Journal of Combinatorial Mathematics and Combinatorial Computing www.combinatorialpress.com/jcmcc

Multi-Decomposition of Graphs into Paths and Y-Trees of Order Five

Chaadhanaa A^1 , Hemalatha $\mathrm{P}^{1,\boxtimes}$

¹ Department of Mathematics, Vellalar College For Women, Tamil Nadu, India

ABSTRACT

Let K_n , P_n , and Y_n respectively denote a complete graph, a path, and a Y-tree on n vertices, and let $K_{m,n}$ denote a complete bipartite graph with m and n vertices in its parts. Graph decomposition is the process of breaking down a graph into a collection of edge-disjoint subgraphs. A graph G has a (H_1, H_2) -multi-decomposition if it can be decomposed into $\alpha \geq 0$ copies of H_1 and $\beta \geq 0$ copies of H_2 , where H_1 and H_2 are subgraphs of G. In this paper, we derive the necessary and sufficient conditions for the (P_5, Y_5) -multi-decomposition of K_n and $K_{m,n}$.

Keywords: Path, Y-Tree, Multi-decomposition, Complete graph, Complete bipartite graph, Conjoined Twins

1[.](#page-0-0) [I](#page-0-3)[n](#page-0-4)troduction

All graphs considered in this paper are finite, simple, and undirected. Let K_n denote a complete graph on n vertices, $K_{m,n}$ a complete bipartite graph with vertex partite sets of cardinality m and n, and P_k a path on k vertices. A Y-tree on k vertices, denoted by Y_k , is a tree in which one edge is attached to a vertex v of the path P_{k-1} such that at least one of the adjacent vertices of v has degree 1.

A decomposition of a graph G is a set of edge-disjoint subgraphs H_1, H_2, \ldots, H_r of G such that every edge of G belongs to exactly one $H_i,~1\leq i\leq r.$ If all the subgraphs in the decomposition of G are isomorphic to a graph H , then G is said to be H -decomposable. If G can be decomposed into α copies of H_1 and β copies of H_2 , then G is said to have an (H_1, H_2) -multi-decomposition or an ${H_1^{\alpha}, H_2^{\beta}}$ -decomposition. The pair (α, β) is called admissible if it satisfies the necessary conditions for the existence of an $\{H_1^\alpha, H_2^\beta\}$ -decomposition. If G has an (H_1, H_2) -multi-decomposition for all

Received 19 November 2024; accepted 05 December 2024; published 31 December 2024.

DOI: [10.61091/jcmcc123-09](https://doi.org/10.61091/jcmcc123-09)

 $\overline{\otimes}$ Corresponding author.

E-mail addresses: math.chaad@gmail.com (Chaadhanaa A), [dr.hemalatha@gmail.com](mailto:m.reed@umn.edu) (Hemalatha P).

[©] 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license [\(https://creativecommons.org/licenses/by/4.0/\)](https://creativecommons.org/licenses/by/4.0/).

admissible pairs (α, β) , it is said to have an $(H_1, H_2)_{\{\alpha, \beta\}}$ -decomposition.

The necessary and sufficient condition for the existence of a P_5 -decomposition of complete graphs was studied in [\[5\]](#page-10-0), and for complete bipartite graphs in [\[1\]](#page-10-1). The path decomposition of various graphs was explored in [\[15,](#page-11-0) [11\]](#page-10-2). The graph Y_5 is one of the three non-isomorphic trees of order five, excluding paths and stars. Caterina and Antonio $\lbrack 3 \rbrack$ named Y_5 as the *chair* and studied the stability number of chair-free graphs.

The Y_5 -decomposition of complete graphs was obtained by C. Huang and A. Rosa [\[5\]](#page-10-0). J. Paulraj Joseph and A. Samuel Issacraj $[8]$ referred to Y_5 as the *fork* and studied its decomposition in com-plete bipartite graphs. S. Gomathi and A. Tamil Elakkiya [\[4\]](#page-10-5) defined this graph as a Y_5 -tree and investigated its decomposition in the tensor product of complete graphs. The Y_5 -decomposition of various graphs was further analyzed in [\[9,](#page-10-6) [10\]](#page-10-7). The concept of multi-decomposition was introduced by A. Abueida and M. Daven [\[2\]](#page-10-8). In recent years, multi-decomposition of graphs has emerged as a prominent research area in graph theory. T.-W. Shyu studied the multi-decomposition of complete graphs into paths with cycles and stars [\[12,](#page-10-9) [13\]](#page-10-10). S. Jeevadoss and A. Muthusamy established necessary and sufficient conditions for the multi-decomposition of complete bipartite graphs into paths and cycles [\[6\]](#page-10-11). Multi-decomposition of complete bipartite graphs into paths and stars was considered in [\[14\]](#page-10-12).

In this paper, we establish the necessary and sufficient conditions for the existence of a (P_5, Y_5) multi-decomposition of K_n and $K_{m,n}$. To prove our results, we recall the following theorems:

Theorem 1.1. [\[5\]](#page-10-0) The complete graph K_n is Y_5 -decomposable if and only if $n \equiv 0 \pmod{8}$.

Theorem 1.2. [\[1\]](#page-10-1) Let k, m, and n be positive integers. The necessary conditions for a P_{k+1} decomposition of $K_{m,n}$ are listed in Table [1,](#page-1-0) and these conditions are also sufficient.

Case	k_{\parallel}	m	$n_{\rm }$	Characterization
1.	even	even	even	$k \leq 2m, k \leq 2n$, not both equal
2.	odd	even	even	Equalities hold when k is even
3.	even	even	odd	$k \leq 2m-2, k \leq 2n$
4.	even	odd	even	$k < 2m, k < 2n - 2$
5.	even	odd	odd	Decomposition impossible
6.	odd	even	odd	$k \leq 2m-1, k \leq n$
7.	odd	odd	even	$k \leq m, k \leq 2n-1$
8.	odd	odd	odd	$k \leq m, k \leq n$

Table 1. Necessary and sufficient conditions for a P_{k+1} -decomposition of $K_{m,n}$

Theorem 1.3. [\[8\]](#page-10-4) The complete bipartite graph $K_{m,n}$ is fork-decomposable if and only if $mn \equiv 0$ (mod 4), except for $K_{2,4i+2}$, $(i = 1, 2, ...)$.

2. Multi-Decomposition of Complete Graphs into P_5 and Y_5

2.1. Preliminaries

Definition 2.1. [\[7\]](#page-10-13) For a graph G, two disjoint subsets of vertices are called *twins* if they have the same order and induce subgraphs with the same number of edges.

Next, we introduce a new graph structure called *Conjoined Twins* in the following remark.

Remark 2.2. Consider the graph T with vertex set $\{v_i: 1 \le i \le 8\}$.

Fig. 1. Conjoined twins (T)

The subgraphs induced by A and B are isomorphic to P_5 when $A = \{v_1, v_2, v_6, v_7, v_8\}$ and $B =$ ${v_2, v_3, v_4, v_5, v_6}$. Similarly, if $A = {v_1, v_2, v_3, v_4, v_8}$ and $B = {v_4, v_5, v_6, v_7, v_8}$, the corresponding induced subgraphs are isomorphic to Y_5 . We call these subsets of vertices *Conjoined Twins* (T) because the subsets A and B are not disjoint (there are two common vertices), but the induced subgraphs are isomorphic.

It is interesting to note that the subgraph induced by A is isomorphic to P_5 when $A = \{v_1, v_2, v_3, v_8, v_6\}$ and if $B = \{v_3, v_4, v_5, v_6, v_7\}$, the corresponding induced subgraph is isomorphic to Y_5 .

Thus, decomposing the graph G into a structure whose vertices are *Conjoined Twins* as in Figure [1](#page-2-0) can be viewed as consisting of 2 copies of P_5 , 2 copies of Y_5 , or 1 copy each of P_5 and Y_5 , which significantly simplifies the (P_5, Y_5) -multi-decomposition.

2.2. Notations

- For a subgraph H of G, $G\backslash H$ denotes a graph where $V(G\backslash H) = V(G)$ and $E(G\backslash H) =$ $E(G) - E(H)$.
- rG denotes r disjoint copies of the graph G .
- $G = H_1 \oplus H_2$ means G can be decomposed into H_1 and H_2 .
- Let $v_i, 1 \leq i \leq n$, be the vertices of the complete graph K_n .
- In the complete bipartite graph $K_{m,n}$, the vertices of the first partite set with m vertices are denoted by v_{1i} , $1 \le i \le m$, and the second partite set with *n* vertices by v_{2j} , $1 \le j \le n$.
- A path P_5 with 5 vertices v_i , $1 \leq i \leq 5$, having v_1 and v_5 as pendant vertices is denoted by $P_5(v_1, v_2, v_3, v_4, v_5).$
- The Y_5 graph with 5 vertices v_i , $1 \le i \le 5$, is denoted by $Y_5(v_1, v_2, v_3, v_4; v_5)$, where v_i , $1 \le i \le 4$, form a path of length three, and the underlined vertices denote an edge v_3v_5 .
- Suppose we have a graph whose vertices are *Conjoined Twins* (T) as in Figure [1.](#page-2-0) We denote it by $T(v_1, v_2, v_3, v_4, v_5, v_6, v_7; v_8)$, where v_i , $1 \le i \le 7$, form a path of length six, and the underlined vertices denote edges v_2v_8 and v_6v_8 .

Remark 2.3. If two graphs G_1 and G_2 have an (H_1, H_2) -multi-decomposition, then $G_1 \oplus G_2$ also has such a decomposition.

2.3. Necessary condition

The following theorem gives the necessary condition for the existence of a multi-decomposition of the complete graph K_n into paths and Y-trees with 5 vertices.

Theorem 2.4. If K_n has a (P_5, Y_5) - multi-decomposition, then $n \equiv 0 \text{ or } 1 \pmod{8}$.

Proof. Proof follows from the edge divisibility condition.

$2.4.$ Sufficient conditions

In this section, we show that the necessary condition obtained in Theorem [2.4](#page-2-1) is also sufficient for the existence of a multi-decomposition of K_n , $(n \geq 8)$ into P_5 and Y_5 .

Lemma 2.5. The Complete graphs K_8 and K_9 have (P_5, Y_5) - multi-decomposition.

Proof. We can see that $K_8 = 3T \oplus 1P_5$, where the 3T's and $1P_5$ are given by,

 $T(v_6, v_7, v_5, v_1, v_4, v_8, v_2; v_3), T(v_3, v_6, v_4, v_2, v_5, v_8, v_7; v_1),$ $T(v_8, v_6, v_5, v_3, v_1, v_7, v_4; v_2), P_5(v_1, v_2, v_3, v_4, v_5).$

Similarly, K_9 can be written as $K_9 = 4T \oplus 1P_5$, where the 4T's and $1P_5$ are as follows:

 $T(v_3, v_6, v_4, v_1, v_8, v_7, v_5; v_2), T(v_3, v_9, v_4, v_2, v_5, v_6, v_1; v_7),$ $T(v_4, v_8, v_5, v_3, v_1, v_9, v_2; v_6), T(v_4, v_7, v_1, v_5, v_9, v_8, v_2; v_3), P_5(v_1, v_2, v_3, v_4, v_5).$

Lemma 2.6. The Complete bipartite graphs $K_{7,8}$, $K_{8,8}$ and $K_{9,8}$ have (P_5, Y_5) - multi-decomposition.

Proof. It is clear that $K_{7,8} = 7T$, where 7T's are given by

 $T(v_{21}, v_{11}, v_{23}, v_{12}, v_{24}, v_{13}, v_{22}; v_{25}), T(v_{25}, v_{12}, v_{22}, v_{11}, v_{26}, v_{13}, v_{23}; v_{21}),$ $T(v_{24}, v_{11}, v_{28}, v_{15}, v_{26}, v_{14}, v_{25}; v_{27}), T(v_{24}, v_{14}, v_{28}, v_{13}, v_{27}, v_{15}, v_{25}; v_{23}),$ $T(v_{27}, v_{12}, v_{28}, v_{17}, v_{24}, v_{16}, v_{25}; v_{26}), T(v_{28}, v_{16}, v_{21}, v_{14}, v_{22}, v_{17}, v_{26}; v_{27}),$ $T(v_{24}, v_{15}, v_{22}, v_{16}, v_{23}, v_{17}, v_{25}; v_{21}).$

Similarly $K_{8,8} = 8T$, where 8T's are identified as,

 $T(v_{22}, v_{13}, v_{24}, v_{12}, v_{23}, v_{18}, v_{21}; v_{25}), T(v_{28}, v_{12}, v_{25}, v_{11}, v_{26}, v_{13}, v_{23}; v_{27}),$ $T(v_{26}, v_{12}, v_{21}, v_{13}, v_{28}, v_{14}, v_{25}; v_{22}), T(v_{28}, v_{11}, v_{27}, v_{14}, v_{26}, v_{15}, v_{25}; v_{24}),$ $T(v_{24}, v_{14}, v_{21}, v_{16}, v_{27}, v_{15}, v_{22}; v_{23}), T(v_{24}, v_{16}, v_{28}, v_{15}, v_{21}, v_{17}, v_{26}; v_{22}),$ $T(v_{21}, v_{11}, v_{23}, v_{17}, v_{24}, v_{18}, v_{27}; v_{22}), T(v_{23}, v_{16}, v_{26}, v_{18}, v_{28}, v_{17}, v_{27}; v_{25}).$

Further $K_{9,8} = 9T$, the following are the required $9T$'s

 $T(v_{26}, v_{11}, v_{23}, v_{12}, v_{24}, v_{13}, v_{25}; v_{22}), T(v_{25}, v_{12}, v_{26}, v_{19}, v_{27}, v_{13}, v_{23}; v_{28}),$ $T(v_{22}, v_{12}, v_{21}, v_{13}, v_{26}, v_{14}, v_{23}; v_{27}), T(v_{28}, v_{11}, v_{24}, v_{14}, v_{22}, v_{15}, v_{25}; v_{27}),$ $T(v_{21}, \underline{v_{14}}, v_{25}, v_{16}, v_{23}, \underline{v_{15}}, v_{24}; \underline{v_{28}}), T(v_{27}, v_{16}, v_{21}, v_{15}, v_{26}, v_{17}, v_{22}; v_{24}),$ $T(v_{21}, v_{18}, v_{27}, v_{17}, v_{25}, v_{19}, v_{22}; v_{24}), T(v_{22}, v_{16}, v_{26}, v_{18}, v_{23}, v_{17}, v_{21}; v_{28}),$ $T(v_{22}, v_{18}, v_{25}, v_{11}, v_{21}, v_{19}, v_{23}; v_{28}).$

Lemma 2.7. The graph K_8 admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition when $\alpha + \beta = 7$.

Proof. The admissible pairs satisfying $\alpha + \beta = 7$ are $\{(0,7), (1,6), (2,5), (3,4), (4,3), (5,2),$ $(6,1),(7,0)\}.$

Case 1. $\alpha \neq 0$.

From Lemma [2.5,](#page-3-0) $K_8 = 3T \oplus 1P_5$, which can be taken into any of the forms: $6Y_5 \oplus 1P_5$, $5Y_5 \oplus$ $2P_5, 4Y_5 \oplus 3P_5, 3Y_5 \oplus 4P_5, 2Y_5 \oplus 5P_5, 1Y_5 \oplus 6P_5$, and $7P_5$ using Remark [2.2.](#page-1-1)

Thus we have (P_5, Y_5) - multi-decomposition for the admissible pairs $(\alpha, \beta) \in \{(1, 6), (2, 5), (3, 4),$ $(4, 3), (5, 2), (6, 1), (7, 0)\}.$

Case 2. $\alpha = 0$.

Theorem [1.1](#page-1-2) gives the required decomposition for the admissible pair $(0, 7)$. Hence the proof follows from Cases 1 & 2 for all admissible pairs (α, β) .

Lemma 2.8. The graph K_9 admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition if $\alpha + \beta = 9$.

Proof. The admissible pairs satisfying $\alpha + \beta = 9$ are $\{(0,9), (1,8), (2,7), (3,6), (4,5), (5,4),$ $(6,3),(7,2),(8,1),(9,0)\}.$

Case 1. $\alpha \neq 0$.

From Lemma [2.5,](#page-3-0) $K_9 = 4T \oplus 1P_5$, which can be taken into any of the forms: $8Y_5 \oplus 1P_5$,

 $7Y_5 \oplus 2P_5$, $6Y_5 \oplus 3P_5$, $5Y_5 \oplus 4P_5$, $4Y_5 \oplus 5P_5$, $3Y_5 \oplus 6P_5$, $2Y_5 \oplus 7P_5$, $1Y_5 \oplus 8P_5$ and $9P_5$ using Remark [2.2.](#page-1-1)

Thus we have (P_5, Y_5) - multi-decomposition for the admissible pairs $(\alpha, \beta) \in \{(1, 8), (2, 7), (3, 6),\}$ $(4, 5), (5, 4), (6, 3), (7, 2), (8, 1), (9, 0)$.

Case 2. $\alpha = 0$.

Theorem [1.1](#page-1-2) gives the required decomposition for the admissible pair $(0, 9)$. Thus, K_9 admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition.

Lemma 2.9. The graph $K_{7,8}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition if $\alpha + \beta = 14$.

Proof. The admissible pairs satisfying $\alpha + \beta = 14$ are $\{(0.14), (1.13), (2.12), (3.11), (4.10), (5.9), (6.8),$ $(7,7),(8,6),(9,5),(10,4),(11,3),(12,2),(13,1),(14,0)\}.$

From Lemma [2.6,](#page-3-1) $K_{7,8} = 7T$, which can be taken into any of the forms: $14Y_5$, $13Y_5 \oplus 1P_5$, $12Y_5 \oplus$ $2P_5, 11Y_5 \oplus 3P_5, 10Y_5 \oplus 4P_5, 9Y_5 \oplus 5P_5, 8Y_5 \oplus 6P_5, 7Y_5 \oplus 7P_5, 6Y_5 \oplus 8P_5, 5Y_5 \oplus 9P_5, 4Y_5 \oplus 10P_5, 3Y_5 \oplus 9P_5$ $11P_5, 2Y_5 \oplus 12P_5, 1Y_5 \oplus 13P_5$ and $14P_5$ using Remark [2.2.](#page-1-1)

 \Box

 \Box

 \Box

Thus we have (P_5, Y_5) - multi-decomposition for all the admissible pairs (α, β) .

Lemma 2.10. The graph $K_{8,8}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition if $\alpha + \beta = 16$.

Proof. The admissible pairs satisfying $\alpha + \beta = 16$ are $\{(0,16), (1,15), (2,14), (3,13), (4,12), (5,11), (6,10), (7,11)\}$ $(7,9),(8,8),(9,7),(10,6),(11,5),(12,4),(13,3),(14,2),(15,1),(16,0)\}.$

From Lemma [2.6](#page-3-1), $K_{8,8} = 8T$. Then we have (P_5, Y_5) - multi-decomposition for all the admissible pairs (α, β) using Remark [2.2.](#page-1-1) \Box

Lemma 2.11. The graph $K_{9,8}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition when $\alpha + \beta = 18$.

Proof. The admissible pairs satisfying $\alpha + \beta = 18$ are $\{(0, 18), (1, 17), (2, 16), (3, 15), (4, 14), (5, 13),$ $(6, 12), (7, 11), (8, 10), (9, 9), (10, 8), (11, 7), (12, 6), (13, 5), (14, 4), (15, 3), (16, 2), (17, 1), (18, 0)\}.$

From Lemma [2.6](#page-3-1), $K_{9,8} = 9T$. Then we have (P_5, Y_5) - multi-decomposition for all the admissible pairs (α, β) using Remark [2.2.](#page-1-1) \Box

Theorem 2.12. (Sufficient conditions) For given non negative integers α , β and $n \geq 8$, K_n has $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition whenever $4(\alpha + \beta) = {n \choose 2}$ $\binom{n}{2}$.

Proof. From the given (Necessary conditions) edge divisibility condition,

we have $n \equiv 0$ or 1 (*mod* 8).

Case 1: $n \equiv 0 \pmod{8}$.

Let $n = 4t$, t is even. We prove this theorem using induction on t. When $t = 2$, the proof follows from Lemma [2.7.](#page-4-0) We observe that for $t \geq 4$,

$$
K_{4t} = K_{4(t-2)} \oplus K_9 \oplus K_{4(t-2)-1,8}.\tag{1}
$$

Also for $t \geq 6$,

$$
K_{4(t-2)-1,8} = K_{4(t-4)-1,8} \oplus K_{8,8}.
$$
\n⁽²⁾

From (1) and (2) ,

$$
K_{4t} = K_{4(t-2)} \oplus K_9 \oplus K_{4(t-4)-1,8} \oplus K_{8,8}, \quad t \ge 6. \tag{3}
$$

Assume that the theorem is true for all even $k < t$. We have to prove for $t = k + 2$. From [\(3\)](#page-5-2), we can write,

$$
K_{4(k+2)} = K_{4k} \oplus K_9 \oplus K_{4(k-2)-1,8} \oplus K_{8,8}.
$$

By induction hypothesis and from Lemmas [2.7,](#page-4-0) [2.8,](#page-4-1) [2.9](#page-4-2) and [2.10](#page-4-3) the proof follows.

Case 2: $n \equiv 1 \pmod{8}$.

Let $n = 4t + 1$, t is even. When $t = 2$, the proof follows from Lemma [2.8.](#page-4-1) We observe that for $t \geq 4$,

$$
K_{4t+1} = K_{4(t-2)} \oplus K_9 \oplus K_{4(t-2)+\frac{1}{2}(t-2),8} \tag{4}
$$

Also for $t \geq 6$.

$$
K_{4(t-2)+\frac{1}{2}(t-2),8} = K_{4(t-4)+\frac{1}{2}(t-2),8} \oplus K_{9,8}.
$$
\n⁽⁵⁾

From (4) and (5) ,

$$
K_{4t+1} = K_{4(t-2)} \oplus K_9 \oplus K_{4(t-4)+\frac{1}{2}(t-2),8} \oplus K_{9,8}, \quad t \ge 6. \tag{6}
$$

Assume that the theorem is true for all even $k < t$. We have to prove for $t = k + 2$. From [\(6\)](#page-6-0), we can write,

$$
K_{4(k+2)+1} = K_{4k} \oplus K_9 \oplus K_{4(k-2)+\frac{1}{2}k,8} \oplus K_{9,8}.
$$

By induction hypothesis and from Lemmas [2.7,](#page-4-0) [2.8](#page-4-1) and [2.11](#page-5-5) the proof follows.

 \Box

 \Box

Theorem 2.13. (Main Theorem) For non-negative integers α , β and $n \geq 8$, $K_n = \alpha P_5 \oplus \beta Y_5$ if and only if $4(\alpha + \beta) = {n \choose 2}$ $\binom{n}{2}$.

Proof. The proof follows from Theorems [2.4](#page-2-1) and [2.12.](#page-5-6)

3. Multi-Decomposition of Complete Bipartite Graphs into P_5 and Y_5

3.1. Necessary conditions

In this section, we derive the necessary conditions for the existence of multi-decomposition of $K_{m,n}$. $(m > 2, n \geq 2)$ into paths and Y-trees with 5 vertices.

Lemma 3.1. Let k be even. If $K_{2k,2}$ has a (P_5, Y_5) - multi-decomposition for the admissible pair (α, β) , then α is even.

Proof. Let $V(K_{2k,2}) = V_1 \cup V_2$, where $|V_1| = 2k$, $|V_2| = 2$ and $|E(K_{2k,2})| = 4k$. P_5 has a degree sequence $(2, 2, 2, 1, 1)$. While decomposing $K_{2k,2}$ into P_5 's and Y_5 's, the two vertices of P_5 with degree 2 which are incident with a vertex of degree 1, should be formed using the vertex set $V_2 = \{v_{21}, v_{22}\}\.$ Y₅ has a degree sequence $(3, 2, 1, 1, 1)$. Here, the vertex with degree 3 and the vertex with degree 1 which is incident with a vertex of degree 2, should be formed using the vertex set V_2 . Since each vertex in V_2 has degree 2k, after decomposing $K_{2k,2}$ into α number of P_5 , each vertex v_{2i} , $i=1,2$ has degree $2k - 2\alpha$ and $|E(K_{2k,2}\backslash \alpha P_5)| = 4k - 4\alpha$. Since k is even, it is clear that

$$
2(k - \alpha) \equiv \begin{cases} 0(mod\ 4), & if \alpha is even, \\ 2(mod\ 4), & if \alpha is odd. \end{cases}
$$

Therefore, partitioning the remaining $4(k - \alpha)$ edges into $k - \alpha$ number of Y_5 is possible only when α is even. \Box

Lemma 3.2. Let $k \geq 3$ be odd. If $K_{2k,2}$ has a (P_5, Y_5) - multi-decomposition for the admissible pair (α, β) , then α is odd.

Proof. The proof is same as Lemma [3.1](#page-6-1) with the same argument. Since $k \geq 3$ is odd,

$$
2(k - \alpha) \equiv \begin{cases} 2(mod \ 4), & \text{if } \alpha \text{ is even,} \\ 0(mod \ 4), & \text{if } \alpha \text{ is odd.} \end{cases}
$$

Hence the proof follows.

Theorem 3.3. (Necessary conditions) If $K_{m,n}$ has $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition, then $mn = 4(\alpha + \beta)$ with $m > 2$ and $n > 1$ except

- 1. $m = 2k$, k even; $n = 2$ and α is odd
- 2. $m = 2k, k \geq 3$ odd; $n = 2$ and α is even

Proof. The proof follows from edge divisibility condition and by Lemmas [3.1](#page-6-1) and [3.2.](#page-6-2) \Box

3.2. Sufficient conditions

In the following lemmas we prove that the above necessary conditions are also sufficient.

Lemma 3.4.

$$
K_{4,2} = \begin{cases} 2P_5, \\ or, \\ 2Y_5. \end{cases}
$$

Proof. By Theorem [3.3,](#page-6-3) $\alpha + \beta = 2$. Hence the admissible pairs (α, β) are $(0, 2)$, $(1, 1)$ and $(2, 0)$. By Theorem [1.2,](#page-1-3) $K_{4,2}$ can be decomposed into $2P_5$ and by Theorem [1.3,](#page-1-4) $K_{4,2}$ can be decomposed into $2Y_5$. Hence there exists a (P_5, Y_5) - multi-decomposition for the admissible pairs $(0, 2)$ and $(2, 0)$. By Lemma [3.1,](#page-6-1) it is clear that there does not exist a (P_5, Y_5) - multi-decomposition for the admissible pair $(1, 1)$. Hence the proof. \Box

Lemma 3.5. The graph $K_{6,2}$ has (P_5, Y_5) - multi-decomposition for some of the admissible pairs (α, β) where α is odd.

Proof. The admissible pairs for which the decomposition exists are $(\alpha, \beta) \in \{(3,0), (1,2)\}\.$ For $(3,0)$, Theorem [1.2](#page-1-3) gives the required decomposition. For $(1, 2)$, we have the necessary breakdown is as follows:

 $P_5(v_{11}, v_{21}, v_{12}, v_{22}, v_{13}), Y_5(v_{21}, v_{15}, \underline{v_{22}}, v_{14}; \underline{v_{11}}), Y_5(v_{22}, v_{16}, \underline{v_{21}}, v_{14}; \underline{v_{13}}).$

The desired decomposition does not exist for the admissible pairs $(2,1)$ and $(0,3)$ by Lemma [3.2.](#page-6-2) \Box

Lemma 3.6. Let k be even. If α is even in the admissible pair (α, β) , then $K_{2k,2}$ has a (P_5, Y_5) . multi-decomposition.

Proof. Since k is even, $k = 2k_1$ for $k_1 \in \mathbb{N}$. we write, $K_{2k,2} = k_1K_{4,2}$.

Therefore, by Lemma [3.4,](#page-7-0) for any even α such that $\alpha + \beta = k$, there exists a (P_5, Y_5) - multidecomposition for the admissible pairs (α, β) with α, β are even. This completes the proof. \Box

Lemma 3.7. Let $k \geq 3$ be odd. If α is odd, then $K_{2k,2}$ has (P_5, Y_5) - multi-decomposition.

Proof. Since $k \neq 1$ is odd, $k = 2q + 1$ for $q \in \mathbb{N}$. we write, $K_{2k,2} = (q - 1)K_{4,2} \oplus K_{6,2}$.

Therefore, by Lemmas [3.4](#page-7-0) and [3.5,](#page-7-1) for any odd α such that $\alpha + \beta = k$, there exists a (P_5, Y_5) . multi-decomposition for the admissible pairs (α, β) with α is odd and β is even. This completes the proof. \Box

Lemma 3.8. The graph $K_{4,3}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition whenever $\alpha + \beta = 3$.

Proof. Case 1: $(3,0)$. Theorem [1.2](#page-1-3) gives required $3P_5$'s. Case 2: (2,1).

 $P_5(v_{21}, v_{12}, v_{22}, v_{11}, v_{23}), P_5(v_{11}, v_{21}, v_{13}, v_{22}, v_{14}), Y_5(v_{21}, v_{14}, v_{23}, v_{13}; v_{12}).$

Case 3: (1,2).

 $P_5(v_{21}, v_{14}, v_{22}, v_{11}, v_{23}), Y_5(v_{22}, v_{12}, v_{23}, v_{13}; v_{14}), Y_5(v_{22}, v_{13}, v_{21}, v_{12}; v_{11}).$

Case 4: $(0,3)$.

Theorem [1.3](#page-1-4) gives the required decomposition.

Lemma 3.9. The graph $K_{4,4}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition whenever $\alpha + \beta = 4$.

Proof. Case 1: α is even i.e., $(\alpha, \beta) \in \{(4,0), (2,2), (0,4)\}.$ Since $K_{4,4} = 2K_{4,2}$, Theorems [1.2](#page-1-3) and [1.3](#page-1-4) give the required decomposition. Case 2: α is odd. Subcase 1: (3,1).

 $P_5(v_{11}, v_{22}, v_{14}, v_{23}, v_{13}), P_5(v_{21}, v_{14}, v_{24}, v_{12}, v_{22}), P_5(v_{12}, v_{23}, v_{11}, v_{24}, v_{13}), Y_5(v_{22}, v_{13}, v_{21}, v_{12}; v_{11})$

Subcase 2: (1,3).

 $P_5(v_{12}, v_{22}, v_{13}, v_{21}, v_{14}), Y_5(v_{13}, v_{23}, v_{14}, v_{24}; v_{22}), Y_5(v_{13}, v_{24}, v_{11}, v_{23}; v_{22}), Y_5(v_{11}, v_{21}, v_{12}, v_{24}; v_{23})$

 \Box

Lemma 3.10. The graphs $K_{4,5}$ and $K_{4,6}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition whenever $\alpha + \beta = 5$ and $\alpha + \beta = 6$ respectively.

Proof. We can write $K_{4,5} = K_{4,2} \oplus K_{4,3}$, $K_{4,6} = 2K_{4,3}$. Then the proof follows from Lemmas [3.4](#page-7-0) and [3.8.](#page-8-0) \Box

Lemma 3.11. The graph $K_{6,6}$ admits $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition whenever $\alpha + \beta = 9$.

Proof. We can write $K_{6,6} = K_{4,6} \oplus K_{2,6}$. Since $K_{m,n} \cong K_{n,m}$, the proof follows from Lemmas [3.5](#page-7-1) and [3.10.](#page-8-1) \Box

Lemma 3.12. If $k, n \in \mathbb{N}$, $n \geq 3$, then $K_{4k,n}$ can be decomposed into admissible pairs of P_5 and Y_5 .

Proof. Let $n = 4q + r$ for $q > 0$ and $r \in \{0, 1, 2, 3\}.$ If $r = 0$, $K_{4k,n} = K_{4k,4q} = kqK_{4,4}$. For $r = 1$, $K_{4k,n} = K_{4k,4q+1} = K_{4k,4q-1)+5} = k(q-1)K_{4,4} \oplus K_{4,5}$. When $r = 2$, $K_{4k,n} = K_{4k,4q+2} = K_{4k,4(q-1)+6} = k(q-1)K_{4,4} \oplus K_{4,6}$. When $r = 3$, $K_{4k,n} = K_{4k,4q+3} = kqK_{4,4} \oplus K_{4,3}$. Then the proof follows from Lemmas [3.8,](#page-8-0) [3.9,](#page-8-2) [3.10](#page-8-1) and by mathematical induction on k, n . \Box

Lemma 3.13. If $k_1, k_2 \geq 3$ be odd, then $K_{2k_1,2k_2}$ can be decomposed into admissible pairs of P_5 and Y_5 .

Proof. Since $k_1 \neq 1$, $k_2 \neq 1$ are odd, $k_1 = 2q_1 + 1$ and $k_2 = 2q_2 + 1$ for $q_1, q_2 \in \mathbb{N}$ and we write, $K_{2k_1,2k_2} = (q_1-1)(q_2-1)K_{4,4} \oplus (q_1-1)K_{4,6} \oplus (q_2-1)K_{6,4} \oplus K_{6,6}.$

Then the proof follows from Lemmas [3.9,](#page-8-2) [3.10,](#page-8-1) [3.11](#page-8-3) and by mathematical induction on k_1 , k_2 . \Box

Theorem 3.14. (Sufficient Conditions) If m, n, α and β satisfy the necessary condition given in Theorem [3.3,](#page-6-3) then $K_{m,n}$ has $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition.

Proof. Case 1: $m \equiv 0 \pmod{4}$ or $n \equiv 0 \pmod{4}$, w.l.o.g, let $m = 4k$ for $k \in \mathbb{N}$.

Subcase 1.1. $n = 2$.

Lemma [3.6](#page-7-2) gives the required decomposition.

Subcase 1.2. $n > 3$.

Lemma [3.12](#page-9-0) gives the required decomposition.

Case 2: $m \equiv 0 \pmod{2}$ and $n \equiv 0 \pmod{2}$, i.e., $m = 2k_1$, $n = 2k_2$ for $k_1, k_2 \in \mathbb{N}$.

Subcase 2.1. When one of them is 2, w.l.o.g, let $n = 2$.

When k_1 is even, this falls in Subcase 1.1. If $k_1 \neq 1$ is odd, Lemma [3.7](#page-8-4) gives the required decomposition.

Subcase 2.2. $m, n > 2$.

When one of k_1 and k_2 or both of them are even, then the proof follows from Subcase 1.2. If both of them are odd, Lemma [3.13](#page-9-1) gives the required decomposition. \Box

Theorem 3.15. (Main Theorem) There exists $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition of $K_{m,n}$ if and only if any one of the following holds:

1. $m = 2k, k$ is even, $n = 2$ and α is even.

- 2. $m = 2k, k > 3$ is odd, $n = 2$ and α is odd.
- 3. $m = 4k$ and $n \geq 3$.
- 4. $m = 2k_1$ and $n = 2k_2$; where $k_1, k_2 \geq 3$ are odd.

Proof. Proof follows from Theorems [3.3](#page-6-3) and [3.14.](#page-9-2)

4. Conclusion

In this paper, it is proved that the necessary and sufficient condition for the existence of the $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition of the complete graph K_n $(n \geq 8)$ is $n \equiv 0$ or 1 (mod 8). Also we have obtained the necessary and sufficient conditions for the $(P_5, Y_5)_{\{\alpha,\beta\}}$ - decomposition of the complete bipartite graph $K_{m,n}$ $(m > 2, n \geq 2)$ as $mn = 4(\alpha + \beta)$ whenever

- (i) $m = 2k$, k even; $n = 2$ then α is even.
- (ii) $m = 2k, k \geq 3$ odd; $n = 2$ then α is odd.

References

- [1] C. A. Parker. Complete bipartite graph path decompositions. Ph.D. Dissertation, Auburn University, Auburn, Alabama, 1998.
- [2] A. Abueida and M. Daven. Multi-designs for graph-pairs of order 4 and 5. Graphs and Combinatorics, 19(4):433447, 2003. [https://doi.org/10.1007/s00373-003-0530-3.](https://doi.org/10.1007/s00373-003-0530-3)
- [3] S. Caterina De and S. Antonio. Stability number of bull and chair-free graphs. Discrete Applied Math $ematics, 41(2):121-129, 1993. [https://doi.org/10.1016/0166-218X\(93\)90032-J](https://doi.org/10.1016/0166-218X(93)90032-J).$
- [4] S. Gomathi and A. Tamil Elakkiya. Gregarious Y₅-tree decompositions of tensor product of complete graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 117:185-194, 2023. [https://doi.org/10.61091/jcmcc117-17.](https://doi.org/10.61091/jcmcc117-17)
- [5] C. Huang and A. Rosa. Decomposition of complete graphs into trees. Ars Combinatoria, 5:23-63, 1978.
- [6] S. Jeevadoss and A. Muthusamy. Decomposition of complete bipartite graphs into paths and cycles. $Discrete \ Mathematics$, $331:98-108$, 2014 . [https://doi.org/10.1016/j.disc.2014.05.009.](https://doi.org/10.1016/j.disc.2014.05.009)
- [7] A. Maria, M. Ryan, and U. Torsten. Twins in graphs. *European Journal of Combinatorics*, 39:188–197, 2014. [https://doi.org/10.1016/j.ejc.2014.01.007.](https://doi.org/10.1016/j.ejc.2014.01.007)
- [8] J. Paulraj Joseph and A. Samuel Issacraj. Fork-decomposition of graphs. Pre-Conference Proceedings of the International Conference on Discrete Mathematics, ISBN:978-93-91077-53-2:426-431, 2022.
- [9] A. Samuel Issacraj and J. Paulraj Joseph. Fork-decomposition of some total graphs. Palestine Journal of Mathematics, 12 (Special Issue II):65-72, 2023.
- [10] A. Samuel Issacraj and J. Paulraj Joseph. Fork-decomposition of the cartesian product of graphs. Mapana Journal of Sciences, $22(Special Issue 1):163-178, 2023. <https://doi.org/10.12723/mjs>.$ [sp1.13.](https://doi.org/10.12723/mjs.sp1.13)
- [11] G. Sethuraman and V. Murugan. Decomposition of complete graphs into arbitrary trees. Graphs and $Combinatorics, 37(4):1191-1203, 2021.$ [https://doi.org/10.1007/s00373-021-02299-5.](https://doi.org/10.1007/s00373-021-02299-5)
- [12] T.-W. Shyu. Decomposition of complete graphs into paths and cycles. Ars Combinatoria, 97:257270, 2010.
- [13] T.-W. Shyu. Decomposition of complete graphs into paths and stars. Discrete Mathematics, 310:2164 2169, 2010. [https://doi.org/10.1016/j.disc.2010.04.009.](https://doi.org/10.1016/j.disc.2010.04.009)
- [14] T.-W. Shyu. Decomposition of complete bipartite graphs into paths and stars with same number of edges. Discrete Mathematics, 313:865-871, 2013. [https://doi.org/10.1016/j.disc.2012.12.020.](https://doi.org/10.1016/j.disc.2012.12.020)

[15] M. Truszczyński. Note on the decomposition of $\lambda K_{m,n}(\lambda K_{m,n}^*)$ into paths. Discrete Mathematics, $55(1):89-96, 1985.$ [https://doi.org/10.1016/S0012-365X\(85\)80023-6.](https://doi.org/10.1016/S0012-365X(85)80023-6)