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abstract

Let Kn, Pn, and Yn respectively denote a complete graph, a path, and a Y -tree on n vertices, and

let Km,n denote a complete bipartite graph with m and n vertices in its parts. Graph decomposition

is the process of breaking down a graph into a collection of edge-disjoint subgraphs. A graph G has

a (H1, H2)-multi-decomposition if it can be decomposed into α ≥ 0 copies of H1 and β ≥ 0 copies

of H2, where H1 and H2 are subgraphs of G. In this paper, we derive the necessary and su�cient

conditions for the (P5, Y5)-multi-decomposition of Kn and Km,n.

Keywords: Path, Y -Tree, Multi-decomposition, Complete graph, Complete bipartite graph, Con-

joined Twins

1. Introduction

All graphs considered in this paper are �nite, simple, and undirected. Let Kn denote a complete

graph on n vertices, Km,n a complete bipartite graph with vertex partite sets of cardinality m and

n, and Pk a path on k vertices. A Y -tree on k vertices, denoted by Yk, is a tree in which one edge is

attached to a vertex v of the path Pk−1 such that at least one of the adjacent vertices of v has degree

1.

A decomposition of a graph G is a set of edge-disjoint subgraphs H1, H2, . . . , Hr of G such that

every edge of G belongs to exactly one Hi, 1 ≤ i ≤ r. If all the subgraphs in the decomposition of

G are isomorphic to a graph H, then G is said to be H-decomposable. If G can be decomposed into

α copies of H1 and β copies of H2, then G is said to have an (H1, H2)-multi-decomposition or an

{Hα
1 , H

β
2 }-decomposition. The pair (α, β) is called admissible if it satis�es the necessary conditions

for the existence of an {Hα
1 , H

β
2 }-decomposition. If G has an (H1, H2)-multi-decomposition for all

� Corresponding author.
E-mail addresses: math.chaad@gmail.com (Chaadhanaa A), dr.hemalatha@gmail.com (Hemalatha P).

Received 19 November 2024; accepted 05 December 2024; published 31 December 2024.

DOI: 10.61091/jcmcc123-09
© 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license

(https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.61091/jcmcc123-09
https://www.combinatorialpress.com/jcmcc
mailto:math.chaad@gmail.com
mailto:m.reed@umn.edu
https://doi.org/10.61091/jcmcc123-09
https://creativecommons.org/licenses/by/4.0/


124 Chaadhanaa, Hemalatha

admissible pairs (α, β), it is said to have an (H1, H2){α,β}-decomposition.

The necessary and su�cient condition for the existence of a P5-decomposition of complete graphs

was studied in [5], and for complete bipartite graphs in [1]. The path decomposition of various

graphs was explored in [15, 11]. The graph Y5 is one of the three non-isomorphic trees of order �ve,

excluding paths and stars. Caterina and Antonio [3] named Y5 as the chair and studied the stability

number of chair-free graphs.

The Y5-decomposition of complete graphs was obtained by C. Huang and A. Rosa [5]. J. Paulraj

Joseph and A. Samuel Issacraj [8] referred to Y5 as the fork and studied its decomposition in com-

plete bipartite graphs. S. Gomathi and A. Tamil Elakkiya [4] de�ned this graph as a Y5-tree and

investigated its decomposition in the tensor product of complete graphs. The Y5-decomposition of

various graphs was further analyzed in [9, 10]. The concept of multi-decomposition was introduced

by A. Abueida and M. Daven [2]. In recent years, multi-decomposition of graphs has emerged as a

prominent research area in graph theory. T.-W. Shyu studied the multi-decomposition of complete

graphs into paths with cycles and stars [12, 13]. S. Jeevadoss and A. Muthusamy established nec-

essary and su�cient conditions for the multi-decomposition of complete bipartite graphs into paths

and cycles [6]. Multi-decomposition of complete bipartite graphs into paths and stars was considered

in [14].

In this paper, we establish the necessary and su�cient conditions for the existence of a (P5, Y5)-

multi-decomposition of Kn and Km,n. To prove our results, we recall the following theorems:

Theorem 1.1. [5] The complete graph Kn is Y5-decomposable if and only if n ≡ 0 (mod 8).

Theorem 1.2. [1] Let k,m, and n be positive integers. The necessary conditions for a Pk+1-

decomposition of Km,n are listed in Table 1, and these conditions are also su�cient.

Case k m n Characterization

1. even even even k ≤ 2m, k ≤ 2n, not both equal

2. odd even even Equalities hold when k is even

3. even even odd k ≤ 2m− 2, k ≤ 2n

4. even odd even k ≤ 2m, k ≤ 2n− 2

5. even odd odd Decomposition impossible

6. odd even odd k ≤ 2m− 1, k ≤ n

7. odd odd even k ≤ m, k ≤ 2n− 1

8. odd odd odd k ≤ m, k ≤ n

Table 1. Necessary and su�cient conditions for a Pk+1-decomposition of Km,n

Theorem 1.3. [8] The complete bipartite graph Km,n is fork-decomposable if and only if mn ≡ 0

(mod 4), except for K2,4i+2, (i = 1, 2, . . . ).

2. Multi-Decomposition of Complete Graphs into P5 and Y5

2.1. Preliminaries

De�nition 2.1. [7] For a graph G, two disjoint subsets of vertices are called twins if they have the

same order and induce subgraphs with the same number of edges.
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Next, we introduce a new graph structure called Conjoined Twins in the following remark.

Remark 2.2. Consider the graph T with vertex set {vi : 1 ≤ i ≤ 8}.

Fig. 1. Conjoined twins (T )

The subgraphs induced by A and B are isomorphic to P5 when A = {v1, v2, v6, v7, v8} and B =

{v2, v3, v4, v5, v6}. Similarly, if A = {v1, v2, v3, v4, v8} and B = {v4, v5, v6, v7, v8}, the corresponding

induced subgraphs are isomorphic to Y5. We call these subsets of vertices Conjoined Twins (T )

because the subsets A and B are not disjoint (there are two common vertices), but the induced

subgraphs are isomorphic.

It is interesting to note that the subgraph induced byA is isomorphic to P5 whenA = {v1, v2, v3, v8, v6},
and if B = {v3, v4, v5, v6, v7}, the corresponding induced subgraph is isomorphic to Y5.

Thus, decomposing the graph G into a structure whose vertices are Conjoined Twins as in Figure

1 can be viewed as consisting of 2 copies of P5, 2 copies of Y5, or 1 copy each of P5 and Y5, which

signi�cantly simpli�es the (P5, Y5)-multi-decomposition.

2.2. Notations

� For a subgraph H of G, G\H denotes a graph where V (G\H) = V (G) and E(G\H) =

E(G)− E(H).

� rG denotes r disjoint copies of the graph G.

� G = H1 ⊕H2 means G can be decomposed into H1 and H2.

� Let vi, 1 ≤ i ≤ n, be the vertices of the complete graph Kn.

� In the complete bipartite graph Km,n, the vertices of the �rst partite set with m vertices are

denoted by v1i, 1 ≤ i ≤ m, and the second partite set with n vertices by v2j, 1 ≤ j ≤ n.

� A path P5 with 5 vertices vi, 1 ≤ i ≤ 5, having v1 and v5 as pendant vertices is denoted by

P5(v1, v2, v3, v4, v5).

� The Y5 graph with 5 vertices vi, 1 ≤ i ≤ 5, is denoted by Y5(v1, v2, v3, v4; v5), where vi, 1 ≤ i ≤ 4,

form a path of length three, and the underlined vertices denote an edge v3v5.

� Suppose we have a graph whose vertices are Conjoined Twins (T ) as in Figure 1. We denote

it by T (v1, v2, v3, v4, v5, v6, v7; v8), where vi, 1 ≤ i ≤ 7, form a path of length six, and the

underlined vertices denote edges v2v8 and v6v8.

Remark 2.3. If two graphs G1 and G2 have an (H1, H2)-multi-decomposition, then G1 ⊕ G2 also

has such a decomposition.
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2.3. Necessary condition

The following theorem gives the necessary condition for the existence of a multi-decomposition of

the complete graph Kn into paths and Y -trees with 5 vertices.

Theorem 2.4. If Kn has a (P5, Y5) - multi-decomposition, then n ≡ 0 or1(mod 8).

Proof. Proof follows from the edge divisibility condition.

2.4. Su�cient conditions

In this section, we show that the necessary condition obtained in Theorem 2.4 is also su�cient for

the existence of a multi-decomposition of Kn, (n ≥ 8) into P5 and Y5.

Lemma 2.5. The Complete graphs K8 and K9 have (P5, Y5) - multi-decomposition.

Proof. We can see that K8 = 3T ⊕ 1P5, where the 3T 's and 1P5 are given by,

T (v6, v7, v5, v1, v4, v8, v2; v3), T (v3, v6, v4, v2, v5, v8, v7; v1),

T (v8, v6, v5, v3, v1, v7, v4; v2), P5(v1, v2, v3, v4, v5).

Similarly, K9 can be written as K9 = 4T ⊕ 1P5, where the 4T 's and 1P5 are as follows:

T (v3, v6, v4, v1, v8, v7, v5; v2), T (v3, v9, v4, v2, v5, v6, v1; v7),

T (v4, v8, v5, v3, v1, v9, v2; v6), T (v4, v7, v1, v5, v9, v8, v2; v3), P5(v1, v2, v3, v4, v5).

Lemma 2.6. The Complete bipartite graphs K7,8, K8,8 and K9,8 have (P5, Y5) - multi-decomposition.

Proof. It is clear that K7,8 = 7T , where 7T 's are given by,

T (v21, v11, v23, v12, v24, v13, v22; v25), T (v25, v12, v22, v11, v26, v13, v23; v21),

T (v24, v11, v28, v15, v26, v14, v25; v27), T (v24, v14, v28, v13, v27, v15, v25; v23),

T (v27, v12, v28, v17, v24, v16, v25; v26), T (v28, v16, v21, v14, v22, v17, v26; v27),

T (v24, v15, v22, v16, v23, v17, v25; v21).

Similarly K8,8 = 8T , where 8T 's are identi�ed as,

T (v22, v13, v24, v12, v23, v18, v21; v25), T (v28, v12, v25, v11, v26, v13, v23; v27),

T (v26, v12, v21, v13, v28, v14, v25; v22), T (v28, v11, v27, v14, v26, v15, v25; v24),

T (v24, v14, v21, v16, v27, v15, v22; v23), T (v24, v16, v28, v15, v21, v17, v26; v22),

T (v21, v11, v23, v17, v24, v18, v27; v22), T (v23, v16, v26, v18, v28, v17, v27; v25).
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Further K9,8 = 9T , the following are the required 9T 's

T (v26, v11, v23, v12, v24, v13, v25; v22), T (v25, v12, v26, v19, v27, v13, v23; v28),

T (v22, v12, v21, v13, v26, v14, v23; v27), T (v28, v11, v24, v14, v22, v15, v25; v27),

T (v21, v14, v25, v16, v23, v15, v24; v28), T (v27, v16, v21, v15, v26, v17, v22; v24),

T (v21, v18, v27, v17, v25, v19, v22; v24), T (v22, v16, v26, v18, v23, v17, v21; v28),

T (v22, v18, v25, v11, v21, v19, v23; v28).

Lemma 2.7. The graph K8 admits (P5, Y5){α,β} - decomposition when α + β = 7.

Proof. The admissible pairs satisfying α + β = 7 are {(0,7),(1,6),(2,5),(3,4),(4,3),(5,2),

(6,1),(7,0)}.

Case 1. α ̸= 0.

From Lemma 2.5, K8 = 3T ⊕ 1P5, which can be taken into any of the forms: 6Y5 ⊕ 1P5, 5Y5 ⊕
2P5, 4Y5 ⊕ 3P5, 3Y5 ⊕ 4P5, 2Y5 ⊕ 5P5, 1Y5 ⊕ 6P5, and 7P5 using Remark 2.2.

Thus we have (P5, Y5) - multi-decomposition for the admissible pairs (α, β) ∈ {(1, 6), (2, 5), (3, 4),
(4, 3), (5, 2), (6, 1), (7, 0)}.
Case 2. α = 0.

Theorem 1.1 gives the required decomposition for the admissible pair (0, 7).

Hence the proof follows from Cases 1 & 2 for all admissible pairs (α, β).

Lemma 2.8. The graph K9 admits (P5, Y5){α,β} - decomposition if α + β = 9.

Proof. The admissible pairs satisfying α + β = 9 are {(0,9),(1,8),(2,7),(3,6),(4,5),(5,4),

(6,3),(7,2),(8,1),(9,0)}.

Case 1. α ̸= 0.

From Lemma 2.5, K9 = 4T ⊕ 1P5, which can be taken into any of the forms: 8Y5 ⊕ 1P5,

7Y5 ⊕ 2P5, 6Y5 ⊕ 3P5, 5Y5 ⊕ 4P5, 4Y5 ⊕ 5P5, 3Y5 ⊕ 6P5, 2Y5 ⊕ 7P5, 1Y5 ⊕ 8P5 and 9P5 using Remark

2.2.

Thus we have (P5, Y5) - multi-decomposition for the admissible pairs (α, β) ∈ {(1, 8), (2, 7), (3, 6),
(4, 5), (5, 4), (6, 3), (7, 2), (8, 1), (9, 0)}.
Case 2. α = 0.

Theorem 1.1 gives the required decomposition for the admissible pair (0, 9).

Thus, K9 admits (P5, Y5){α,β} - decomposition.

Lemma 2.9. The graph K7,8 admits (P5, Y5){α,β} - decomposition if α + β = 14.

Proof. The admissible pairs satisfying α + β = 14 are {(0,14),(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),

(7,7),(8,6),(9,5),(10,4),(11,3),(12,2),(13,1),(14,0)}.

From Lemma 2.6, K7,8 = 7T , which can be taken into any of the forms: 14Y5, 13Y5 ⊕ 1P5, 12Y5 ⊕
2P5, 11Y5 ⊕ 3P5, 10Y5 ⊕ 4P5, 9Y5 ⊕ 5P5, 8Y5 ⊕ 6P5, 7Y5 ⊕ 7P5, 6Y5 ⊕ 8P5, 5Y5 ⊕ 9P5, 4Y5 ⊕ 10P5, 3Y5 ⊕
11P5, 2Y5 ⊕ 12P5, 1Y5 ⊕ 13P5 and 14P5 using Remark 2.2.
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Thus we have (P5, Y5) - multi-decomposition for all the admissible pairs (α, β).

Lemma 2.10. The graph K8,8 admits (P5, Y5){α,β} - decomposition if α + β = 16.

Proof. The admissible pairs satisfying α+β = 16 are {(0,16),(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),

(7,9),(8,8),(9,7),(10,6),(11,5),(12,4),(13,3),(14,2),(15,1),(16,0)}.

From Lemma 2.6 , K8,8 = 8T . Then we have (P5, Y5) - multi-decomposition for all the admissible

pairs (α, β) using Remark 2.2.

Lemma 2.11. The graph K9,8 admits (P5, Y5){α,β} - decomposition when α + β = 18.

Proof. The admissible pairs satisfying α+ β = 18 are {(0, 18), (1, 17), (2, 16), (3, 15), (4, 14), (5, 13),

(6, 12), (7, 11), (8, 10), (9, 9), (10, 8), (11, 7), (12, 6), (13, 5), (14, 4), (15, 3), (16, 2), (17, 1), (18, 0)}.

From Lemma 2.6 , K9,8 = 9T . Then we have (P5, Y5) - multi-decomposition for all the admissible

pairs (α, β) using Remark 2.2.

Theorem 2.12. (Su�cient conditions) For given non negative integers α, β and n ≥ 8, Kn has

(P5, Y5){α,β} - decomposition whenever 4(α + β) =
(
n
2

)
.

Proof. From the given (Necessary conditions) edge divisibility condition,

we have n ≡ 0 or 1 (mod 8).

Case 1: n ≡ 0 (mod 8).

Let n = 4t, t is even. We prove this theorem using induction on t. When t = 2, the proof follows

from Lemma 2.7. We observe that for t ≥ 4,

K4t = K4(t−2) ⊕K9 ⊕K4(t−2)−1,8. (1)

Also for t ≥ 6,

K4(t−2)−1,8 = K4(t−4)−1,8 ⊕K8,8. (2)

From (1) and (2),

K4t = K4(t−2) ⊕K9 ⊕K4(t−4)−1,8 ⊕K8,8, t ≥ 6. (3)

Assume that the theorem is true for all even k < t. We have to prove for t = k + 2. From (3), we

can write,

K4(k+2) = K4k ⊕K9 ⊕K4(k−2)−1,8 ⊕K8,8.

By induction hypothesis and from Lemmas 2.7, 2.8, 2.9 and 2.10 the proof follows.

Case 2: n ≡ 1 (mod 8).

Let n = 4t + 1, t is even. When t = 2, the proof follows from Lemma 2.8. We observe that for

t ≥ 4,

K4t+1 = K4(t−2) ⊕K9 ⊕K4(t−2)+ 1
2
(t−2),8 (4)

Also for t ≥ 6,

K4(t−2)+ 1
2
(t−2),8 = K4(t−4)+ 1

2
(t−2),8 ⊕K9,8. (5)
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From (4) and (5),

K4t+1 = K4(t−2) ⊕K9 ⊕K4(t−4)+ 1
2
(t−2),8 ⊕K9,8, t ≥ 6. (6)

Assume that the theorem is true for all even k < t. We have to prove for t = k + 2. From (6), we

can write,

K4(k+2)+1 = K4k ⊕K9 ⊕K4(k−2)+ 1
2
k,8 ⊕K9,8.

By induction hypothesis and from Lemmas 2.7, 2.8 and 2.11 the proof follows.

Theorem 2.13. (Main Theorem) For non-negative integers α, β and n ≥ 8, Kn = αP5⊕βY5 if and

only if 4(α + β) =
(
n
2

)
.

Proof. The proof follows from Theorems 2.4 and 2.12.

3. Multi-Decomposition of Complete Bipartite Graphs into P5 and Y5

3.1. Necessary conditions

In this section, we derive the necessary conditions for the existence of multi-decomposition of Km,n,

(m > 2, n ≥ 2) into paths and Y -trees with 5 vertices.

Lemma 3.1. Let k be even. If K2k,2 has a (P5, Y5) - multi-decomposition for the admissible pair

(α, β), then α is even.

Proof. Let V (K2k,2) = V1∪V2, where |V1|= 2k, |V2|= 2 and |E(K2k,2)|= 4k. P5 has a degree sequence

(2, 2, 2, 1, 1). While decomposing K2k,2 into P5's and Y5's, the two vertices of P5 with degree 2 which

are incident with a vertex of degree 1, should be formed using the vertex set V2 = {v21, v22}. Y5 has

a degree sequence (3, 2, 1, 1, 1). Here, the vertex with degree 3 and the vertex with degree 1 which

is incident with a vertex of degree 2, should be formed using the vertex set V2. Since each vertex in

V2 has degree 2k, after decomposing K2k,2 into α number of P5, each vertex v2i, i = 1, 2 has degree

2k − 2α and |E(K2k,2\αP5)|= 4k − 4α. Since k is even, it is clear that

2(k − α) ≡

{
0(mod 4), if α is even,

2(mod 4), if α is odd.

Therefore, partitioning the remaining 4(k − α) edges into k − α number of Y5 is possible only when

α is even.

Lemma 3.2. Let k ≥ 3 be odd. If K2k,2 has a (P5, Y5) - multi-decomposition for the admissible pair

(α, β), then α is odd.

Proof. The proof is same as Lemma 3.1 with the same argument. Since k ≥ 3 is odd,

2(k − α) ≡

{
2(mod 4), if α is even,

0(mod 4), if α is odd.
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Hence the proof follows.

Theorem 3.3. (Necessary conditions) If Km,n has (P5, Y5){α,β} - decomposition, then mn = 4(α+β)

with m > 2 and n > 1 except

1. m = 2k, k even; n = 2 and α is odd

2. m = 2k, k ≥ 3 odd; n = 2 and α is even

Proof. The proof follows from edge divisibility condition and by Lemmas 3.1 and 3.2.

3.2. Su�cient conditions

In the following lemmas we prove that the above necessary conditions are also su�cient.

Lemma 3.4.

K4,2 =


2P5,

or,

2Y5.

Proof. By Theorem 3.3, α+β = 2. Hence the admissible pairs (α, β) are (0, 2), (1, 1) and (2, 0). By

Theorem 1.2, K4,2 can be decomposed into 2P5 and by Theorem 1.3, K4,2 can be decomposed into

2Y5. Hence there exists a (P5, Y5) - multi-decomposition for the admissible pairs (0, 2) and (2, 0). By

Lemma 3.1, it is clear that there does not exist a (P5, Y5) - multi-decomposition for the admissible

pair (1, 1). Hence the proof.

Lemma 3.5. The graph K6,2 has (P5, Y5) - multi-decomposition for some of the admissible pairs

(α, β) where α is odd.

Proof. The admissible pairs for which the decomposition exists are (α, β) ∈ {(3,0), (1,2)}. For (3, 0),

Theorem 1.2 gives the required decomposition. For (1, 2), we have the necessary breakdown is as

follows:

P5(v11, v21, v12, v22, v13), Y5(v21, v15, v22, v14; v11), Y5(v22, v16, v21, v14; v13).

The desired decomposition does not exist for the admissible pairs (2, 1) and (0, 3) by Lemma

3.2.

Lemma 3.6. Let k be even. If α is even in the admissible pair (α, β), then K2k,2 has a (P5, Y5) -

multi-decomposition.

Proof. Since k is even, k = 2k1 for k1 ∈ N. we write, K2k,2 = k1K4,2.

Therefore, by Lemma 3.4, for any even α such that α + β = k, there exists a (P5, Y5) - multi-

decomposition for the admissible pairs (α, β) with α, β are even. This completes the proof.
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Lemma 3.7. Let k ≥ 3 be odd. If α is odd, then K2k,2 has (P5, Y5) - multi-decomposition.

Proof. Since k ̸= 1 is odd, k = 2q + 1 for q ∈ N. we write, K2k,2 = (q − 1)K4,2 ⊕K6,2.

Therefore, by Lemmas 3.4 and 3.5, for any odd α such that α + β = k, there exists a (P5, Y5) -

multi-decomposition for the admissible pairs (α, β) with α is odd and β is even. This completes the

proof.

Lemma 3.8. The graph K4,3 admits (P5, Y5){α,β} - decomposition whenever α + β = 3.

Proof. Case 1: (3,0).

Theorem 1.2 gives required 3P5's.

Case 2: (2,1).

P5(v21, v12, v22, v11, v23), P5(v11, v21, v13, v22, v14), Y5(v21, v14, v23, v13; v12).

Case 3: (1,2).

P5(v21, v14, v22, v11, v23), Y5(v22, v12, v23, v13; v14), Y5(v22, v13, v21, v12; v11).

Case 4: (0,3).

Theorem 1.3 gives the required decomposition.

Lemma 3.9. The graph K4,4 admits (P5, Y5){α,β} - decomposition whenever α + β = 4.

Proof. Case 1: α is even i.e.,(α, β) ∈ {(4,0), (2,2), (0,4)}.

Since K4,4 = 2K4,2, Theorems 1.2 and 1.3 give the required decomposition.

Case 2: α is odd.

Subcase 1: (3,1).

P5(v11, v22, v14, v23, v13), P5(v21, v14, v24, v12, v22), P5(v12, v23, v11, v24, v13), Y5(v22, v13, v21, v12; v11)

Subcase 2: (1,3).

P5(v12, v22, v13, v21, v14), Y5(v13, v23, v14, v24; v22), Y5(v13, v24, v11, v23; v22), Y5(v11, v21, v12, v24; v23)

Lemma 3.10. The graphs K4,5 and K4,6 admits (P5, Y5){α,β} - decomposition whenever α + β = 5

and α + β = 6 respectively.

Proof. We can write K4,5 = K4,2⊕K4,3, K4,6 = 2K4,3. Then the proof follows from Lemmas 3.4 and

3.8.

Lemma 3.11. The graph K6,6 admits (P5, Y5){α,β} - decomposition whenever α + β = 9.
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Proof. We can write K6,6 = K4,6 ⊕ K2,6. Since Km,n
∼= Kn,m, the proof follows from Lemmas 3.5

and 3.10.

Lemma 3.12. If k, n ∈ N, n ≥ 3, then K4k,n can be decomposed into admissible pairs of P5 and Y5.

Proof. Let n = 4q + r for q > 0 and r ∈ {0, 1, 2, 3}.
If r = 0, K4k,n = K4k,4q = kqK4,4.

For r = 1, K4k,n = K4k,4q+1 = K4k,4(q−1)+5 = k(q − 1)K4,4 ⊕K4,5.

When r = 2, K4k,n = K4k,4q+2 = K4k,4(q−1)+6 = k(q − 1)K4,4 ⊕K4,6.

When r = 3, K4k,n = K4k,4q+3 = kqK4,4 ⊕K4,3.

Then the proof follows from Lemmas 3.8, 3.9, 3.10 and by mathematical induction on k, n.

Lemma 3.13. If k1, k2 ≥ 3 be odd, then K2k1,2k2 can be decomposed into admissible pairs of P5 and

Y5.

Proof. Since k1 ̸= 1, k2 ̸= 1 are odd, k1 = 2q1 + 1 and k2 = 2q2 + 1 for q1, q2 ∈ N and we write,

K2k1,2k2 = (q1 − 1)(q2 − 1)K4,4 ⊕ (q1 − 1)K4,6 ⊕ (q2 − 1)K6,4 ⊕K6,6.

Then the proof follows from Lemmas 3.9, 3.10, 3.11 and by mathematical induction on k1, k2.

Theorem 3.14. (Su�cient Conditions) If m,n, α and β satisfy the necessary condition given in

Theorem 3.3, then Km,n has (P5, Y5){α,β} - decomposition.

Proof. Case 1: m ≡ 0 (mod 4) or n ≡ 0 (mod 4), w.l.o.g, let m = 4k for k ∈ N.
Subcase 1.1. n = 2.

Lemma 3.6 gives the required decomposition.

Subcase 1.2. n ≥ 3.

Lemma 3.12 gives the required decomposition.

Case 2: m ≡ 0 (mod 2) and n ≡ 0 (mod 2), i.e., m = 2k1, n = 2k2 for k1, k2 ∈ N.
Subcase 2.1. When one of them is 2, w.l.o.g, let n = 2.

When k1 is even, this falls in Subcase 1.1. If k1 ̸= 1 is odd, Lemma 3.7 gives the required

decomposition.

Subcase 2.2. m,n > 2.

When one of k1 and k2 or both of them are even, then the proof follows from Subcase 1.2. If both

of them are odd, Lemma 3.13 gives the required decomposition.

Theorem 3.15. (Main Theorem) There exists (P5, Y5){α,β} - decomposition of Km,n if and only if

any one of the following holds:

1. m = 2k, k is even, n = 2 and α is even.

2. m = 2k, k ≥ 3 is odd, n = 2 and α is odd.

3. m = 4k and n ≥ 3.

4. m = 2k1 and n = 2k2; where k1, k2 ≥ 3 are odd.
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Proof. Proof follows from Theorems 3.3 and 3.14.

4. Conclusion

In this paper, it is proved that the necessary and su�cient condition for the existence of the

(P5, Y5){α,β} - decomposition of the complete graph Kn (n ≥ 8) is n ≡ 0 or 1 (mod 8). Also

we have obtained the necessary and su�cient conditions for the (P5, Y5){α,β} - decomposition of the

complete bipartite graph Km,n (m > 2, n ≥ 2) as mn = 4(α + β) whenever

(i) m = 2k, k even; n = 2 then α is even.

(ii) m = 2k, k ≥ 3 odd; n = 2 then α is odd.
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