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abstract

The combination of thermal power units' stability and energy storage systems' rapid response time

enhances power system frequency control. However, high costs and battery life impacts from charg-

ing/discharging strategies limit energy storage adoption. This study proposes an adaptive weight-

based particle swarm optimization algorithm (APSO) to optimize energy storage control for joint

thermal-storage frequency modulation (FM). By analyzing the coupling between state of charge

(SOC) and charging/discharging power, the study implements "shallow charging and discharging"

with dynamic SOC constraints. The improved PSO algorithm integrates adaptive weighting to over-

come local optimal convergence, enhancing global search capabilities and particle migration. Simu-

lation results, based on real-world power plant data, show improved FM accuracy, faster regulation,

and reduced energy storage system loss, signi�cantly boosting economic e�ciency.

Keywords: Fire energy storage combined frequency regulation, Energy storage system, Particle

swarm optimization algorithm, Adaptive weighting, SOC

1. Introduction

The need for power system frequency management is growing due to the shift in the global energy

structure and the steady rise in the share of renewable energy sources [7]. Traditional thermal power

units face challenges in meeting the rapidly changing power system scheduling needs because of their

large inertia and slow response speed. This is particularly evident when large-scale renewable energy

sources are grid-connected, as the power grid experiences more signi�cant frequency �uctuations.
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Consequently, the engineering and academic communities have begun to focus on the joint frequency

regulation (FM) of thermal power units and energy storage systems. This joint FM approach com-

bines the stability bene�ts of thermal power units with the quick response time of energy storage

systems, creating an e�ective and adaptable FM system that ensures safe and stable power grid

operations under a wider range of conditions [14, 2].

Energy storage devices play a crucial role in joint FM, not only by increasing FM response times

but also by providing additional �nancial bene�ts to the power system, such as peak shaving and

backup power [9]. However, the introduction of energy storage technologies also brings new �nancial

and technical challenges. The high initial costs of energy storage systems and the signi�cant costs of

battery replacement due to aging impose a considerable �nancial burden on enterprises. Additionally,

variables such as the state of charge (SOC) and charging/discharging power directly a�ect the bat-

tery's service life [16]. While prolonged "full-charge/full-discharge" or "fast-charge/fast-discharge"

operations may temporarily enhance FM performance, they signi�cantly reduce battery life over

time, leading to increased operational costs. Therefore, optimizing the charging and discharging

procedures of energy storage systems to balance FM performance and battery life has become a key

area of research.

Recent years have seen signi�cant progress in optimizing energy storage system charging and

discharging control mechanisms to address these challenges. Traditional optimization approaches,

such as genetic algorithms, dynamic programming, and linear programming, have been widely used.

However, these methods often lead to local optima when addressing the multi-coupled complexity of

�re-storage joint FM, making it di�cult to achieve global optimal solutions. To overcome this lim-

itation, the particle swarm optimization (PSO) algorithm�a group intelligence-based optimization

technique�has been gradually applied to energy storage system optimization due to its simplicity,

e�ciency, and ease of implementation [13]. However, the conventional PSO algorithm can still con-

verge to local optima in multidimensional complex spaces, limiting its global search capability and

a�ecting the e�ciency of the optimization results.

To address the shortcomings of the PSO algorithm in energy storage system optimization, this

study proposes an adaptive weight-based particle swarm optimization (APSO) algorithm for op-

timizing the energy storage control strategy of �re-storage joint FM. By introducing an adaptive

weighting factor, the algorithm dynamically adjusts the particle migration speed, enhancing its abil-

ity to escape local optima and improving the global search's stability and e�ciency [8]. Additionally,

this study uses FM speed and accuracy as adaptive evaluation metrics to ensure that the energy

storage system not only maintains its response performance but also optimizes its service life and

reduces operational costs for enterprises [4, 5].

The primary contributions of this paper are as follows:

� This paper systematically analyzes the coupling relationship between SOC and charging/dis-

charging power in energy storage systems. It proposes a method for setting charging/discharg-

ing power limits based on SOC to prevent "full-charge/full-discharge" operations and achieve

"shallow charging and shallow discharging," e�ectively extending battery life.

� An adaptive weighting-based APSO algorithm is proposed, which dynamically adjusts the

weighting factor to improve the algorithm's global search capability and stability, addressing

the local optimization issues of the classic PSO algorithm.

� A simulation based on real power plant data is conducted to validate the enhanced algorithm.

The results demonstrate that the improved �re-storage joint FM system aligns more closely
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with the grid dispatch command curve, enhancing the FM e�ect, prolonging the energy storage

system's service life, and increasing the system's �nancial bene�ts.

2. Analysis of Charge/Discharge Power Optimization Considering

Energy Storage SOCs

2.1. SOC and Operational Characteristics of Energy Storage

The charging and discharging power, state of charge (SOC), and other factors have a direct impact

on the lifespan of energy storage batteries. While "full charge and discharge" and "fast charge and

discharge" operation modes may temporarily enhance the short-term FM e�ect of the combined

unit, these modes keep the unit in a dispatch state for extended periods. This hinders the ability

of the combined unit to respond smoothly to grid demands and signi�cantly reduces the lifespan

of the energy storage batteries. In contrast, energy storage system frequency management is better

suited for "shallow charging and discharging," which improves the battery's lifespan and operational

e�ciency [6, 12].

This paper focuses on the coupling relationship between the SOC and the charging/discharging

power of energy storage systems. To achieve the goal of "shallow charging and shallow discharging,"

upper and lower SOC bounds are established to prevent "full charge/full discharge" operations.

Additionally, the maximum permissible charging and discharging power is determined based on the

SOC, as shown in Figure 1. The �gure illustrates the concept of "shallow charging and discharging"

and its e�ectiveness in enhancing battery performance and longevity.

Fig. 1. Relationship between the energy storage system's SOC and charging/discharging power coe�cient

2.1.1. Constraints.

SOC Limits. The SOC of the energy storage system is constrained by the following equation:

SOCmin ≤ SOC ≤ SOCmax, (1)

where:

� SOC is the current state of charge of the energy storage system,

� SOCmin is the minimum SOC, typically set to 0.1,

� SOCmax is the maximum SOC, typically set to 0.9.
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Power Constraints for Charging. The charging power of the energy storage system is limited

as follows:

Pc =


Pc,max, SOC < SOChigh,

Pc,max × SOCmax−SOC
SOCmax−SOChigh

, SOChigh ≤ SOC < SOCmax,

0, SOC ≥ SOCmax,

(2)

where:

� SOChigh is the upper SOC limit for charging at rated power,

� Pc is the actual charging power (MW),

� Pc,max is the installed rated charging power (MW).

Power Constraints for Discharging. The discharging power of the energy storage system is

limited as follows:

Pd =


0, SOC < SOCmin,

Pd,max × SOC−SOCmin
SOClow−SOCmin

, SOCmin ≤ SOC < SOClow,

Pd,max, SOC ≥ SOClow,

(3)

where:

� SOClow is the lower SOC limit for rated power discharge,

� Pd is the actual discharging power (MW),

� Pd,max is the installed rated discharging power (MW).

2.1.2. Combined FM Capacity for Storage and Fire. The actual charging and discharging

power of the energy storage system is limited by its state of charge (SOC) and the maximum permis-

sible charging and discharging power. The energy storage system provides services such as surplus

power storage and power gap supplementation, enabling the combined unit to meet grid scheduling

demands more e�ectively. This approach incorporates the energy storage system into the traditional

thermal power unit frequency regulation process [10].

Energy Storage System Charging Procedure. When the thermal power unit's actual produc-

tion signi�cantly exceeds grid demand, the energy storage system stores the excess electrical energy

based on operating conditions. The procedure is described as follows:

P = Punit − Pc,

Pcn = |Punit − PAGC − Pzone| ,

Pc =

{
Pcn, Pc,bess ≥ Pcn,

Pc,bess, otherwise.

(4)

Where:

� P : Actual power of the combined thermal storage unit FM (MW),

� Pcn: Thermal power unit FM response power,

� Pc: Actual charging power of the energy storage system (MW),
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� Punit: Power system FM dispatching instruction (MW),

� PAGC: Power system dispatching instruction's dead zone size (MW),

� Pc,bess: Maximum permissible charging power of the energy storage system (MW).

Energy Storage System Discharging Procedure. When the thermal power unit's actual pro-

duction is signi�cantly lower than grid demand, the energy storage system releases stored energy

based on operating conditions. The discharging process is described as follows:

P = Punit + Pd,

Pcn = |PAGC − Punit − Pzone| ,

Pd =

{
Pdn, Pd,bess ≥ Pdn,

Pd,bess, otherwise.

(5)

Where:

� Pd: Actual discharging power of the energy storage system (MW),

� Pdn: Response di�erence between the thermal power unit output and AGC control requirements

(MW),

� Pd,bess: Maximum permissible discharging power of the energy storage system (MW).

2.1.3. Energy Storage System Lifetime. The state of charge (SOC) directly impacts the Depth

of Discharge (DOD) and, consequently, the lifetime of the energy storage system. A higher DOD

shortens the system's service life. The relationship between SOC, DOD, and the service life of the

energy storage system is expressed as follows:

Tlife =
LDOD

lDOD
, (6)

where:

� Tlife: Actual operational life of the energy storage system (days),

� LDOD: Maximum number of cycles at the speci�ed DOD,

� lDOD: Number of daily cycles at the speci�ed DOD.

2.2. Algorithm for Improving PSO

The Particle Swarm Optimization (PSO) algorithm mimics the foraging behavior of biological pop-

ulations [15]. It is designed to �nd local and global optimal solutions by sharing information among

random individuals in the population. Due to its high global convergence, the PSO algorithm is

widely applied in system control, model training, and optimization. However, when dealing with

multi-coupled complexity problems, the PSO algorithm can easily converge to local optima, limiting

its e�ectiveness [1].

To address these challenges, this study introduces adaptive weights to enhance the power restriction

and frequency modulation capabilities of the PSO algorithm, particularly for energy storage charging

and discharging.
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2.2.1. Adaptation Evaluation. The adaptability function selects the FM comprehensive perfor-

mance indicators based on the daily average value of K. This improves the �re-storage joint FM

response control, enhances auxiliary service compensation revenue, and evaluates the optimization

e�ect of the energy storage system. The adaptation evaluation function is de�ned as:

K =
Ki ·Mi∑

M
,

Ki = max

(
|Pt+∆t − Pt|

∆t · Vs
+

3As − |Pt+∆t − Paim|
As

, 0

)
.

(7)

Where:

� M : Mediation mileage vector (MW),

� Ki: Integrated performance index of the i FM process,

� Mi: Mediation mileage of the i FM process,

� t: Moment of the AGC instruction (s),

� t+∆t: Next moment of the AGC instruction (s),

� Pt, Pt+∆t: Combined unit power at moments t and t+∆t (MW),

� Paim: Target regulation power of the current instruction (MW),

� Vs: Standard regulation rate of the combined unit (MW/min),

� As: Standard regulation accuracy of the combined unit (MW).

2.2.2. Adaptive Randomized Search. In the PSO iterative optimization process, the global

optimal particle is the focus of particle population evolution. The development of the particle pop-

ulation around this global optimal particle forms the new particle population [11]. If the global

optimal particle falls into a local extreme value �eld and the current search speed and learning factor

are small, the particle population evolution cannot escape this �eld. This causes the algorithm to

converge prematurely, failing to demonstrate its superiority [3].

To address this, we propose an adaptive weight improvement for the PSO particle update method.

This method ensures global search capability and algorithm stability by adjusting the particle mi-

gration speed coe�cient. When the PSO optimization process gets trapped in a local optimum, the

new particle position is adjusted to escape the limitation.

The adaptive weight factor is calculated based on the mean �tness value of the current iteration's

particle population and the individual �tness of each particle. If a particle's �tness value is smaller

than the population's mean �tness, its adaptive weight is larger, indicating a need for global search

to �nd the optimal solution. Conversely, if a particle's �tness value is larger than the population's

mean, its adaptive weight is smaller, indicating a need for local search to re�ne the solution. When

a particle's �tness value equals the population's mean, the adaptive weight is maximized to escape

the local optimum. The calculation is shown in Eq. (8):

ωi =

{
ωmax, yi < yave,

ωmin +
(ωmax−ωmin)·(ymax−yi)

ymax−yave
, yi ≥ yave,

(8)

where:

� ωi: Inertia factor of particle i in the current iteration,
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� ωmin, ωmax: Lower and upper bounds of the inertia factor,

� yi: Fitness function value of particle i in the current iteration,

� yave: Mean �tness value of the current particle population,

� ymax: Maximum �tness value of the current particle population.

New particles are generated randomly around the global optimal solution to form the next-

generation particle swarm. The direction and process of the PSO evolutionary search depend on

the migration speed, weight factor, and global optimal solution. The particle update equations are

shown in Eq. (9):

Pi+1,j = Pi,j +∆Pi+1,j,

∆Pi+1,j = ωVi,j + c1 · rand(0, 1) · (Pi,best − Pi,j)

+ c2 · rand(0, 1) · (Pg,best − Pi,j),

(9)

where:

� Pi,j: Position of particle j in generation i,

� ∆Pi+1,j: Position change of particle j in generation i,

� Vi,j: Velocity of particle j in generation i,

� Pi,best: Best position of particle j in generation i,

� Pg,best: Global best position among all particles,

� c1, c2: Acceleration coe�cients (commonly set to 2),

� rand(0, 1): Random number in the interval [0, 1].

2.2.3. Enhanced Procedure for Solving PSO Algorithms. The optimization problem for �re-

storage joint FM performance can be solved using the adaptive weight PSO algorithm by following

these steps:

Step 1: Initialize the particle population with parameters such as population size, initial positions,

initial velocities, and evolutionary iterations. Compute the objective function for the initial

particle population based on constraints (SOChigh, SOClow).

Step 2: Update the particle migration speed and position data using the adaptive search algorithm.

Step 3: Evaluate the �tness function for each particle in the current population to identify extreme

particles.

Step 4: Compare the global and local optimal solutions for the extreme particles. If the local solution

outperforms the global solution, replace the global solution with the local one.

Step 5: Check if the number of evolutionary iterations exceeds the threshold. If so, terminate the

process; otherwise, return to Step 2.

This procedure ensures that the �re-storage joint FM optimization is robust, e�cient, and capable

of avoiding local optima traps, resulting in improved system performance and reliability.

3. Practical Case Studies

Figure 2 illustrates the sampling interval of 1 s and the selection of 24-hour real operation data of

a 1,050 MW thermal power unit from a power plant. An energy storage system with an installed
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capacity of 15 MW/7.5 MW-h is included in the simulation. The primary function of the energy

storage system is to assist the thermal power units in meeting the demand for grid frequency regula-

tion. To determine the optimal charge capacity thresholds of the energy storage system (SOChigh and

SOClow), the revised PSO algorithm uses a particle swarm size of 20, a maximum of 100 evolution

generations, and adaptive weights that dynamically change with the �tness function.

Fig. 2. Frequency modulation response process of thermal power units

Using the adaptive weight PSO optimization iteration, the integrated performance index of the

combined �re-storage FM's ideal solution is obtained. Figure 3 displays the evolution curve of the

adaptation degree, while Figure 4 shows the simulation curve for the joint operation of �re and

storage.

A comparison of the curves in Figure 2 and Figure 4 demonstrates that the enhanced combined

�re-storage FM response trend better aligns with the grid FM dispatch command curve, signi�cantly

improving the FM response e�ect. According to the global optimal results, the combined �re-

storage FM's average daily comprehensive FM performance index reaches the optimal value of 4.12,

and the optimal set points for SOChigh and SOClow are 57.5% and 42.5%, respectively. The joint

operation of the energy storage system and thermal power unit improves adherence to grid FM

dispatch instructions.

Fig. 3. Fitness function evolution curve

The FM comprehensive performance index increased by 0.08 compared to the previous version.

The enhanced energy storage system generates approximately 35 million yuan in additional annual

revenue under the following assumptions:

� A year of joint FM operation for �re storage consists of 360 days,

� A single FM compensation is valued at 0.6 yuan/MW,
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Fig. 4. Simulation curve of the thermal power joint storage response process for frequency regulation

� The average daily response to grid scheduling is set at 20,000 MW.

Furthermore, the typical daily cycle times of the energy storage system decreased from approxi-

mately 10 cycles before optimization to approximately 9.5 cycles after optimization. By using ad-

vanced lithium titanate batteries capable of up to 25,000 charging and discharging cycles, the service

life of the energy storage equipment is extended to approximately 88 days. This method enhances

the system's e�ciency and partially o�sets the investment cost of the energy storage system.

4. Conclusion

This study introduces an adaptive weighting factor to dynamically adjust the particle migration

speed within the standard particle swarm optimization (PSO) framework, addressing the problem of

local optima. The proposed adaptive PSO (APSO) algorithm improves the global search capability

and algorithm stability.

Simulation experiments con�rm that the modi�ed APSO algorithm signi�cantly enhances the �re-

storage joint FM system's regulation speed and accuracy. The FM response more closely aligns with

the grid scheduling command curve. Results from the simulation demonstrate that the optimized

�re-storage joint FM system:

� Increases the annual revenue of the energy storage system,
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� Extends the service life of energy storage equipment,

� Improves economic bene�ts and utilization e�ciency,

� Reduces energy storage system losses while meeting FM demand.

The proposed APSO algorithm provides a robust, e�cient solution for optimizing �re-storage joint

FM systems, achieving a balance between performance improvement and cost-e�ectiveness.
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