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abstract

The Radenkovi¢ and Gutman conjecture establishes a relationship between the Laplacian eigenvalues

of any tree Tn, the star graph Sn and the path graph Pn, i.e., LE(Pn) ≤ LE(Tn) ≤ LE(Sn). In this

paper, we prove this conjecture for a class of trees with n vertices and having diameter 16 to 30.
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1. Introduction

The �energy� of a graph is a concept that comes from spectral graph theory, a branch of graph

theory that emphasizes the connections between the eigenvalues and eigenvectors of certain matrices

associated with a graph. Graph energy have wide range of applications in the �eld of chemistry

particularly in the study of molecular graphs and their properties. The energy of graph has been

served as a structure descriptor in case of σ-electron systems. The graph energy gives better results

than the traditional structure-descriptors. In this context, Liu et al. [8, 7] introduced Hosoya index

of graphs formed by a fractal graph and minimize Kirchho� index among graphs with a given vertex

bipartiteness. Understanding the structure, stability, and reactivity of molecules in many chemical

situations is made possible by the useful tools provided by graph energy and Laplacian energy

analyses, which further advances synthetic chemistry.

Energy of graph is de�ned as the total of the absolute eigenvalues values of the adjacency matrix

A(G) denoted by

E(G) =
n∑

r=1

|λr|,
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where λ1, λ2, . . . , λn are the eigenvalues of A(G).

The Laplacian energy of a directed graph is denoted by

LE(G) =
n∑

r=1

|µr −
2m

n
|,

where m is total number of edges and n is total number of vertices and µ1, µ2, . . . , µn are the eigen-

values of L(G). The Laplacian matrix is de�ned as L(G) = D(G)−A(G), where D(G) is the degree

matrix.

Fiedler's theorem [3] established that if the second smallest eigenvalue of the Laplacian matrix

L(G) of a graph is equal to zero i.e µ2 = 0, then the graph is disconnected. Consequently, this

eigenvalue, denoted as a(G), is de�ned as the algebraic connectivity of the graph G. The correspond-

ing eigenvectors are referred as Fiedler vectors of G. The relationship among energy and Laplacian

energy of trees was investigated by Radenkovic and Gutman in [9].

Conjecture 1.1. Let Tn be the set of trees with n vertices. Then,

LE(Pn) ≤ LE(Tn) ≤ LE(Sn).

If this hypothesis is correct, it suggests that the Laplacian energy's extremal energy trees show

an unusual inversion when compared to the extremal energy trees. This surprising result implies

that the structural features that raise a tree's energy actually decrease its Laplacian energy, and

conversely, the structural features that decrease a tree's energy increase its Laplacian energy. This

�nding highlights a striking and illogical link between these two energy measurements.

Ganie et al. [4] showed the truth of conjecture for all trees with number of non-pendent vertices

at most
9n

25
− 2. It is possible to repeat Radenkovi¢ and Gutman's experiment and validate that the

star has the highest Laplacian energy and the path structure has the lowest Laplacian energy for all

the trees in the database. The conjecture was con�rmed by Trevisan et al. [11] for all trees with

a diameter of 3 and trees with a maximum of 18 vertices also Rahman et al. [10] investigate this

conjecture's validity for all the trees of diameter 4.

In this work, we established the validity of Conjecture 1.1 for trees with diameter 16 to 30. Two

stars with diameter 16 can be observed in a tree having 14 edges connecting the cores of them as

shown in Figure 1, diameter 17 can be seen as two stars with 15 edges connecting the cores of them

and so on till diameter 30. In this note, a class of trees of diameter 16 to 30 with n vertices will be

represented by Tni
(v, w) for 1 ≤ i ≤ 15, respectively. Where ni = v+w+(13+ i) is the total number

of vertices and v ≥ w ≥ 1 are the leaves at each end of Tni
(v, w). We demonstrate that,

LE(Pn) ≤ LE(Tni
(v, w)) ≤ LE(Sn), where 1 ≤ i ≤ 15.

In the class of trees of diameter 16 to 30, we also provide a total order by indicating that the Lapla-

cian energies within Tni
(v, w) for 1 ≤ i ≤ 15, are strictly reducing as a function of v. Furthermore,

we observe that in this class of trees, the order by Laplacian energy depends only on their algebraic

connectivity, or more speci�cally, the Laplacian energy of Tni
(v, w) for 1 ≤ i ≤ 15, increases as their

algebraic connectivity decreases.
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Fig. 1. Tn1(v, w) Tree with diameter 16

Theorem 1.2. Let Tn be a trees with n vertices such that Tn ̸= Sn. Then,

LE(Tn) ≤ LE(Sn).

The theorem mentioned above suggests that Conjecture 1.1's upper bound holds true for each tree

Tn with n vertices. It is still unclear what the lower border suggested by Conjecture 1.1. While it is

often easy to show that LE(Pn) ≤ LE(Tn), for some speci�c circumstances, the di�culty occurs when

dealing with trees of higher diameters like trees diameter 16 to 30. Due to the set Tn's unlimited

number of trees, the problem still exists in these situations.

Consider the following trees Tni
(v, w) for 1 ≤ i ≤ 15, of diameter 16 to 30, respectively. Note

that the integers v, w ≥ 1 are the number of pendent vertices of tree. The order of Tni
(v, w) is

ni = v + w + (13 + i), where 1 ≤ i ≤ 15.

Theorem 1.3. Let Pn be a path on n vertices. Then,

LE(Pn) ≤ LE(Tn).

This paper follows the following structure. In section 2 some history and important de�nitions

are reviewed. Section 3 is dedicated to explore the Laplacian characteristic polynomials of Tni
(v, w),

where 1 ≤ i ≤ 15 having diameter 16 to 30, respectively. Additionally, in the same part, count of

Laplacian eigenvalues that exceed the average degree of Tni
(v, w), where 1 ≤ i ≤ 15 will be examined

and the Conjecture 1.1 is proved with the help of related results. Finally, in the concluding section

4, we summarize our �ndings and draw conclusions.

2. Meterials and Methods

For a simple graph G = (V,E) with vertex set V = {v1, . . . , vn}, the adjacency matrix is basically a

square matrix A such that its element Aij is 1 when there is an edge between vertex vi and vertex

vj, and 0 when there is no edge. The degree matrix D(G) is a diagonal matrix that tells the degree

of each vertex (number of edges connecting to it) of the graph.

For a simple and undirected graph G = (V,E) of order n, with adjacency matrix A(G)and the

degree matrix D(G), we will denote the eigenvalues of A(G) by λ1, λ2, . . . , λn, which follow to the

preceding relations:
n∑

r=1

λr = 0;
n∑

r=1

λr
2 = 2m. (1)

The energy of a graph can be expressed as the total of the absolute values of the of adjacency matrix's

eigenvalues denoted by

E(G) =
n∑

r=1

|λr|. (2)
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The Laplacian matrix, denoted by L(G), is de�ned as L(G) = D(G) − A(G) and the eigenvalues

of L(G) denoted by µ1, µ2, . . . , µn. A well known fact about L(G) is that it is positive semi-de�nite

with smallest eigenvalue µn = 0. Algebraic concreteness, or the eigenvalue µn−1, is always smaller

than 1. The eigenvalues of L(G) correspond to the subsequent relations:

n∑
r=1

µr = 2m;
n∑

r=1

λr
2 = 2m+

n∑
r=1

dr
2. (3)

The Laplacian energy of an undirected graph is denoted by

LE(G) =
n∑

r=1

|µr − d̂|, (4)

where d̂ is the average degree of G. It's important to note that there is a discussion available

regarding the graph's signless Laplacian matrix G in [1]. Let xi denote the number of vertices of

degree i, 0 ≤ i ≤ n − 1. We represent by (x1, x2, · · · , xn−1), the degree vector of any graph G. a

tree with degree vector isomorphic to (2, n− 1, 0, · · · , 0) is called a path graph, denoted by Pn, and

a graph with degree vector isomorphic to (n − 1, 0, 0, · · · , 0, 1) is called a star graph and is denoted

by Sn. It is a well-known fact that the size of any tree Tn of order n is n− 1. The average degree d

of trees was determined by Trevisan et al. [11].

Lemma 2.1. Let Tn be the set of trees with n vertices. Then, its average degree d̂ = 2(n−1)
n

= 2− 2
n
.

Trevisan et al. [11] have established a lemma regarding the Laplacian energy of path Pn.

Lemma 2.2. Let Pn be the set of trees with n vertices. Then, LE(Pn) ≤ 2 + 4n
π
.

We can now delve into a discussion regarding Laplacian eigenvalues and the Laplacian characteristic

polynomial, speci�cally focusing on trees. There exists a notable lemma in this context, credited to

Brouwer and Haemers [2].

Lemma 2.3. Consider a connected graph G with Laplacian eigenvalues as µ1 ≥ µ2 ≥ . . . ≥ µn.

Then,

µr ≥ dr − r + 2, r = 1, 3, . . . , n,

where d1 ≥ d2 ≥ . . . ≥ dn is the degree sequence of the vertices of G.

We use the technique described in references [6] and [5] to determine the characteristic polynomial

of a tree Tn with n vertices. This approach may be simply modi�ed to determine the characteristic

polynomial of the Laplacian matrix because it is made to operate directly on the tree structure. Let's

give a brief summary of this process in order to assure a thorough knowledge.

The algorithm functions by assigning a rational function a(v) = t
c
to each vertex v in the tree,

where both t and c are polynomials within the polynomial ring Q[λ]. Beginning with the tree's leaves,

which are originally given the value λ−1 (assuming the tree is rooted arbitrarily), the process follows

a bottom-up methodology. After all of v's children have undergone this computation, vertex v is

then assigned the resulting rational function.

a(v) = λ− dv −
∑
c∈C

1

a(c),
(5)
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where dv is the degree of vertex v and C is the collection of its o�spring. Following this procedure

for each vertex, the characteristic polynomial is calculated by multiplying each function a(v) by the

total number of vertices.

χ(λ) =
∏
v∈V

a(v). (6)

3. Results and Discussions

3.1. Construction of Laplacian characteristic polynomial and Laplacian eigenvalues

In this section, we will explore characteristic polynomials of trees Tni
(v, w), where 1 ≤ i ≤ 15, having

diameters 16 to 30 respectively, using the above mentioned algorithm. The number of Laplacian

eigenvalues greater than the average degree value will also be investigated. Further, the relationship

between Laplacian energies of path graphs,trees of diameters 16 to 30 and star graphs will be discussed

by proving the Radenkovi¢ and Gutman conjecture, that is

LE(Pn) ≤ LE(Tn) ≤ LE(Sn).

Proposition 3.1. Let Tni
(v, w) for 1 ≤ i ≤ 15, be the class of trees with n vertices having diameter

16 to 30, respectively. The Laplacian characteristic polynomial of Tni
(v, w) for i = 1, of diameter 16

is as follows:

(i) χ(Tn1(v, w)) = (−1+µ)(n−17)µ(15−590µ+7323µ2−44760µ3+162214µ4−384540µ5+631788µ6−
745484µ7+645525µ8−414942µ9+198605µ10−70404µ11+18201µ12−3330µ13+408µ14−30µ15+

µ16 + v − 106µv + 1925µ2v − 14196µ3v + 56134µ4v − 136136µ5v + 218348µ6v − 242250µ7v +

190893µ8v− 108262µ9v + 44275µ10v− 12926µ11v + 2625µ12v− 352µ13v + 28µ14v− µ15v +w−
106µw+1925µ2w−14196µ3w+56134µ4w−136136µ5w+218348µ6w−242250µ7w+190893µ8w−
108262µ9w+44275µ10w−12926µ11w+2625µ12w−352µ13w+28µ14w−µ15w−14µvw+455µ2vw−
4368µ3vw + 19448µ4vw− 48620µ5vw + 75582µ6vw− 77520µ7vw + 54264µ8vw− 26334µ9vw +

8855µ10vw − 2024µ11vw + 300µ12vw − 26µ13vw + µ14vw);

Proof. The algorithm depicted in the previously mentioned section 2 is applied here.

In the forthcoming lemma, we will examine the number of Laplacian eigenvalues that exceed the

average degree of Tni
(v, w) for 1 ≤ i ≤ 15, respectively.

Lemma 3.2. Consider the class of trees Tni(v,w) for 1 ≤ i ≤ 15, with n vertices. Then Tni
(v, w) has

exactly 2 Laplacian eigenvalues greater than d̂ = 2− 2
n
, where 1 ≤ i ≤ 15.

Proof. We prove the result by considering Tn1(v, w) for i = 1. By Proposition 3.1, it is evident that

the multiplicity of Laplacian eigenvalue 1 is n˘17. The Laplacian eigenvalues µn = 0 and µn−1 ≤ 1

are also known. This indicates that there are at least n˘15, Laplacian eigenvalues less than d̂, since

1 < d̂ < 2. By Lemma 2.3, we have

µ1 ≥ d1 + 1 = v + 2 ≥ 3, for v ≥ 1,

µ2 ≥ d2 = w + 1 ≥ 2, for w ≥ 1.

As a result, precisely two Laplacian eigenvalues exceed the value of d̂. Using a similar approach, we

can establish the same conclusion for the remaining cases.
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3.2. Proof of Conjecture

Now we will prove that left side of the Conjecture 1.1 is true for class of trees Tni
(v, w) for 1 ≤ i ≤ 15,

having diameters 16 to 30, respectively.

Theorem 3.3. Let Pn be a path on n vertices. Then,

LE(Pn) ≤ LE(Tni
(v, w)) for 1 ≤ i ≤ 15.

Proof. Initially, it is important to acknowledge that Trevisan et al. [11], asserted the validity of the

inequality LE(Pn) ≤ LE(Tn) for n vertices in the context of any tree Tn, speci�cally for cases where

n ≤ 18. In the course of our proof, we can safely suppose that n ≥ 19. Consider the case Tni
(v, w),

for i = 1.

From Eq. (5), by Proposition 3.1 and by Lemma 3.2, we see that

LE(Tn1(v, w)) = |µ1 − d̂|+|µ2 − d̂|+|µ3 − d̂|+ . . .+ |µ15 − d̂|+(n− 17)|1− d̂|+|µn−1 − d̂|+|µn − d̂|
= d̂+ (n− 17)(d̂− 1) + (µ1 − d̂) + (µ2 − d̂) + (d̂− µ3) + . . .+ (d̂− µ15) + (d̂− µn−1)

= 13d̂+ (n− 17)(d̂− 1) + (µ1 + µ2)− (µ3 + . . .+ µ15 + µn−1). (7)

through the use of Proposition 3.1 and Eq. (6), we observe that µ1+ . . .+µ15+µn−1 = v+w+29 =

n+ 15 and substituting d̂ = 2− 2
n
, Eq. (7) implies that:

LE(Tn1(v, w)) = 2n+ 24 +
8

n
− 2(µ3 + . . .+ µ15 + µn−1). (8)

through the use of Lemma 2.2 and Eq. (8), the above equation becomes:

LE(Pn)− LE(Tn1(v, w)) ≤ n

(
4

π
− 2

)
− 8

n
− 22 + 2(µ3 + . . .+ µ15 + µn−1).

Since µ3 + . . .+ µ15 < 2, µn−1 < 1 and 8
n
> 0, so it follows;

LE(Pn)− LE(Tn1(v, w)) ≤ n

(
4

π
− 2

)
− 8

n
+ 6,

which is negative for n > 18.

Corollary 3.4. Let Pn be a path and Sn be a star with n vertices. Then,

LE(Pn) ≤ LE(Tni
(v, w)) ≤ LE(Sn), where 1 ≤ i ≤ 15.

Remark 3.5. Using a similar approach, results concerning the remaining classes of trees of diameter

between 17 to 30 with Laplacian characteristic polynomials determined in Proposition 3.1, and thus

establishing the Conjecture 1.1, for all these classes of trees.

4. Conclusion

In this research study, Conjecture 1.1 was examined for some special classes of trees Tni
(v, w), where

1 ≤ i ≤ 15, having diameters 16 to 30, respectively.
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