.5. For wheel graph Wn(n ≥ 3), χei(Wn) = n+ 1.

Proof. Let v1 be a universal vertex. For i, j ≥ 2, there exists a path vjvj+1v1vi between vi and vj
if vi ̸= vj+1; and there exists a path vjv1vj+2vi between vi and vj if vi = vj+1. On the other hand,
there exists a path v1vi−2vi−1vi between v1 and vi. Taking this account, there exist a path of length
3 between two vertices in Wn. Therefore χei(Wn) = n+ 1.

Proposition 4.6. For complete bipartite graph Kn,m with m,n ≥ 2, χei(Kn,m) = 2.

Proof. Let n ≥ 2, m ≥ 2. It is easy to observe that, there is a path of length 3 between two vertices
of two di�erent partite sets. Therefore one can assign color 1 to one partite set and 2 to another
partite set. Thus, χei(Kn,m) = 2.

Using the proof of Proposition 4.6, For regular bipartite graphs, we have the next result, which
proof is similar.
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Proposition 4.7. For k-regular bipartite graph G (k ≥ 2), χei(G) = 2.

A complete r partite graph is a simple graph such that the vertices are partitioned to r independent
vertex sets and every pair of vertices are adjacent if and only if they belong to di�erent partite sets.

Proposition 4.8. Let G = Kn1,...,nr be a complete (r ≥ 3) partite graph of order n. Then

χei(G) =


1, r = 3 and G = K1,1,1,

n− 1, r = 3 and G ∈ {Kn−2,1,1, K1,n−2,1, K1,1,n−2} with n ≥ 4,

n, otherwise.

Proof. 1. It is trivial.
2. Let r = 3 and G ∈ {Kn−2,1,1, K1,n−2,1, K1,1,n−2}. Without loss of generality, assume that

G = Kn−2,1,1 with vertex set V = {v1, v2, . . . , vn−2, u1, w1}. The path viu1w1vj is a path of length 3

between vi, vj. The paths u1viw1vj and w1viu1vj are paths of length 3 between u1, vj and between
w1, vj respectively. On the other hand, there exists no path of length 3 from u1 and w1. Now we can
assign same color to u1, w1 and n− 2 other di�erent colors to the vis. Thus χei(G) = n− 1.
3. If r ≥ 4, and vi, wj are two vertices of two partite sets, then taking two vertices from two other

partite sets xm, yl, one can construct a path vi, xm, yl, wj of length 3.
Let r = 3 and G = Kk,l,m where two of k, l,m are at least 2. If k = 1 and l,m ≥ 2 with

V (G) = {v1, u1 . . . , ul, w1, . . . , wm}, then v1uiwsuj, v1wiuswj, uiv1ujws, uiwtv1uj, wiuxv1wj with
i ̸= j, give us a path of length 3 between v1, uj, v1, wj, ui, ws, ui, uj and wi, wj respectively.
Let r = 3 and G = Kk,l,m where k, l,m ≥ 2. Then, similar to the second part of situation 3,

there exist a path of length 3 between any two vertices of G. Therefore χei(G) = n. Thus the result
holds.

Proposition 4.9. For fan graph Fm,n, we have

χei(Fm,n) =


1, m = 1, n = 2,

m+ 1, m ≥ 2, n = 2,

m+ n, m = 1, n ≥ 4 and m ≥ 2, n ≥ 3.

Proof.

There are three situations to be considered.
1. If m = 1, n = 2. It is obvious.
2. If m ≥ 2, n = 2 and V (Fm,2) = {v1, v2, . . . , vm, u1, u2}, then by de�nition F2,2

∼= F1,3 and
Fm,2 = Km ∨P2. Two vertices u1, u2 receive same color because there is no path of length 3 between
them. On the other hand there exist a path viu1u2vj of length 3 between any pair of vertices vi, vj,
and there exist a path viulvjuk with l ̸= k of length 3 between any pair of vertices vi, uk. Therefore
χei(Fm,2) = m+ 1.
3.1. Let m = 1, n ≥ 4 and V (F1,n) = {v1, u1, u2, . . . , un}. Then v1ui+2ui+1ui, (i ≤ n − 2),

v1ui−2ui−1ui, (i ≥ n− 1), uiv1uj+1uj, (i < j < n), uiv1un−1un (i < n− 1) and un−1un−2v1un are the
paths of length 3 between any pair of vertices ui, uj and v1, ui. Thus χei(F1,n) = 1 + n.
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3.2. Let m ≥ 2, n ≥ 3. Using the reasons given in proof of part 3.1, one can easy to see that there
is a path of length 3 between any pair of vertices of Fm,n.
All in all the proof is completed.

5. Discussion and Conclusions

From Propositions 2.1, 2.2 and 2.3,
1. Characterize graphs G with χei(G) = χ(G); Characterize graphs G with χei(G) = χi(G);

Characterize graphs G with χei(G) = χ2(G).
2. After discussion on the solution of 1, one can revisit the Conjectures 1.1 and 1.3.

From Propositions 3.3 and 3.2, we can have the following.
3. Characterize graphs G with χei(G) = ρ(G).
4. Characterize graphs G with χei(G) = ∆(G)(∆(G)− 1)2 + 1.
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