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ABSTRACT

Let K,, P,, and Y, respectively denote a complete graph, a path, and a Y-tree on n vertices, and
let K,,, denote a complete bipartite graph with m and n vertices in its parts. Graph decomposition
is the process of breaking down a graph into a collection of edge-disjoint subgraphs. A graph G has
a (Hy, Hs)-multi-decomposition if it can be decomposed into o > 0 copies of H; and 5 > 0 copies
of Hy, where H; and H, are subgraphs of GG. In this paper, we derive the necessary and sufficient
conditions for the (Ps, Y;)-multi-decomposition of K,, and K, .

Keywords: Path, Y-Tree, Multi-decomposition, Complete graph, Complete bipartite graph, Con-
joined Twins

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let K, denote a complete
graph on n vertices, K, , a complete bipartite graph with vertex partite sets of cardinality m and
n, and P, a path on k vertices. A Y-tree on k vertices, denoted by Y}, is a tree in which one edge is
attached to a vertex v of the path Pj_; such that at least one of the adjacent vertices of v has degree
1.

A decomposition of a graph G is a set of edge-disjoint subgraphs Hy, Hs, ..., H, of G such that
every edge of G belongs to exactly one H;, 1 <1 < r. If all the subgraphs in the decomposition of
G are isomorphic to a graph H, then G is said to be H-decomposable. If G can be decomposed into
a copies of Hy and [ copies of Hs, then G is said to have an (Hi, Hy)-multi-decomposition or an
{H®, HY}-decomposition. The pair (o, 3) is called admissible if it satisfies the necessary conditions
for the existence of an {H®, H)}-decomposition. If G has an (H;, H,)-multi-decomposition for all
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admissible pairs (o, ), it is said to have an (H;, Hz){qa,5-decomposition.

The necessary and sufficient condition for the existence of a Ps-decomposition of complete graphs
was studied in [5], and for complete bipartite graphs in [I]. The path decomposition of various
graphs was explored in [15, 11]. The graph Yj is one of the three non-isomorphic trees of order five,
excluding paths and stars. Caterina and Antonio [3] named Y5 as the chair and studied the stability
number of chair-free graphs.

The Ys-decomposition of complete graphs was obtained by C. Huang and A. Rosa [5]. J. Paulraj
Joseph and A. Samuel Issacraj [8] referred to Y5 as the fork and studied its decomposition in com-
plete bipartite graphs. S. Gomathi and A. Tamil Elakkiya [1| defined this graph as a Ys-tree and
investigated its decomposition in the tensor product of complete graphs. The Y;-decomposition of
various graphs was further analyzed in [9, 10]. The concept of multi-decomposition was introduced
by A. Abueida and M. Daven [2]. In recent years, multi-decomposition of graphs has emerged as a
prominent research area in graph theory. T.-W. Shyu studied the multi-decomposition of complete
graphs into paths with cycles and stars [12, 13]. S. Jeevadoss and A. Muthusamy established nec-
essary and sufficient conditions for the multi-decomposition of complete bipartite graphs into paths
and cycles [6]. Multi-decomposition of complete bipartite graphs into paths and stars was considered
in [14].

In this paper, we establish the necessary and sufficient conditions for the existence of a (Ps, Ys)-
multi-decomposition of K,, and K, ,. To prove our results, we recall the following theorems:

Theorem 1.1. [5] The complete graph K, is Ys-decomposable if and only if n =0 (mod 8).

Theorem 1.2. [I| Let k,m, and n be positive integers. The necessary conditions for a Pyyi-
decomposition of K,,, are listed in Table 1, and these conditions are also sufficient.

Case k m n Characterization
1. even | even | even | k < 2m,k < 2n, not both equal
2. odd | even | even | Equalities hold when k is even
3. even | even | odd kE<2m—2,k <2n
4. even | odd | even k<2m,k <2n-—2
5. | even | odd | odd Decomposition impossible
6. odd | even | odd E<2m-—1,k<n
7. odd | odd | even k<m,k<2n-1
8. odd | odd | odd kE<m,k<n

Table 1. Necessary and sufficient conditions for a Py;-decomposition of K, ,,

Theorem 1.3. [8] The complete bipartite graph K, , is fork-decomposable if and only if mn =0
(mod 4), except for Kouire, (1=1,2,...).

2. Multi-Decomposition of Complete Graphs into P; and Y;

2.1. Preliminaries

Definition 2.1. |7] For a graph G, two disjoint subsets of vertices are called twins if they have the
same order and induce subgraphs with the same number of edges.
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Next, we introduce a new graph structure called Conjoined Twins in the following remark.

Remark 2.2. Consider the graph T" with vertex set {v; : 1 <1 < 8}.

Fig. 1. Conjoined twins (T

The subgraphs induced by A and B are isomorphic to Ps when A = {vy, vy, v, v7,v3} and B =
{va, v3, V4, v5,v6}. Similarly, if A = {v1,ve,v3,v4,v8} and B = {vy, vs, v, v7,vs}, the corresponding
induced subgraphs are isomorphic to Y5. We call these subsets of vertices Conjoined Twins (T')
because the subsets A and B are not disjoint (there are two common vertices), but the induced
subgraphs are isomorphic.

It is interesting to note that the subgraph induced by A is isomorphic to Ps when A = {vy, vy, v3, vs, v4 },
and if B = {vs, vy, v5, v, v7}, the corresponding induced subgraph is isomorphic to Y;.

Thus, decomposing the graph G into a structure whose vertices are Conjoined Twins as in Figure
1 can be viewed as consisting of 2 copies of Ps, 2 copies of Y5, or 1 copy each of P5 and Y;5, which
significantly simplifies the (Ps, Y5)-multi-decomposition.

2.2. Notations
e For a subgraph H of G, G\H denotes a graph where V(G\H) = V(G) and E(G\H) =
E(G)— E(H).
e (G denotes r disjoint copies of the graph G.
e G = H; ® Hy means GG can be decomposed into H; and H,.
e Let v;, 1 <7 <n, be the vertices of the complete graph K.

e In the complete bipartite graph kK, ,, the vertices of the first partite set with m vertices are
denoted by vy;, 1 <4 < m, and the second partite set with n vertices by vy;, 1 < j < n.

e A path P; with 5 vertices v;, 1 < ¢ < 5, having v; and v; as pendant vertices is denoted by
Ps(v1, vg, v3, 04, Us).

o The Y5 graph with 5 vertices v;, 1 < i <5, is denoted by Y5(v1, v2, vs, v4; v5), where v;, 1 <4 < 4,
form a path of length three, and the underlined vertices denote an edge vsvs.

e Suppose we have a graph whose vertices are Conjoined Twins (T') as in Figure 1. We denote
it by T'(vi,v2,vs, 4, Vs, Vs, V7; Ug), Where v;, 1 < ¢ < 7, form a path of length six, and the
underlined vertices denote edges vovg and vgvs.

Remark 2.3. If two graphs G and G5 have an (H;, Hy)-multi-decomposition, then G @ G2 also
has such a decomposition.
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2.3. Necessary condition

The following theorem gives the necessary condition for the existence of a multi-decomposition of
the complete graph K, into paths and Y-trees with 5 vertices.

Theorem 2.4. If K,, has a (Ps,Ys) - multi-decomposition, then n = 0orl(mod 8).

Proof. Proof follows from the edge divisibility condition. O]

2.4. Sufficient conditions

In this section, we show that the necessary condition obtained in Theorem 2.4 is also sufficient for
the existence of a multi-decomposition of K, (n > 8) into P and Y5.

Lemma 2.5. The Complete graphs Ks and Ko have (Ps,Ys) - multi-decomposition.

Proof. We can see that Kg = 3T & 1P5, where the 37’s and 1P5 are given by,

T<'U67ﬂ7 Vs, U1, 1)47%7 ,UQ;%)u T(U37%7 Uy, V2, U57%7 U7;ﬂ>7

T(U& Vg, Us, U3, U1, Ut, V4; @)7 P5(U1a V2, U3, U4, U5)-
Similarly, Ko can be written as K9 = 47T @ 1P5, where the 47”s and 1P5 are as follows:

T(U37%7 Uy, V1, US)E? US;%)a T(Ug,@, Uy, V2, 057%7 Ul;ﬂ)a

T (v4, vs, Vs, U3, V1, Vg, V2; Vg), T (Va, V7, V1, Vs, Vg, Us, V23 V3), P5(v1, V2, U3, Vs, Vs).

Lemma 2.6. The Complete bipartite graphs K75, Kgg and Kog have (Ps,Ys) - multi-decomposition.

Proof. It is clear that K;g = 77", where 71"s are given by,

T V21, V11, V23, V12, V24, V13, V22; V25 ),

a5), T'(Va5, V12, V22, V11, Vag, V13, V23; V1),
)7 T(/U247m7 V2g, V13, V27, V15, U25;%)7
2), 1’
va1).

w2t
T'(va7, V12, V2g, V17, V24, V16, V255 V26 (1)28, V16, V21, V14, V22, V17, VU26; U27),

Y

(

T (a4, V11, Vas, V15, Vag, V1, V255 U
(
(

N

V24, V15, V22, V16, V23, V17, U25; U

Similarly Ksg = 8T, where 81"s are identified as,

T U227vl3aU24a1}1271}237?}187021a025 ) UQS;U127U257UllvaGaU13a0237U27 )

(
(
(
(

N

T
T

v35), T'( Va7)
U26>v12;U217U137U287U14>U257U22)7T(U287U117U277U14>U26avl5av257 ),
V24, V14, V21, V16, V27, V15, V22; V2 ),T(U24,7)16,11287015,?121,017,U26>U22)>
vg2), T'( 35).

V21, Ull; V23, V17, V24, U187 Vo7; U Va3, U167 V26, V18, V28, U17a Vo7; U

)
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Further Kgg = 97", the following are the required 97"s

T V26, V11, V23, V12, V24, V13, V25, 1122)7

T

V95, V12, V26, V19, V27, V13, V23; V28 ),

V22, V12, V21, V13, V26, V14, V23, U27)7

~

V27, V16, V21, V15, V26, V17, U22; V24 ),

N

( T( )
( T'(vas, V11, Vaa, V14, Va2, V15, V2s; Va7 ),
(0217014,U25,U167U23,015>Uz47Uzs),T( )
(U21,Uls,U27,U17,UQ57U19,U22,02 ),T(U22,m, V26, V18, V23, V17, U21;%)7
( Uss)-

T

V22, V18, V25, V11, V21, V19, U23; U

Lemma 2.7. The graph Kg admits (Ps,Y5)(a,8 - decomposition when o + 3 = 7.

Proof. The admissible pairs satisfying o + 8 = 7 are {(0,7),(1,6),(2,5),(3,4),(4,3),(5,2),
(6,1),(7,0)}.

Case 1. a # 0.

From Lemma 2.5, Kg = 3T ¢ 1P5, which can be taken into any of the forms: 6Y; ® 1P5,5Y5 @
2Ps, 4Y: @ 3P, 3Y5 @ 4Py, 25 @ 5P, 1Ys @ 6P, and 7Ps using Remark 2.2,

Thus we have (Ps,Ys5) - multi-decomposition for the admissible pairs («, 8) € {(1,6), (2,5), (3,4),
(4,3).(5,2),(6,1),(7,0)}.

Case 2. a =0.

Theorem 1.1 gives the required decomposition for the admissible pair (0, 7).

Hence the proof follows from Cases 1 & 2 for all admissible pairs («, /). ]

Lemma 2.8. The graph Ky admits (P5,Y5)(a,5y - decomposition if o+ 3 = 9.

Proof. The admissible pairs satisfying o + 8 = 9 are {(0,9),(1,8),(2,7),(3,6),(4,5),(5,4),
(6,3),(7,2),(8,1),(9,0) }.

Case 1. a # 0.

From Lemma 2.5, K9 = 4T & 1P5, which can be taken into any of the forms: 8Y; & 155,
TY5 @ 2P5,6Y5 @ 3F5,5Y5 © 4F5,4Y5 @ 5F5,3Y5; © 6F5,2Y; © 7h;, 1Y © 8P and 9F5 using Remark
2.2.

Thus we have (Ps,Y3) - multi-decomposition for the admissible pairs (a, 8) € {(1,8),(2,7), (3,6),
(47 5)7 (57 4)7 (67 3)7 (77 2)? (87 1)7 (97 O)}

Case 2. a =0.
Theorem 1.1 gives the required decomposition for the admissible pair (0,9).
Thus, Ky admits (Ps, Y5){a,5) - decomposition. ]

Lemma 2.9. The graph K7g admits (Ps,Y5){a,py - decomposition if o+ = 14.

Proof. The admissible pairs satisfying o + 8 = 14 are {(0,14),(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),
(7,7),(8,6),(9,5),(10,4),(11,3),(12,2),(13,1),(14,0) }.

From Lemma 2.6, K7g = 7T, which can be taken into any of the forms: 14Y5,13Y; @© 1P5,12Y5 @
2P5, 11Y5 ® 3P5,10Y5 @ 4P5,9Y; @ 5P5,8Y5 ® 65, 7Y5 ® 7F5,6Y5 ® 8F5,5Y5 @ 9P5,4Y5 @ 10P5, 3Y5 &
11P5,2Y5 @ 12P5,1Y5 & 13P5 and 14Ps using Remark 2.2.
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Thus we have (Ps, Ys) - multi-decomposition for all the admissible pairs («, 3). ]

Lemma 2.10. The graph Ksg admits (P5,Y5){a,8y - decomposition if o+ 3 = 16.

Proof. The admissible pairs satisfying o+ = 16 are {(0,16),(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),
(7,9),(8,8),(9,7),(10,6),(11,5),(12,4),(13,3),(14,2),(15,1),(16,0) .

From Lemma 2.6 , Kgg = 8T. Then we have (Ps,Y;) - multi-decomposition for all the admissible
pairs (a, f) using Remark 2.2. O

Lemma 2.11. The graph Kog admits (P5,Y5)a8 - decomposition when o+ 3 = 18.

Proof. The admissible pairs satisfying o+ 8 = 18 are {(0, 18), (1,17), (2, 16), (3, 15), (4, 14), (5, 13),

(6,12), (7,11), (8, 10), (9,9), (10,8), (11, 7), (12, 6), (13,5), (14, 4), (15,3), (16,2), (17, 1), (18,0)}.
From Lemma 2.6 , Kgg = 97. Then we have (Ps,Y;) - multi-decomposition for all the admissible

pairs («, 3) using Remark 2.2. ]

Theorem 2.12. (Sufficient conditions) For given non negative integers o, B and n > 8, K,, has
(Ps, Y5){a,5} - decomposition whenever 4(a + ) = (3)

Proof. From the given (Necessary conditions) edge divisibility condition,
we have n =0 or 1 (mod 8).

Case 1: n = 0(mod 8).

Let n = 4t, t is even. We prove this theorem using induction on t. When ¢ = 2, the proof follows
from Lemma 2.7. We observe that for ¢t > 4,

Ky = Ky4—2) ® Ko © Ky4-2)-18- (1)
Also for t > 6,
Ky—2)-18 = Ky—1)—1,8 D Kgs. (2)
From (1) and (2),
Ky = Ky-2) ® Ko ® Ky-4)-18® Kgg, t=>6. (3)

Assume that the theorem is true for all even k& < t. We have to prove for ¢t = k + 2. From (3), we
can write,

Kyey2) = Ka ® Ko ® Ky(—2)-18 © Kgs.

By induction hypothesis and from Lemmas 2.7, 2.8, 2.9 and 2.10 the proof follows.

Case 2: n = 1(mod 8).

Let n = 4t + 1, t is even. When ¢t = 2, the proof follows from Lemma 2.8. We observe that for
t >4,

Kypp1 = Kat—2) © Ko ® Kyy_o)114-9)8 (4)

1
2
Also for t > 6,

K4(t—2)+%(t—2),8 = K4(t—4)+§(t—2),s ® Kojs. (5)
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From (4) and (5),
Karpr = Ka—2) © Ko © Ky gy, 1(1-9)8 D Kog, 26 (6)

Assume that the theorem is true for all even k& < t. We have to prove for ¢t = k + 2. From (6), we
can write,
Kyr2y41 = Ku © Ko @ K4(k_2)+%k78 ® Kog.

By induction hypothesis and from Lemmas 2.7, 2.8 and 2.11 the proof follows.
O

Theorem 2.13. (Main Theorem) For non-negative integers o, 5 andn > 8, K, = aPs® BY5 if and
only if 4(a+ B3) = ().

Proof. The proof follows from Theorems 2.4 and 2.12. O]

3. Multi-Decomposition of Complete Bipartite Graphs into P; and Yj

3.1. Necessary conditions

In this section, we derive the necessary conditions for the existence of multi-decomposition of K, ,,
(m > 2,n > 2) into paths and Y-trees with 5 vertices.

Lemma 3.1. Let k be even. If Kopo has a (Ps,Ys) - multi-decomposition for the admissible pair
(o, B), then « is even.

Proof. Let V(Ky2) = V1UVa, where |Vi|= 2k, |Va|= 2 and |E(Kyy2)|= 4k. Ps has a degree sequence
(2,2,2,1,1). While decomposing Ky o into P5’s and Y3’s, the two vertices of Ps with degree 2 which
are incident with a vertex of degree 1, should be formed using the vertex set Vo = {vq1,v92}. Y5 has
a degree sequence (3,2,1,1,1). Here, the vertex with degree 3 and the vertex with degree 1 which
is incident with a vertex of degree 2, should be formed using the vertex set V5. Since each vertex in
Vs has degree 2k, after decomposing Ky, o into ov number of P, each vertex vq;, ¢ = 1,2 has degree
2k — 2 and |E(Kag2\aPs)|= 4k — 4. Since k is even, it is clear that

2k — a) O(mod 4), if « is even,
—a) =
2(mod 4), if « is odd.

Therefore, partitioning the remaining 4(k — «) edges into k — a number of Y5 is possible only when
« 1s even. [

Lemma 3.2. Let k > 3 be odd. If Koo has a (Ps,Y5) - multi-decomposition for the admissible pair
(o, B), then « is odd.

Proof. The proof is same as Lemma 3.1 with the same argument. Since k£ > 3 is odd,

2(mod 4), if « is even,
2k —a) =
0(mod 4), if « is odd.
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Hence the proof follows. m

Theorem 3.3. (Necessary conditions) If Iy, ,, has (Ps,Y5){a,5 - decomposition, then mn = 4(a+ )
with m > 2 and n > 1 except
1. m =2k, k even; n =2 and « 15 odd

2. m=2k, k>3 odd; n =2 and « is even

Proof. The proof follows from edge divisibility condition and by Lemmas 3.1 and 3.2. O]

3.2.  Sufficient conditions

In the following lemmas we prove that the above necessary conditions are also sufficient.

Lemma 3.4.

Proof. By Theorem 3.3, a+ 3 = 2. Hence the admissible pairs (a, 8) are (0,2), (1,1) and (2,0). By
Theorem 1.2, K49 can be decomposed into 2FP; and by Theorem 1.3, K49 can be decomposed into
2Y5. Hence there exists a (Ps, Ys) - multi-decomposition for the admissible pairs (0,2) and (2,0). By
Lemma 3.1, it is clear that there does not exist a (Ps, Ys) - multi-decomposition for the admissible
pair (1,1). Hence the proof. ]

Lemma 3.5. The graph Ko has (Ps,Ys5) - multi-decomposition for some of the admissible pairs
(e, B) where « is odd.

Proof. The admissible pairs for which the decomposition exists are (a, 8) € {(3,0), (1,2)}. For (3,0),
Theorem 1.2 gives the required decomposition. For (1,2), we have the necessary breakdown is as
follows:

P5(U11> V21, V12, U22, U13)7 Y5(UQ1, V15, V22, V14, U11)7 Y5(U22, V16, V21, V14; U13)-

The desired decomposition does not exist for the admissible pairs (2,1) and (0,3) by Lemma
3.2. [

Lemma 3.6. Let k be even. If a is even in the admissible pair (o, 5), then Koo has a (Ps,Ys) -
multi-decomposition.

Proof. Since k is even, k = 2k, for k; € N. we write, Koy o = k1 K4 2.
Therefore, by Lemma 3.4, for any even « such that o + § = k, there exists a (Ps,Y5) - multi-
decomposition for the admissible pairs (a, ) with «, 8 are even. This completes the proof. O
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Lemma 3.7. Let k > 3 be odd. If o is odd, then Koo has (Ps,Ys) - multi-decomposition.

Proof. Since k£ # 1 is odd, k = 2¢ + 1 for ¢ € N. we write, Kogo = (¢ — 1) K42 ® Kgo.

Therefore, by Lemmas 3.4 and 3.5, for any odd « such that « + 8 = k, there exists a (Ps,Ys) -
multi-decomposition for the admissible pairs («, §) with « is odd and 3 is even. This completes the
proof. O]

Lemma 3.8. The graph K,z admits (Ps,Y5)(a,p) - decomposition whenever o + 3 = 3.

Proof. Case 1: (3,0).
Theorem 1.2 gives required 3P5’s.
Case 2: (2,1).
PS(U217 V12, V22, V11, U23)7 Ps(Un, V21, U13>U227U14)7 3/5(021, V14, V23, U13;m)~

Case 3: (1,2).

P5(’021, V14, V22, V11, U23)7 1/:5(?122, V12, V23, V13; ’U14)7 1/:5(?122, V13, V21, V12; 7111)-

Case 4: (0,3).
Theorem 1.3 gives the required decomposition. O

Lemma 3.9. The graph K,4 admits (Ps,Y5)(a,p) - decomposition whenever o + 3 = 4.
Proof. Case 1: « is even i.e., (o, 3) € {(4,0), (2,2), (0,4)}.
Since K44 = 2K, 5, Theorems 1.2 and 1.3 give the required decomposition.

Case 2: « is odd.
Subcase 1: (3,1).

Ps(Un, V22, V14, U23,U13); P5(U21, V14, V24, U12,U22), P5(U12, V23, V11, U247U13)’Y5(U22, V13, V21, V12; Uu)

Subcase 2: (1,3).

P5(U12, V22, V13, V21, U14), Y5(U13, V23, V14, V24, 7122), Ys(vl?n V24, V11, V23; U22), Ys(Un, Va1, V12, V24, U23)

Lemma 3.10. The graphs Ki5 and K46 admits (Pg,,Y},){aﬁ} - decomposition whenever a+ =5
and o+ 3 = 6 respectively.

Proof. We can write Ky 5 = K42® Ky 3, K46 = 2K43. Then the proof follows from Lemmas 3.4 and
3.8. ]

Lemma 3.11. The graph Kgg admits (Ps, }/5){&75} - decomposition whenever a + 3 = 9.
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Proof. We can write K¢ = K46 @ Ka6. Since K,,,, = K, ,,, the proof follows from Lemmas 3.5
and 3.10. ]

Lemma 3.12. If k,n € N, n > 3, then Ky, can be decomposed into admissible pairs of Ps and Y.

Proof. Let n =4¢g+r for ¢ > 0 and r € {0, 1,2, 3}.
Ifr= 0, K4k,n = K4k:,4q = k’qK474.
For r =1, Ky pn = Kigaqrr = Kapag—1y+5 = k(g — 1)Ky 4 ® Kys.
When r = 2, Ky = Kipagre = Kapag—1)46 = k(g — 1)Ky 4 ® Ky
When r = 3, Ky p = Kapagrz = kqKs4 D Ky 3.
Then the proof follows from Lemmas 3.8, 3.9, 3.10 and by mathematical induction on k, n. O

Lemma 3.13. If ki, ko > 3 be odd, then Koy, o, can be decomposed into admissible pairs of Ps and
Ys.

Proof. Since k; # 1, ky # 1 are odd, k1 = 2¢; + 1 and ky = 2¢2 + 1 for ¢1,¢2 € N and we write,
Koy ok, = (10 — 1)(@2 = 1) Kya @ (1 — 1) Ku6 @ (g2 — 1) K0 © K-
Then the proof follows from Lemmas 3.9, 3.10, 3.11 and by mathematical induction on ky, k. [l

Theorem 3.14. (Sufficient Conditions) If m,n,«a and 5 satisfy the necessary condition given in
Theorem 5.5, then Ky, has (P5,Ys){a,3 - decomposition.

Proof. Case 1: m =0 (mod 4) or n =0 (mod 4), w.l.o.g, let m = 4k for k € N.
Subcase 1.1. n = 2.
Lemma 3.6 gives the required decomposition.
Subcase 1.2. n > 3.
Lemma 3.12 gives the required decomposition.
Case 2: m =0 (mod 2) and n =0 (mod 2), i.e., m = 2ky, n = 2k, for ky, ks € N.
Subcase 2.1. When one of them is 2, w.l.o.g, let n = 2.
When k£ is even, this falls in Subcase 1.1. If k& # 1 is odd, Lemma 3.7 gives the required
decomposition.
Subcase 2.2. m,n > 2.
When one of k; and ko or both of them are even, then the proof follows from Subcase 1.2. If both
of them are odd, Lemma 3.13 gives the required decomposition. O

Theorem 3.15. (Main Theorem) There exists (P5,Ys){a,3 - decomposition of K, if and only if
any one of the following holds:
1. m =2k, k is even, n = 2 and « is even.

2. m =2k, k>3 1s odd, n =2 and « is odd.
8. m =4k and n > 3.
4. m =2k, and n = 2ky; where ki, ky > 3 are odd.
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Proof. Proof follows from Theorems 3.3 and 3.14. O

4. Conclusion

In this paper, it is proved that the necessary and sufficient condition for the existence of the
(P5,Y5){a,py - decomposition of the complete graph K, (n > 8) isn = 0 or 1 (mod 8). Also
we have obtained the necessary and sufficient conditions for the (Ps, Y5)(a,5 - decomposition of the
complete bipartite graph K, (m > 2, n > 2) as mn = 4(a + () whenever

(i) m = 2k, k even; n = 2 then « is even.

(i) m =2k, k > 3 odd; n = 2 then « is odd.
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