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abstract

This study develops a stereoscopic vision system using a two-camera calibration method and BP neu-

ral networks combined with genetic algorithms to measure precision component dimensions. Images

are processed using edge detection and Hough transform algorithms, and a machine vision-based

inspection model is constructed. Bearing components are used as the research object to detect

dimensions, edges, geometric parameters, and loose components under six angles. Maximum mea-

surement deviation is 0.04 mm, and edge detection results are clear and concise. Geometric parameter

deviations remain within [-5%, 5%], achieving high recognition accuracy. The detection model's clas-

si�cation accuracy is 97.49%, with veri�cation accuracy at 98.01%. Comprehensive false detection

and leakage rates are 1.03% and 0.46%, respectively. The model demonstrates superior detection

performance across various angles for bearing components.

Keywords: Machine vision, Automated inspection, Precision component, BP neural network, Genetic

algorithm

1. Introduction

With the rapid development of information technology such as arti�cial intelligence, internet of

things, big data and so on, intelligent manufacturing has gradually become the direction of manu-

facturing upgrading. In the �eld of intelligent manufacturing, machine vision technology, as one of

the important technical means, is being widely used [6, 8, 13]. Machine vision technology refers to

the processing and analysis of images or videos through computers and related hardware systems,
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so that they have the visual ability of the human eye, thus achieving the recognition, detection,

measurement, tracking and other functions of the object [26, 9, 23]. Machine vision technology can

process images, videos and other types of data, the core of this technology is image processing algo-

rithms and pattern recognition algorithms, which play an important role in the automated detection

of precision components [11, 1, 24].

Machine vision technology can be used for automated inspection and quality control of precision

components on production lines. For example, in the process of automobile manufacturing, the

application of machine vision can detect whether the size of the components meets the standard, and

whether the components and the whole vehicle are properly spliced together [7, 17, 29]. At the same

time in the detection, machine vision can also collect and analyse the data to help enterprises timely

�nd the problems on the production line, and make improvements. In intelligent manufacturing,

machine vision technology features and application advantages can improve the quality and e�ciency

of precision components, achieve intelligent production, and play an important role in enhancing the

core competitiveness of enterprises [4, 27, 22, 16].

Literature [10] explores the many applications of machine vision and the role it plays in Industry

4.0 and presents various smart technologies in the form of diagrams and charts of machine vision for

Industry 4.0. It is indicated that any step in Industry 4.0 and related digital industrial transformation,

including manufacturing, supply chain, etc., re�ects di�erent innovative approaches. Literature [20]

developed an image-based framework which uses pre-trained CNNs and ResNet-101 to detect defects,

and con�rmed the feasibility of the framework by launching a study on common surface defects in

centre polishing. In addition, ResNet-101 is used to extract features and combined with SVM as a

classi�er to detect defective images, and the results show that the proposed framework e�ectively

performs image classi�cation with 100% detection accuracy. Literature [2] proposes a machine vision

model which is capable of identifying the defects of a product and modifying it to obtain a perfect

product, which meets the requirements of ensuring product quality in the context of Industry 4.0.

Literature [12] analysed the application of machine vision systems in the automotive industry China

in recent years and predicted the trend of the future development of this technology. The results

of their analyses show that machine vision technology is more often used in quality-related tasks

and has shown excellent results in the automotive manufacturing sector. Literature [28] shows

that computer vision technologies have promoted the informatisation, digitisation and intelligence

of industrial manufacturing systems, and based on the rapid development of CV technologies, a

comprehensive review of the current status of the development of these technologies as well as their

applications in manufacturing is presented. Literature [14] introduced the current development of

machine vision technologies in terms of hardware, software and industrial inspection, indicated that

the combination of multiple technologies can promote the performance and e�ciency of inspection in

various applications, and a�rmed the development potential of machine vision systems in industry.

Literature [5] presents the results of a study that investigated the e�ect of lighting technology on

machine vision inspection techniques for automated assembly machines with highly re�ective metal

surfaces. Whereas the light re�ection from the machine surface makes glare in the image a major

di�culty, inspections were carried out using a high resolution high-speed camera under di�erent

lighting conditions with the aim of checking the e�ect of illumination on the inspection performance

of �at specular re�ections.

The article builds a binocular stereo vision system, measures the dimensions of precision compo-

nents by using the method of dual camera calibration, and then uses BP neural network and genetic

algorithm to calibrate the camera. The edge detection algorithm and Hough transform algorithm
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are used to process the images of precision components and identify them, so as to construct a pre-

cision component detection model based on machine vision. The model is applied to the detection

of bearing components to detect and analyse the dimensions, edges, and geometric parameters of

the bearing components and identify the loose bearing components. Finally, the false detection rate

and leakage rate of this paper's precision component detection model are tested under six angles to

examine the adaptability of this paper's model to the detection angle.

2. Machine Vision-Based Precision Component Inspection Model

Construction

2.1. Stereo vision system and basic matrix

2.1.1. Binocular stereo vision system model. The binocular stereo vision system is shown in

Figure 1, assuming that the orthogonal unit matrices and translation vectors of the outer parameters

of the two cameras are R1, t1, R2 and t2, respectively, indicating the transformation relationship

between the world coordinate system Cw relative to the camera coordinate system C1 and the camera

coordinate system C2. If a point P in space, it is in the world coordinate system and the two

camera coordinate system under the coordinates ofXw, Xc1 andXc2, respectively, then the coordinate

transformation can be obtained:

XC1 = R1Xw + t1, (1)

XC2 = R2Xw + t2. (2)

Eliminating the coordinates of point P in Eqs. (1) and (2) in the world coordinate system Xw,

the relative positional relationship between the two cameras in the binocular vision system can be

expressed as:

XC1 = RXC2 + t. (3)

In the formula, R = R1R
−1
2 , t = t1 −R−1

2 t2.

Fig. 1. Binocular stereo vision system

2.1.2. Antisymmetric matrices and fundamental matrices. Let the chi-square coordinate of

spatial point P in the world coordinate system be Xp = [Xwp, Ywp, Zwp, 1]
T , denoted as xp = [xT , 1]T ,

where x = [Xwp, Ywp, Zwp]
T . The chi-square coordinates of image points p1 and p2 of spatial point P

projected onto the image planes of the left and right cameras of the binocular vision system, I1 and

I2, are u1 and u2, respectively, and can be obtained by denoting the projection matrices of the two
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cameras, M1 and M2, with the 3× 3 part of the left part denoted as Mi1(i = 1, 2), and the 3× 1 part

of the right part denoted as mi(i = 1, 2):

Zc1u1 = M11x+m1, (4)

Zc2u2 = M21x+m2, (5)

where Zc1 and Zc2 are the coordinates of the space point P in the direction of the camera coordinate

system Zc, which can be obtained by collating Eq. (4) and Eq. (5):

Zc2u2 − Zc1M21M
−1
11 u1 = m2 −M21M

−1
11 m1. (6)

Denote the vector on the right-hand side of Eq. (6) as m, i.e:

m = m2 −M2M
−1
1 m1. (7)

Assume vector m = [mx,my,mz]
T , which has an antisymmetric matrix of [m]x, i.e:

[m]x =

 0 −mz my

mz 0 −mx

−my mx 0

 . (8)

By the nature of antisymmetric matrix, i.e. [m]xm = 0T , it is obtained from Eq. (6):

[m]×(Zc2u2 − Zc1M21M
−1
11 u1) = 0T , (9)

where 0T = [ 0 0 0 ]T , is obtained by dividing both sides of Eq. (9) by Zc2 at the same time and

noting Zc =
Zc1

Zc2
:

[m]×ZcM21M
−1
11 u1 = [m]×u2. (10)

The right vector [m]×u2 = m × u2 of Eq. (10) is orthogonal to u2. The positional relationship

between the two cameras in the binocular stereo vision system can be obtained by multiplying u
|
2 by

both sides of the above equation on the left and dividing both sides of the resultant equation by Zc

at the same time:

u
|
2[m]×M2M

−1
1 µ1 = 0 |, (11)

where [m]×M21M
−1
11 is the fundamental matrix, determined by the relative positions of the two

cameras in the stereo vision system.

2.1.3. Binocular vision system polarisation lines and constraints. In binocular vision sys-

tem, if the chi-square coordinate of image point p1 is known to be u1, the polar equation on the

image plane of I2 can be obtained from Eq. (11) l2. Similarly, if the secondary coordinates u2 of the

image point p2 are known, the equation l1 of the polar line in the I1 image plane corresponding to

the point p2 can be found from Eq. (11). In a stereo vision system, assuming that a point P in space

is projected on the image plane I1 and I2 the chi-square coordinates of image points p1 and p2 are

(507.7341, 324.2181, 1.0000), (452.3865, 380.6996, 1.0000), respectively, and from Eq. (11), we can

obtain the following: The corresponding polar line l2 of point p1 is -3.4942u-1.8063v+2.35983×103=0.
The corresponding polar line l1 of point p2 is 3.4626u+1.9127v-2.29463×103=0.
On the other hand, if any point p2 on the image plane I2 is known, only the polar line l2 correspond-

ing to it can be found, while the chi-square coordinates of its corresponding point p1
′
on I1 cannot be

uniquely determined. To obtain the coordinates of the corresponding point p1
′
, as shown in Figure

1, it is also necessary to know the position of the spatial point P ' on the O2P line. Substituting the

corresponding chi-square coordinates obtained above and the fundamental matrix of the system into

Eq. (11) yields u2
T [m]×M21M11

−1u1 = 7.4829× 10−4, which basically satis�es the constraints.
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2.2. Camera calibration based on BP neural network and genetic algorithm

2.2.1. Dimensional measurement method based on dual camera calibration. For the mea-

surement of top surface, bottom surface and side surface, the accuracy is required to be within 30µm,

and it is di�cult to achieve micron-level measurement accuracy by a single camera. Taking the top

surface measurement as an example, assuming that the single edge error of edge detection can be

controlled within 5 pixels, when a single camera is selected to collect the global image of the top

surface circle, in order to ensure the measurement accuracy, the camera's single-pixel accuracy must

be at least less than 2 µm in order to meet the requirements. If the diameter of the top surface

circle is 80mm, then the �eld of view of the camera is at least 80 × 80mm². Single-pixel accuracy

of 2µm, horizontal and vertical resolution of at least 80,000µm / 2µm = 40000, can be introduced

to the camera resolution of at least 40,000 × 40,000 = 160,000,000, i.e., theoretically, if you want to

meet the measurement accuracy, at least 1,600,000,000 resolution of the camera, but the use of such

a camera is obviously unrealistic.

Through the above analysis, for large-size high-precision measurement, using a single camera is

di�cult to achieve, need to seek other solutions. How to make the camera resolution in a certain size,

e�ectively improve the single-pixel accuracy is a problem that needs to be solved. It is considered

that the camera �eld of view can be reduced, i.e., instead of using a single camera to capture the

global image, two cameras are used to capture the local image separately, so that the distance value

from the edge to the optical centre can be obtained. However, the global size measurement task

cannot be accomplished by the information from the local images alone, so the positions of the two

cameras are calibrated to obtain the distance value between the photocentres of the two cameras,

and this value is added to the edge-to-centre distances of the two edges to achieve the global size

measurement.

2.2.2. BP neural network and genetic algorithm for camera calibration.

(a) Camera perspective model

The camera perspective model is shown in Figure 2, with O1XY being the image coordinate

system expressed in physical units and OUV being the image in pixels.

Fig. 2. Camera perspective model

OwXwYwZw and OcXcYcZc are the world coordinate system and the camera coordinate system

expressed in physical units, respectively. Assuming that the chi-square coordinates of a spatial

point P in the world coordinate system and the camera coordinate system are (Xw, Yw, Zw, 1)

and (Xc, Yc, Zc, 1), respectively, and the chi-square coordinates of the feature point projected

to the image plane point P are (x, y, 1) and (u, ν, 1), respectively, then the perspective trans-
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formation relationship of the camera can be expressed as follows:

Ze

 u

ν

1

 =

 aa s u0 0

0 aν ν0 0

0 0 1 0




r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1




Xw

Yw

Zw

1



=

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34




Xw

Yw

Zw

1

 (12)

where au and av are the scale factors in the u and v axes, respectively. (u0, v0) is the principal

point coordinate. s is the tilt factor. r11, r12, ..., and r33 are the unit orthogonal matrices R that

make up 3×3. t1, t2, t3 is the 3 elements that make up the translation vector t. m11,m12, · · · ,m34

is the element of the camera projection matrix.

(b) BP neural network design

The BP neural network model is shown in Figure 3. The network has 3 layers, its input layer

has 4 neurons, corresponding to the input signal is the coordinates of the spatial point in the

world coordinate system with constant 1: its hidden layer has 3 neurons. The output layer has

2 neurons. The output expected value vector is [0, 0]T. The weights between the input layer

and the hidden layer correspond to the elements of the camera projection matrix. The weights

between the hidden layer and the output layer are 2 × 3 matrix, of which two elements are

−w12, and −w22, obtained from the 2D coordinates of the feature points projected onto the

image plane (un, vn).

Fig. 3. Neural network structure

The input to the jst neuron of the hidden layer of the neural network is:

net
(2)
j =

4∑
i=1

wjiIi, j = 1, 2, 3, i = 1, 2, 3, 4, (13)

where the input signals I1, I2, I3 and I4 are the coordinates of the feature points in the world

coordinate system and the constant 1, respectively, and each of the weights wji of the network,

respectively, corresponds to each element of the camera projection matrix.
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The input to the kth neuron of the output layer is:

net
(3)
k =

3∑
j=1

wkjO
(2)
j , k = 1, 2, j = 1, 2, 3, (14)

where the weights wkj form the matrices wkj =

[
1 0 −un

0 1 −vn

]
, ui & vi are. The coordinates

of the feature points projected to the image plane.

The excitation function f(x) of the network is a linear function, i.e:

f(x) = x+ θ, (15)

Where, θ is the threshold value, which in the experiments is taken as 0 according to the pinhole

model of the camera. The outputs of the neurons in the output layer and the hidden layer are

O
(3)
k = f(net

(3)
k ) and O

(2)
j = f(net

(2)
j ), respectively.

According to the camera mathematical model, the output expectation vector of the neural

network is [0, 0]T. During the training period of the network, the performance metric of the

system is obtained by the quadratic sum of the di�erence between the network output and the

expectation value, i.e.:

E =
1

2

2∑
k=1

(0−O
(3)
k )2, k = 1, 2. (16)

During neural network training, the weight matrix between the hidden layer and the output

layer remains unchanged, and the weights between the input layer and the hidden layer:

wji(n+ 1) = wji(n) + η1δjIi + α1(wji(n)− wji(n− 1)), (17)

where, η1 is the learning rate, α1 is the inertia factor, and δj = − ∂E

∂O
(2)
j

= −
∑2

k=1 O
(3)
k wk.

(c) Adaptive genetic algorithm

Genetic algorithm is an adaptive heuristic search mechanism that includes three operations:

replication, crossover and mutation [19]. In the experiment, the search space for each element in

an individual is (-50000. 50000), the size of the population is M = 80, the number of iterations

is T = 360, and the chromosomal individuals are obtained by a random function and take

the form of a real number code. Assume that the 2 individuals are xi = [m11,m12, · · · ,m34]

and xj = [m11,m12, · · · ,m34], and that there are xi(t) = r1xi(t) + (1 − r1)xj(t) and xj(t) =

(1 − r1)xi(t) + r1xj(t) according to the arithmetic intersection meaning, where r1 ⊂ [0; 1] is a

random number. The algorithm for the non-uniform variation operation is as follows:

xin(t) =

{
xin(t− 1) + (bi − xin(t− 1)i)f(t) if 0 ≤ λ1 < 0.5,

xin(t− 1)− (xin(t− 1)− ai)f(t) if 0.5 < λ1 ≤ 1,
(18)

where λ1 is the random number that lies between [0, 1]. xin(t) and xin(t − 1) are the nth

variables of vector xi(t), ai and bi are the upper and lower bounds of variable xin(t), functions

f(t) = λ2(1− t
T
)b, t denote the current number of generations in the iterative process, and T is

the maximum number of iterations, i.e., 360. λ2 is the random number located between [0, 1].

b = 2 is the shape factor.
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(d) Evolutionary speed factor

In the longitudinal direction, the direction and degree of evolution of an individual can be

predicted by the evolutionary rate factor of the individual. If a chromosome is denoted as xi(t)

in generation t and xin(t − 1) in generation (t − 1), the distance between them is Ht(xi) =

xi(t− 1)− xi(t) 2
. Let the interval between 2 generations be sampling unit time, the distance

between 2 chromosomes Ht(xi) can be regarded as the evolutionary speed. In this paper, let

Ht(x) be the average distance, i.e., Ht(x) =
1
M

M∑
i=1

Ht(xi). With reference to the normalisation

process, the evolutionary speed factor can be written as:

et =
Ht(x)

max (H1(x), H2(x), · · · , Ht(x))
. (19)

Then 0 < et ≤ 1. The larger the et, the faster the evolution. When et tends to 0, evolution has

stalled or an optimal solution has been found.

(e) Aggregation factor

In the horizontal direction, during the iteration process, if the diversity among individuals

decreases too fast, the algorithm may not �nd the global optimal solution of the system.

In order to describe the diversity among individuals, the concept of aggregation degree is

introduced. Assuming that the centre position of all individuals in generation t is represented

by vector x, the sum of the distances of all individuals from x is dt =
M∑
i=1

||xi − x2||, and thus

the aggregation degree factor:

σt =
dt(x)

max(d1(x), d2(x), · · · , dt(x))
. (20)

It is clear that 0 < σt ≤ 1, and the larger σt, the better the diversity among individuals and

the more dispersed they are.

2.3. Detection model image processing and recognition algorithm design

2.3.1. Edge detection. Changes in the grey level of pixel points in an image produce distinct

edges at the boundaries where there is a large change in grey level, which is the basis for image seg-

mentation. However, there is a substantial di�erence between edges and boundaries: boundaries are

the boundaries between objects in a realistic scene, because the realistic scene is three-dimensional.

But the captured image is two-dimensional, and the position of the grey scale change of the pixel

points in the image is called the edge. The mapping from a three-dimensional realistic environment

to a two-dimensional image leads to the loss of a lot of information, whether it is the e�ect of noise

or lighting and other factors can have an important impact on the imaging, so these reasons that do

exist and can not be completely eliminated make the lack of edge extraction algorithms of the image

is still a bottleneck in the digital image technology.

(a) Laplacian operator

The Laplacian operator is a second order di�erential operator [3]. The matrix operator for

convolution is:  0 1 0

1 −4 1

0 1 0

 . (21)
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Then the arithmetic formula is:

f(i, j) = f(i+ 1, j) + f(i− 1, j) + f(i, j + 1) + f(i, j − 1)− 4f(i, j). (22)

It can be seen that the second order derivatives at the boundaries are heteroscedastic, which

exactly re�ects the direction and strength of the image edges. This operator has no direction-

ality and is very signi�cant to abrupt changes in the grey scale of the image. Because the

operator is a second-order operator so sensitive to image noise, so the requirements for image

acquisition is higher and in the image preprocessing must �rst do a better smoothing.

(b) Roberts operator

Roberts operator is two diagonally oriented di�erential operator which calculates the gradient

of the neighbouring pixels on the diagonal [21]. The two diagonal operators are as:[
0 1

−1 0

] [
1 0

0 −1

]
. (23)

The grey scale di�erence between adjacent diagonal pixel points is:

∆fy = f(i− 1, j)− f(i, j − 1), (24)

∆fx = f(i, j)− f(i− 1, j − 1). (25)

Then:

G(i, j) =
√

∆f 2
x +∆f 2

y . (26)

Derivation of G(i, j), i.e., for the grey scale changes in 45◦ and 135◦ directions at the pixel

point.Roberts operator has better directionality and high accuracy of edge position, but this

operator is more sensitive to noise due to the �xed orientation and uniform treatment of the

whole image.

(c) Sobel operator

The Sobel operator is a process of comparing the magnitude of the grey scale gradient, it is

not a uniform �rst order di�erentiation of the whole image, but a comparison of di�erentiation

operations in both directions [15]. The di�erential convolution operator in the horizontal and

vertical directions is shown in:

Operators in the y direction :

 −1 −2 −1

0 0 0

1 2 1

 , (27)

Operator in the x direction :

 −1 0 1

−2 0 2

−1 0 1

 , (28)

As can be seen from these two operators, Sobel discriminately detects the neighbours above

and below and to the left and right of a pixel point, and then compares these two gradient

sizes and retains the larger one, which determines that this operator has a great advantage in

extracting the edge direction, but the edge position will not be guaranteed to be accurate, so

there will be a case of inaccuracy of the edge position.
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(d) Canny operator

Canny operator is an optimization operator, which has the characteristics of multi-stage �lter-

ing, enhancement and detection [25].Canny operator �rstly uses Gaussian �lter to smooth the

image to remove noise, then Canny operator uses the di�erence of �rst-order derivatives of the

image to calculate the gradient magnitude and direction of the grey scale, in the whole process

Canny operator also undergoes a non-maximum value suppression process, after that Canny

operator is used to calculate the gradient magnitude and direction of the grey scale, and then

it is used to calculate the gradient direction. In the whole process the Canny operator also

undergoes a non-maximum suppression process, after which the Canny operator �nally sets

two thresholds to connect the edges.

The Laplacian operator is a second-order operator that is sensitive to grey scale changes and

accurate in positioning, but at the same time is overly sensitive to noise, so it tends to be more

a�ected by noise.The Roberts operator is a more diagonal di�erential operator, with a high

degree of positional accuracy for edges, but sensitive to noise. The Sobel operator compares

the vertical and horizontal gradient directions; the edge directions are accurate, but the edge

locations tend to be blurred.

(e) Variable Scale Di�erential Operator (VSD)

The method of image di�erentiation can eliminate the e�ect of inconsistency, through the

previous analysis of various edge operators can be seen, the essence of edge extraction is a

process to achieve di�erentiation of grey-scale map, for a variety of classical edge extraction

operators, are only detecting the image changes relatively drastic region, so there is a dimension

can not be more accurate extraction of image edges.

Thus, in order to extract features that are su�ciently distinguishable from slowly changing

signals, a variable-scale image di�erentiation is proposed to solve this problem, and the operator

is shown in Figure 4 (with the Sobel operator as an example).

Fig. 4. Schematic diagram of multi-scale di�erential operators

For the variable scale di�erential operator presented in this section, it can be seen that it is an

operator that di�erentiates for each angle, and it is the diversity of angles that allows for a better

extraction of the changes in the retarded signal.

2.3.2. Hough transform and automatic target localisation.

(a) Hough transform basic principle and implementation

Detecting a straight line using Hough transform is to transform a straight line from the original

space to the parameter space [18]. The equation of a straight line is: y = k ∗ x + b, and the
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image space (x, y) is corresponded to the slope-intercept parameter space by Hough transform.

The equation of a circle is:

(x− a)2 + (y − b)2 = r2. (29)

Through the Hough transform, the image space (x, y) corresponds to the parameter space

(a, b, r). In this topic, what needs to be detected is a straight line, so the main study here is to

detect a straight line based on the Hough transform, and the principle is shown in Figure 5.

Fig. 5. Duality of the dot line

As can be seen from Figure 5, the x−y coordinate space of the original image and the parameter

space k− b coordinates of the straight line have duality on the point-line, the two straight lines

in the parameter space coordinates of the straight line correspond to the two points in the

spatial coordinate system of the original image, and the straight line L0 in the parameter

space coordinates of the straight line corresponds to the point P0 in the parameter space k− b

coordinates.

In the x− y-coordinate, the point-sine curves are used to do the dyadic transformation due to

the existence of a special case where the slope k of the 90-degree line is in�nite, which a�ects

the calculation:

p = x ∗ cos(a) + y ∗ sin(a). (30)

A point (x, y) in right-angled coordinates x−y corresponds to a transformation into a sinusoidal

curve in polar coordinates a − p, where a is at (0-180) degrees. From the equation, it can be

seen that a point (a − p) in polar coordinates a − p corresponds one by one to a straight line

in right-angled coordinates x− y.

The polar coordinate system is micromanaged into a square grid, in the right-angled coordinate

system x− y in a straight line of each point's coordinates (x, y), calculations p = x ∗ cos(a) +
y ∗ sin(a), p in polar coordinates will fall in a small grid, then mark this small square number

accumulator plus one, traversing the right-angled coordinate system x− y in all the points, the

straight line of the point will be in the polar coordinate system will get the obvious cumulative,

then counting the polar coordinates of the small squares, the accumulator of the biggest The

value (a, p) corresponding to the largest square corresponds to the straight line in the Cartesian

coordinate system.

(b) Hough-based target localisation

In order to avoid misjudgement due to positional errors through the algorithm �rstly the part

is localised in the image so that the region of interest can be determined.

For the extracted edge of the measured part, there exists a straight line at the bottom edge,

which is found by Hough transform, with the slope and intercept of the straight line, the

position of the part in the image can be obtained by the equation of the straight line.
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3. Analysis of Precision Component Identi�cation Results

In this paper, we take the bearing assembly as an example to study in depth the application of the

precision component inspection model based on machine vision constructed in the previous paper in

the bearing assembly.

3.1. Component size inspection results

For the same bearing standard parts in the �eld for 8 measurements, the size measured by the

inspection model and the actual inspection size of the workpiece are compared, the component size

measurement results are shown in Table 1. From the measurement data in Table 1, the maximum

deviation value is 0.04mm in 8 measurements, and the maximum deviation value at each position is

within the 0.05mm range required for inspection in this paper. In the eight measurements carried out

in six positions did not appear to exceed the model requirements, it can be seen that the component

size measurement method in this paper has excellent results.

Number Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

1 80.11 80.46 35.71 82.43 80.05 39.46

2 80.17 80.42 35.72 82.46 80.01 39.43

3 80.13 80.48 35.73 82.45 80 39.44

4 80.12 80.49 35.76 82.48 80.04 39.41

5 80.18 80.42 35.76 82.44 80.05 39.42

6 80.19 80.42 35.69 82.47 79.99 39.45

7 80.11 80.48 35.72 82.48 80.06 39.44

8 80.17 80.46 35.69 82.41 80.04 39.48

Standard component 80.15 82.46 35.72 82.44 80.03 39.45

Table 1. Component size measurement results

3.2. Component edge detection analysis

In order to further quantitatively evaluate the e�ect of detection, standard deviation, peak signal-to-

noise ratio, information entropy, and average gradient are selected as evaluation indexes in this paper.

Among them, the standard deviation indicates the degree of dispersion of the grey value of the image

relative to the mean value, and the more dispersed the grey level indicates the more prominent the

edge of the image. The peak signal-to-noise ratio indicates the error between the corresponding pixel

points, and the larger its value indicates the smaller the distortion, and the bivariate map of the edge

is used as a reference in the calculation. Information entropy indicates the degree of information

clutter, and larger values indicate that the image contains more information. The average gradient

indicates the rate of change of the edges in the image, and a larger value indicates a clearer image.

The objective evaluation of di�erent edge detection operator methods and the Variable Scale

Di�erential Operator (VSD) method proposed in this paper for the edge detection of virtual model

and 3D model at each angle map, �ve working conditions of the bearing components are selected for

analysis. The results of the objective evaluation of images are shown in Table 2.

As can be seen from Table 2, for images with di�erent acquisition modes and di�erent targets,

except for condition three, the standard deviation and peak signal-to-noise ratio of the variable



Practical Research on Machine Vision Technology 255

scale di�erential operator (VSD) method proposed in this paper are better than those of the above

algorithms, which indicates that the edge details detected by the variable scale di�erential operator

(VSD) method in this paper are more accurate. The information entropy of this paper's Variable

Scale Di�erential Operator (VSD) method under four working conditions (except for condition three)

is 0.1151, 0.0406, 0.0685, 0.1065 (all the smallest among all edge algorithms), indicating that the

detected edges reduce the in�uence of the noise, the information is more streamlined, and the image is

clearer. Edge extraction experiments on the bearing component image, although for a small number

of edge mutations and irregular edges at the e�ect is not ideal, but for the follow-up work does not

a�ect the majority of the edges still achieve an e�ective connection, and this paper's variable scale

di�erential method in the standard deviation, peak signal-to-noise ratio, information entropy, average

gradient objective evaluation indexes are more excellent performance. In this paper, the variable scale

di�erential operator method can e�ectively connect the edges of the bearing components, laying the

foundation for the subsequent identi�cation of the geometric parameters of the bearing components.

Method Operating condition
Evaluation index

STD SPNR Entropy Mean gradient

Roberts

1

51093 6.175 0.9917 1.1846

Sobel 80153 3.672 1.8429 2.6238

Laplacian 19905 9.348 0.5429 0.9741

Canny 50667 12.694 0.2048 1.6849

VSD 2074 20.592 0.1151 2.9234

Roberts

2

37468 7.846 0.7428 0.4685

Sobel 62488 5.048 1.3486 0.7816

Laplacian 49834 6.297 1.1485 0.8549

Canny 894 25.744 0.0895 0.1126

VSD 85 35.948 0.0406 0.0689

Roberts

3

40168 7.485 0.8264 0.5348

Sobel 70384 4.952 1.4528 1.2643

Laplacian 50786 6.644 1.0535 1.7924

Canny 466 28.45 0.0388 0.3729

VSD 642 24.69 0.0795 0.8842

Roberts

4

19584 0.523 1.7854 2.5846

Sobel 20749 0.384 2.8458 11.5668

Laplacian 13665 2.341 2.6344 0.3874

Canny 1285 20.173 0.0726 0.4682

VSD 624 27.446 0.0685 0.5213

Roberts

5

20485 0.426 2.0755 3.4825

Sobel 20146 0.448 2.8429 6.4872

Laplacian 13482 2.647 2.4058 12.1784

Canny 2644 18.488 0.1547 3.5958

VSD 2304 20.648 0.1065 1.9485

Table 2. Image evaluation results
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3.3. Analysis of component geometric parameters

The geometric parameters of the bearing components are identi�ed, and the development environ-

ment used for the experiments is as follows: the CPU is an Intel(R) Xeon(R) Platinum 8163 2.50GHz

96-core processor with 224GB of RAM, and an NVIDIA GeForce RTX 2080Ti graphics card with

12GB of video memory. The software development platform is Win10 64-bit operating system, with

Pycharm as the development tool, mainly using OpenCV-Python to process edge images, using

Numpy as the matrix processing of scienti�c computing, and Pytorch as the framework for experi-

ments.

Referring to the products of a bearing manufacturer, the inner ring, outer ring, rolling element and

cage of the bearing are taken as the research objects, and 4800 cross-section images of the bearing

components are generated as the dataset by taking the original control parameters as the basis,

�oating within the error range of 30%, and increasing the random amount. 10% of the data, i.e.,

480 edges, are randomly selected as the validation set, and the remaining 90% of the edges, i.e., 4320

edges, are used as the training set.

Randomly extract 2400 edge images, the detection model based on BP neural network and genetic

algorithm and the fully connected neural network model of this paper are used to identify the geomet-

ric parameters of the images and calculate the relative error, the error analysis of the identi�cation

of geometric parameters of the bearing assembly cross-section is shown in Figure 6, in which Figure

6(a) is the result of the recognition of the fully connected neural network, and Figure 6(b) is the

result of the recognition of this paper's method, H, t1, t2, t3, w1, w2, w3, m, and d represent width,

inner diameter, outer diameter, radius, contact angle, conicity, ball diameter, gap, and eccentricity,

respectively. The relative error frequency of the statistical recognition results, the statistical results

are shown in Figure 7.

As can be seen from Figure 6, the distribution range of geometric parameter recognition results

of the fully connected neural network is larger, and almost all geometric parameter recognition

results are in the interval of [-90%,80%]. The distribution range of the results of the BP neural

network+genetic algorithm is smaller, and the geometric parameters basically fall within the interval

of ±5%, and the recognition result error is roughly symmetrically distributed near 0. Because the

BP neural network + genetic algorithm has a stronger ability to extract data features, its geometric

parameter recognition results are more accurate and more symmetrically distributed.

From Figure 7, it can be seen that for the fully connected network, 68.90% of the prediction errors

for gap m are within 20%, and 75.55% of the prediction errors for the other 8 key control parameters

are within 20%. For BP neural network + genetic algorithm, the prediction errors of 9 key control

parameters are within 5%. In terms of analysis e�ciency, the performance of deep convolutional

neural network in both training and prediction is much better than that of fully connected neural

network, so the deep convolutional neural network is a model more in line with this application

scenario, and this paper will use the deep convolutional neural network for the subsequent research.

3.4. Analysis of suspicious component identi�cation

The bearing assembly images used in the bearing assembly loosening recognition experiments were

collected from the bearing manufacturers in the previous section, of which 14,000 sheets of normal

assemblies and 4,000 sheets of each of the loose assemblies were used. The experiments in this section

use 20,000 normal bearing assemblies and 4,000 loose bearing assemblies as the training set, and use

the remaining 8,000 normal bearing assemblies and 4,000 loose bearing assemblies to match into
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(a) The whole neural network recognition results

(b) BP neural network+genetic algorithm recognition results

Fig. 6. Analysis of relative error of geometry parameters of bridge component

4,000 pairs of images of the same category and 4,000 pairs of images of di�erent categories, in order

to test the recognition performance of the precision intergroup detection model based on machine

vision in this paper.

In order to verify the advantages of the method in this paper, the experiments in this section are

compared with the existing methods (CIPSO, ALOK, DPM, YOLOv4, Faster R-CNN, HOG+KNN,

PHOG+SVM, Harr+AdaBoost). In order to fairly compare the performance of the loss function, all

methods use MSRNN network as the feature extraction network and use the same training method

and training parameters. The experimental results are evaluated using two metrics: classi�cation

recognition accuracy and veri�cation recognition accuracy, and the detailed experimental results are

shown in Figure 8.

According to the experimental results, it can be seen that the classi�cation recognition accuracy

and veri�cation recognition accuracy of the machine vision-based precision component detection

model proposed in this paper are the maximum among all detection methods, and the method in

this paper �nally achieves the optimal recognition performance, with the classi�cation recognition

accuracy of bearing component looseness reaching 97.49% and the veri�cation recognition accuracy

reaching 98.01%, which fully proves the e�ectiveness of the method in this paper. It can also be

seen from the experimental results that a higher recognition accuracy is achieved using veri�cation
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(a) Frequency statistic of relative error of whole neural network

(b) Frequency statistic of BP neural network+genetic algorithm

Fig. 7. Frequency statistic of relative error of geometry parameters of bridge component

recognition than classi�cation recognition.

Fig. 8. Comparative experimental results of bridge component loosing inspection
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3.5. Component detection angle analysis

In order to verify the e�ectiveness of this paper's method for detecting the angle of the bearing

assembly, this paper's method is used to detect the images of the bearing assembly at di�erent

angles. The detection results are shown in Table 3. The experimental results in Table 3 show that

this paper's model has the lowest false detection rate and leakage rate of the bearing assembly at

90◦, which are 0.85% and 0.28%, respectively, and the highest false detection rate and leakage rate

at 270◦, which are 1.45% and 0.73%. In the six angles of detection, the false detection rate of this

paper's model is controlled below 1.50%, and the leakage rate is not more than 1%, which indicates

that the method proposed in this paper has good detection e�ect in di�erent angles.

Angle False detection rate/% Undetected rate/% Time/ms

30◦ 0.89 0.31 179

45◦ 0.92 0.34 180

60◦ 0.85 0.28 174

90◦ 0.98 0.42 186

180◦ 1.06 0.69 192

270◦ 1.45 0.73 195

Comprehensive condition 1.03 0.46 184

Table 3. Comparison of test results under di�erent angles

4. Conclusion

This paper establishes a stereo vision system, uses BP neural network and heritage algorithm to

calibrate the camera, and designs the detection model image processing and recognition algorithm

to construct a precision component detection model based on machine vision. Taking the bearing

component as an example, the component dimensions, edges, and geometric parameters are detected,

and the recognition e�ect of components under suspicious components and di�erent angles is tested.

In 8 measurements of the same bearing standard component, the maximum deviation value at

each position is not more than 0.05 mm. The information entropy of the processing results of the

edge detection method in this paper is the smallest among all edge algorithms in most cases, and the

detected edge information is more streamlined and the image is clearer. The geometric parameters of

the bearing components detected by the detection model in this paper basically fall within the ±5%
interval, and the recognition results are highly accurate. The classi�cation recognition accuracy of

the precision component detection model based on machine vision proposed in this paper is 97.49%,

and the veri�cation recognition accuracy is 98.01%, which are the optimal recognition results among

all detection methods. The comprehensive false detection rate of the component detection model in

this paper is 1.09%, and the comprehensive leakage rate is 0.46%. Under the six angles of detection,

the false detection rate and leakage rate of this paper's model are kept below 1.50% and 1%, and

this paper's component detection method still has excellent detection e�ect under di�erent angles.
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