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abstract

Based on the de�nition of volatility and conditional value risk (CVaR), this paper introduces the

implied volatility into CVaR model, and further analyzes the partial di�erential equation of stock

portfolio optimization in the form of BS model. In the process of multi-stage investment, in order

to reasonably control the investment risk of each stage, the CvaR model based on implied volatility

is constructed by using the scenario tree method. With the data of 1166 trading days as the data,

4 stock assets as the data set of this study, the optimization model is applied to the calculation

and analysis. The numerical simulation shows that the stock price �uctuation of the four multi-

cycle stocks ranges from -23.45% to 41.97%, showing a clustering phenomenon. Among them, the

volatility of stocks A and C is more obvious than that of stocks B and D, and the probability density

tails of stocks are longer in the cycle, and they all show thick tail characteristics, indicating that

the introduction of implied volatility of CVaR model makes the risk control of actual equity asset

investment more reasonable.

Keywords: implied volatility, CVaR model, partial di�erential equations, numerical simulation, prob-

ability density

1. Introduction

Regarding the quantitative method of controlling risk, in the past, the main application of measuring

�nancial risk was the variance, but the variance can only represent the �uctuation of the asset price

in this period, and the �uctuation can not be represented as a risk, so this method is slowly being
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eliminated [9, 23, 19]. The current methods for quantifying risk indicators mainly include metric

value at risk (Va R) and conditional value at risk (CVa R), etc., but both of them are exceptionally

di�cult to be solved directly through parsing [14, 7].

Risk theory consisting of a large number of mathematical models has been an international research

hotspot, and mathematical modeling of risk in �nance was one of the earliest studies [18, 17]. In

1963, Baumol proposed a new mathematical model of risk: the value-at-risk (VaR) model. After

that, there are some authoritative �nancial institutions survey shows that VaR model is now widely

used by many commercial banks, investment banks, non-�nancial institutions, institutional investors

and regulatory agencies, however, after a long period of continuous exploration by many scholars

and practical use of the sector has proved that there are some defects in the VaR model, such as

does not satisfy the consistency axiom, VaR does not satisfy the subadditivity and so on [12, 5, 15,

21]. To address the above weaknesses of VaR, developing and improving VaR theory has become an

important research topic in recent years.Uryasev and Rockafellar proposed a modi�ed mathematical

model of VaR, the conditional value-at-risk CVaR model, in their paper.The CVaR model has the

strengths of VaR, while at the same time it has theoretically good properties such as subadditivity,

convexity, and computability, etc.[4, 11, 13]. Pownall applies CVaR to the empirical study of the

securities market in the Asian �nancial crisis and compares it with the RiskMetrics methodology,

which shows that CVaR is better than the RiskMetrics methodology in capturing the underneath

risk that arises when the market risk factors �uctuate drastically under extreme market conditions

[3, 2]. The study shows that the CVaR model not only has many theoretical advantages, but also is

more e�ective and practical than VaR in �nancial risk management [10].

There also exists a class of complex multi-period risky decision-making problems in business, supply

chain, power and real estate, etc., i.e., in a time period due to the uncertainty of demand, it needs

to make decisions in multiple periods to diversify the risk, and it also needs to �nd the period that

divides the minimum loss, e.g., a production company produces products to be sold in several phases,

and di�erent phases, due to seasonal in�uences, have di�erent prices and demand, therefore, it needs

to produce according to the plan of dividing di�erent production cycles to avoid smaller losses, such

a problem requires a new mathematical model to solve it, and there are not many studies on such

mathematical models [8, 16, 6].

Taking the de�nition of volatility and conditional value-at-risk (CVaR) as a starting point, the BS

model is used to assign implied volatility, after which the lowest risk and highest return of equity

assets are taken as an asset portfolio optimization problem, and the scenario tree approach is adopted

to algorithmically design the implied volatility-based CvaR model. Four stocks in the multi-period

asset type are selected as the research sample, totaling 1166 trading days of multi-period asset data,

which constitutes the research dataset. The data set is also analyzed with descriptive statistics to

clarify the numerical characteristics of the four types of multi-period stocks. Next, taking A among

the four types of multi-period stocks as an example, the optimization model in this paper is used to

design an asset portfolio optimization scheme with more accurate and close to the reality.

2. Algorithm design for conditional value-at-risk optimization models

2.1. Volatility theory

2.1.1. Meaning of volatility. Financial markets change all the time, and movements in �nancial

markets can actually be described by changes in asset prices. This change in �nancial asset prices
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also creates �nancial risk, so if risk is to be predicted as accurately as possible, the volatility of prices

must be adequately estimated as well as accurately modeled. Volatility is the conditional variance

or conditional standard deviation of an asset's return. In statistics, volatility is generally described

by the variance or standard deviation of prices [22, 1].

2.1.2. Characterization of volatility. Volatility is not directly observable, but there are some char-

acteristics of volatility that can be seen in the series plot of asset returns.

1) Volatility Aggregation. Volatility aggregation simply means that volatility generally does not follow

a large �uctuations in the immediate aftermath of a very small �uctuations, or a small �uctuations

in the immediate aftermath of a very large �uctuations. That is to say, a larger �uctuation is often

followed by a larger �uctuation, and a smaller �uctuation is often followed by a smaller �uctuation.

This suggests that volatility may be larger or smaller over a small time interval, creating aggregation.

2) Leverage. The leverage e�ect refers to the fact that the volatility of an asset changes di�erently

for the price when the price of the asset rises and falls sharply in two situations. Often the volatility

is higher when the price falls sharply than when the price rises sharply.

3) Volatility Persistence. Volatility of the continuity of volatility means that volatility in a short

period of time a sudden jump is rare, volatility tends to be in the time period of continuous change.

4) Smoothness. Because volatility does not spread to in�nity, that is, volatility is constantly changing

within a limited range due to various reasons in the �nancial market. Therefore, in statistical terms,

this phenomenon indicates that volatility is smooth.

2.2. Conditional Value at Risk (CVaR) Theory

2.2.1. De�nition of CVaR. Conditional Value at Risk CVaR means the average loss when the port-

folio loss exceeds the value of VaR (Value at Risk) at the same con�dence level for a given holding

period [20]. In mathematical expression it can be expressed as:

CV aRc(x) = E[f(x, r)|f(x, r) > V aRc(x)], (1)

where f(x, r) represents the loss function of the portfolio. The above Eq. (2) can also be expressed

as:

CV aRc(x) = V aRc(x) + E[f(x, r)− V aRc(x)|f(x, r) > V aRc(x)]. (2)

2.2.2. Factors in�uencing CVaR. Since CVaR is essentially a conditional mathematical expectation,

we know from the above example that the main factors a�ecting CVaR are the length of the holding

period, the con�dence level, and the VaR value. Since the con�dence level and holding period length

are already determined, the VaR value is actually known. Therefore, the main factors a�ecting the

CVaR value are holding period length and con�dence level.

1) Con�dence level. The selection of con�dence level is very important for the calculation results of

CVaR. For investment institutions or investors with di�erent risk preferences, di�erent con�dence

levels will be selected when calculating the CVaR value. For risk averse investment institutions or

investors, they will choose a higher con�dence level, which will result in a relatively large CVaR
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value, but, in general, too high a con�dence level VaR and CVaR will tend to converge. At the

same time, the probability of occurrence of extreme situations is greatly reduced, resulting in the

empirical test of the validity of CVaR can not be carried out. In the actual �nancial life, banks,

insurance companies, asset management companies have a great di�erence in the degree of preference

for risk, and their settings for the con�dence level will also be very di�erent. Therefore, in order to

get the e�ective CVaR value, it is necessary to consider the actual situation, make comprehensive

measurements, and select the appropriate con�dence level.

2) Holding period length. As we know, the longer the holding period, the more volatile this investment

will be. This also means that the corresponding CVaR value of the portfolio will be larger, so that

if the extreme situation occurs, the greater the loss of the investment organization or investor.

Therefore, when making a decision, it is important to consider all factors and choose the appropriate

holding period.

2.2.3. Properties of CVaR. According to the above de�nition of CvaR theory, it can be seen that

CVaR theory should satisfy positive chi-squaredness, monotonicity, transfer invariance, and sub-

additivity.

1) Positive Chirality. For any positive real number a, at con�dence level c:

CV aRc(ax) = aCV aRc(x). (3)

2) Monotonicity. Conditional on con�dence level c, portfolios x and y, assuming x the risk of ≥ y

the risk we have:

CV aRc(x) > CV aRc(y). (4)

3) Transfer invariance. For any positive real number a:

CV aRc(ax) = aCV aRc(x). (5)

4) Subadditivity. Is derived for any portfolios x and y:

CV aRc(x+ y) ≤ CV aRc(x) + CV aRc(y). (6)

From the above four properties, it can be seen that CVaR satis�es the consistency risk metric

criterion we mentioned earlier.

This is a major advantage of CVaR over VaR, and CVaR was proposed for this one reason.

2.2.4. Advantages of CVaR. CVaR is a risk measure based on VaR, which has been improved by

scholars due to the shortcomings of the VaR risk measure. Therefore, CVaR risk measure has

advantages that VaR does not have.

Firstly, CVaR is able to respond to the corresponding loss when the extreme situation occurs.

According to the de�nition of CVaR, CVaR value is not a quantile compared with VaR value, but

the average value when extreme situations occur. It can provide loss prediction for investment

institutions or investors when small probability events occur, enabling investors to better manage

risks.
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Second, CVaR meets the criteria for a consistent risk measure. Compared to the VaR metric, CVaR

satis�es the sub-additivity that VaR does not satisfy, which makes CVaR have better properties when

calculating risk.

Thirdly, since in calculating CVaR, we �rst calculate the VaR value. So when we use CVaR to

measure risk, we can get both the maximum loss at the con�dence level from the VaR value and

the average loss that occurs in extreme cases. This provides investors with a safer risk management

precaution.

2.3. Introducing a CvaR optimization model with implied volatility

2.3.1. Implied volatility. Volatility is mainly used to measure the historical volatility of equity as-

set prices and help investors understand the magnitude of equity asset price movements. Implied

volatility, on the other hand, is used for option pricing and risk management, and re�ects the mar-

ket's expectation of future equity asset price �uctuations. Both re�ect the volatility of equity asset

prices, but one is based on historical data and the other is based on market expectations. Implied

volatility can be solved to approximate actual volatility through the Black-Scholes model (BS model

for short).The BS model has six assumptions:

(1) The price of the risky stock asset obeys a lognormal distribution.

(2) The return on the risky equity asset and the risk-free rate remain constant over the life of the

option.

(3) The market is frictionless, taxes and transaction costs are negligible, and all securities are

perfectly divisible.

(4) The option is a European-style option, i.e., the option is only exercisable on the exercise date.

(5) There is no risk-free arbitrage opportunity.

(6) Trading in the security is continuous.

Assume that this is a European call option based on stock i, i = 1, · · · , n and that the price Si(t)

of stock i obeys the following geometric Brownian distribution:

dSi(t) = S(t)t(uidt+ σidW (t)). (7)

At �xed moment T , if the strike price is K, this stock i has a strike return function of Si(T )−K.

According to the BS pricing model, at moment 0, the price of this option is:

Ci = S(0)Φ(d1)−Ke−rfTΦ(d2). (8)

Among them:

d1 =
ln(S0/K) + (rf + σ2

i )T

σi
√
T

. (9)

d2 =
ln(S0/K) + (rf − σ2

i )T

σi
√
T

. (10)

Φ(·) is the distribution function of a normal random variable. The option price Ci depends on

the volatility of the risky equity asset σi and the risk-free interest rate rf . In general, we can obtain

the volatility by looking at the option price Ci at moment 0. σi If we substitute volatility σi as an

unknown into Eq. (10) we obtain the implied volatility σi. Due to the nonlinearity of the BS model,

we can use dichotomous interpolation to obtain a numerical solution.
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2.3.2. Combinatorial optimization problems. The variance of the stock asset portfolio returns is used

to measure the corresponding risk, which is de�ned as the degree of deviation of a random variable

from the mean, without distinguishing between positive and negative deviations, i.e., losses and

pro�ts. In practice, the CVaR value is generally calculated by constructing an auxiliary function,

which allows the CVaR value to be calculated directly without calculating the VaR value. The

solution process is a linear programming problem, and CPLEX software is used in this paper for

empirical analysis.

We assume that the probability that the expected return W (x, y) of a portfolio does not exceed

a speci�c value a is ψ(x, a), then ψ(x, a) =
∫
W (x,y)≤a

p(y)dy. A transformation of the formula yields

that the value at risk VaR of a portfolio x, at a certain con�dence level β, is:

V aRβ = inf
{
a|ψ(x, a) ≥ β

}
. (11)

The corresponding conditional value-at-risk CVaR at a certain con�dence level β is:

CV aRβ = (1− β)−1

∫
W (x,y)≥V aRβ

W (x, y)p(y)dy. (12)

The theory assumes that the smaller the probability that the portfolio return will fall below a

particular value, the better, so the focus of attention is on the probability that the portfolio will fall

below the investor's minimum required return.

If the investor's expected return on a portfolio of equity assets is still denoted by W (x, y), and the

investor's required minimum return is a, the mathematical meaning of SFP is:

min
{
P (W (x, y) ≤ a)

}
. (13)

So the optimization problem to be solved is to make the probability that W (x, y) is below the

investor's minimum required return as small as possible.

2.3.3. Scenario trees. In the multi-period investment process needs to control the investment risk

of each stage, for the multi-period stochastic planning problem, the commonly used model is the

scenario tree model, which is described in detail as follows:

The scenario tree model assumes that the stochastic parameters we care about in each phase can

only take a �nite number of values, and all possible values are called scenarios, each of which has

a corresponding probability value. Each new scenario is based on the scenarios generated in the

previous stage, which ultimately generates a complete scenario tree. The structure and number of

scenario trees directly a�ect the complexity and reliability of the scenario tree, and whether the

return scenarios of risky stock assets in multi-period �nancial investment decision-making can better

match the actual is critical.

The number of scenario trees directly a�ects the overall running time of the algorithm, and binary

tree models are generally used to model stock asset returns. In this section, we introduce a linear

programming method for single-stage scenario tree generation based on �moment matching�, which

takes descriptive features into account. �Moment matching� means that the statistical characteristics

of the generated scenario tree and the statistical characteristics of the variables are matched as much

as possible.

Let X be a random variable, µ be the expectation of a random variable X, and σ be the variance

of a random variable X. If E(Xk), k = 1, 2, · · · exists, it is said to be the kth order moment of origin
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of X, or the kth order moment for short. If E
{
[X − E(X)]k

}
, k = 2, 3, · · · exists, it is said to be

the kth order central moment of X.

The third-order central moment E {[X − E(X)]3} is primarily used to measure whether the distri-

bution of a random variable is skewed, i.e., the extent to which the distribution deviates from sym-

metry. The skewness is the third-order standardized moment of the sample, de�ned as Skew(X) =

E
[
(X−µ

σ
)3
]
.

Fourth-order central moments E {[X − E(X)]4} are used primarily to describe the degree of spik-

iness in the distribution of a random variable. Kurtosis is the fourth-order standardized moment of

the sample, de�ned as Kurt(X) = E
[
(X−µ

σ
)4
]
.

If the stock asset's returns are uncorrelated at di�erent stages, then the multi-stage scenario

tree generation is simply a step-by-step generation utilizing the single-stage scenario tree genera-

tion method. Otherwise, the methodology given below should be adapted. The methodology for

generating a single-stage scenario tree is shown below.

Step 1. Determine the distribution interval of stock asset returns using historical data and then

divide the interval into a certain number of sub-intervals. In each sub-interval a point is selected as

the value that the stock asset returns may take.

Step 2. Check the results for the presence of arbitrage opportunities. If an arbitrage opportunity

exists, return to Step 1 and re-divide the distribution interval until there is no arbitrage opportunity.

Step 3. Select data features as matching targets. The probability values corresponding to each

outcome are obtained by solving an optimization problem.

To convert the single-stage scenario tree generation problem into an optimal model, the following

notations are used. Let S represent the total number of nodes in the scenario tree. The vector of

expected returns on risky equity assets is denoted by r̄, while Σ represents the covariance matrix

of risky equity assets. Higher-order moments are also considered, where M3 is the vector of third-

order central moments, and M4 is the vector of fourth-order central moments for risky equity assets.

The sth outcome vector of the risky stock asset is represented as Rs for s = 1, . . . , S, and we

de�ne R = (R1, R2, . . . , RS). Additionally, ps denotes the probability value corresponding to the sth

outcome vector of the risky stock asset, and the probability vector is de�ned as p = (p1, p2, . . . , pS)T .

Generally speaking, it is su�cient to use the �rst 4 orders of data features to perform �moment

matching� for scenario tree generation. In this paper, we use the absolute deviation degree to measure

the �moment matching� in the matching process. The optimization model of �moment matching� is

shown below:

(MM)min
n∑

i=1

µ0
i (r̄

−
i + r̄+i ) +

n∑
i,j=1

µ1
ij(Σ

−
ij + Σ+

ij)+
n∑

i=1

µ2
i (M̄

−
3i + M̄+

3i) +
n∑

i=1

µ3
i (M̄

−
4i + M̄+

4i). (14)

The constraints of the model are formulated as follows. The relationship between the portfolio

return Rp and the expected return vector r̄ is given by Rp + r̄− − r̄+ = r̄. The covariance constraint

is expressed as

S∑
s=1

(Rs −Rp)(R
s −Rp)

sps + Σ− − Σ+ = Σ.

Similarly, the third-order and fourth-order central moment constraints are given by

S∑
s=1

(Rs −Rp)
3ps +M−

3 −M+
3 =M3,
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S∑
s=1

(Rs −Rp)
4ps +M−

4 −M+
4 =M4.

Additionally, the probability constraint ensures that the sum of all probabilities equals one,

S∑
s=1

ps = 1.

The non-negativity constraints are de�ned for the parameters r̄∗, r̄,Σ∗
ij,Σ

−
ij,M

+
3i ,M

−
3i ,M

+
4i ,M

−
4i for

all i, j = 1, . . . , n, and the probability values satisfy ps ≥ 0 for all s = 1, . . . , S. Here, µ0
i , µ

1
ij, µ

2
i , µ

3
i

(where i, j = 1, . . . , n) are given weights. The terms r̄+ and r̄− represent positive and negative

deviations from r̄, respectively. As a result, the formulated model is a nonlinear programming

problem.

As mentioned earlier, we do not need to assume a random distribution for the distribution; we use

moment matching to generate the distribution. For a given number of decision trees N , we generate

a discrete scenario tree {r[j] ∈ Rn}Nj=1 with corresponding distributional probabilities {pj|
N∑
1

pj =

1, pj ≥ 0,∀j}. In this paper, we assume the following notation: Rs = (r[1], r[2], · · · r[N ]), p =

(p1, p2, · · · pN)T . In this paper, we assume that Rs is known by setting the randomized return vec-

tors to some number of discrete values, and then solving for the corresponding probability values

p[k] ≥ 0, k = 1, · · · , N , and
N∑
i=k

p[k] = 1 such that the discrete distributions Ri and p are as close to

each other as possible given the data features RBL,
∑
BL,M3 and M4.

To better characterize the problem, the following auxiliary decision variables are introduced in this

paper: 
R+ = (R+

1 , · · · , R+
n )

T , R− = (R−
1 , · · · , R−

n )
T ,

Σ+ = {Σ+
ij}ni,j=1,Σ

− = {Σ−
ij}ni,j=1,

M+
3 ∈ Rn,M−

3 ∈ Rn,M+
4 ∈ Rn,M−

4 ∈ Rn.

Find the appropriate distribution p by solving the following problem (PMM). i.e.,

(PMM)min
n∑

k=1

ω
[1]
i (R+

i +R−
i ) +

n∑
k=1

ω
[2]
ij (Σ

+
ij + Σ−

ij),

n∑
k=1

ω
[3]
i (M+

3i +M−
3i) +

n∑
k=1

ω
[4]
ij (M

+
4i −M−

4i), s.t Rsp+R− −R+ = RBL.

n,n∑
i=1,j=1

(r[i] −Rsp)(r[i] −Rsp)
T + Σ+ − Σ− = ΣBL,

N∑
i=1

(r[i] −Rsp)
3pi +M−

3 −M+
3 =M3,

N∑
i=1

(r[i] −Rsp)
4pi +M−

4 −M+
4 =M4,

N∑
i=1

pi = 1, pi ≥ 0, i = 1, · · · , N, R+, R−,Σ+,Σ−,M+
3 ,M

−
3 ,M

+
4 ,M

−
4 ,≥ 0.
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3. Analysis of modeling examples

3.1. Sample Selection and Data Sources

The sample is selected from four stocks in the multi-period asset type, A, B, C, and D, in US

dollars, with a time span of 2019/03/02 to 2023/10/30, totaling 1,166 trading days of multi-period

asset data, which comprise the dataset for this study. The dataset is equally divided into in-sample

and out-of-sample data, speci�cally: the �rst 500 data points (2019/03/02-2021/03/05) are used

for probability distributions and within-sample optimization of the model, while the other 666 data

points (2021/03/06-2023/10/30) are used for out-of-sample tests. For the implied volatility-based

CVaR model, an additional 261 out-of-sample data points (2020/05/06-2021/05/03) are used on top

of the in-sample dataset, and the other 405 out-of-sample data points (2021/05/02-2022/12/30) are

used for testing. In order to re�ect the level of change in tari�s, the original series is converted to

logarithmic returns and the returns are calculated as the di�erence between the logarithms of the

price series. That is, its formula is as follows:

Ri,j = [ln (Pi,j)− ln (Pi,j−1)]× 100%, (15)

where Ri,j is the daily return of the i multi-period asset stock in the j period, and Pi,j denotes

the price of the i multi-period asset stock in the j period, with selected con�dence levels and time

window lengths. The con�dence levels α are 90%, 95%, and 99%, and the time window length is 480

days for the historical actual series utilized in the methodology of this paper.

Figure 1 shows the trend chart of the four multi-period asset stocks, from which it can be seen

that all four multi-period asset stocks have experienced a substantial upward trend since 2019, but

from March 2023 A and C stocks have experienced a precipitous decline, and B stocks have been

in a sustained downward trend from April 2023 onwards. Meanwhile compared to A and C multi-

period asset stocks, B and D stocks have lower valuations, suggesting that B and D stocks have

underperformed during this period and re�ecting the current risks in the stock market.

Fig. 1. Stock trend chart for four multi-cycle assets

Figure 2 shows the return series of the four multi-period asset stocks, where 2a to 2d denote A, B,

C, and D. From this, it can be seen that the volatility of the return series of the four multi-period

asset stocks is stable for most of the time and they all �uctuate around the value of 0, and the

volatility range is located in the range of -23.45% to 41.97% for most of the period, and in some

The �uctuations continue during the time period and show the phenomenon of aggregation, with the

�uctuations of stocks A and C being more volatile than those of stocks B and D. The �uctuations of

stocks A and C are more intense than those of stocks B and D.
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(a) A (b) B

(c) C (d) D

Fig. 2. Return series of four multi-cycle asset stocks

3.2. Descriptive statistical analysis

Table 1 presents the descriptive statistics of the multi-period stock return series. From the skewness

statistics, it can be seen that the skewness values of the four multi-period stock return series are

non-zero, indicating that the distribution of the series is skewed with respect to the normal distri-

bution.The skewness value of D is -2.4051, and its logarithmic return distribution shows some left

skewness.The skewness values of A, B, and C are positive, and they show skewed distributions, and

the distributions are right-skewed, i.e., the distributions have a long tail on the right side. The kurto-

sis intuitively shows the thickness of the probability density distribution in its tail, and the kurtosis

value of the normal distribution is 3. Generally speaking, the larger the kurtosis value, the more

extreme data in the data center, which indicates that the thick-tailed characteristic of the probability

density distribution is more signi�cant, and the kurtosis value of the four multi-period stock returns

is greater than 3, with a signi�cant spiked thick-tailed characteristic. From the Jarque-Bera statistic,

the observed values of the four kinds of multi-period stock returns are all larger, and the P-value

is 0. The original hypothesis is rejected, which further veri�es that the four kinds of multi-period

stock return series do not obey the normal distribution. The above data indicate that the return

series of the four types of multi-period stock returns are characterized by asymmetric, thick-tailed

distribution.

Table 1. Descriptive statistics of multi-cycle stock return series

Stock Mean Max Min SD Kurtosis Skewness J-B P

A 0.0007 -0.1707 0.4437 0.0285 71.2542 5.6554 250971.9 0.003

B -0.0007 -0.2908 0.3505 0.0237 81.2751 2.7026 321554.4 0.001

C 0.0004 -0.1987 0.3507 0.0326 30.1474 2.9152 46077.6 0.008

D 0.0008 -0.4565 0.3582 0.0277 100.2742 -2.4051 490082.4 0.007



algorithmic design of a conditional 367

Figure 3 shows the relationship between the quantile of the distribution of the four multi-period

stock return series and the normal distribution it can be seen that if the data obeys the standard

normal distribution, the data should fall on or near the line. However, observation of the above

graph reveals that the quantile of the normal distribution of the four multi-period stock return series

deviates signi�cantly from the actual quantile, thus showing that it is highly inappropriate to use the

tail probabilities of the normal distribution to depict the four multi-period stock return distributions.

Figure 4 shows the joint observation of the frequency histogram and the density function plot of the

normal distribution of the four multi-period stock return series, from which it can be further seen that

the four multi-period stock return series deviate from the normal distribution to a greater extent,

and the non-normality is characterized signi�cantly.

(a) A (b) B

(c) C (d) D

Fig. 3. The relationship between quantile and normal distribution

The partial period probability density distributions of the return series are shown in Figure 5,

which shows that for the probability density distributions of the stock returns of the four assets

that are in di�erent periods, the probability density distribution plots of each period are all far from

normal, and the tails within the periods are all longer, all showing thick-tailed characteristics, which

will provide data support for the following research work.

3.3. Optimization model application analysis

The numerical characteristics of the four multi-period stocks can be seen through the above descrip-

tive statistical analysis. This subsection takes A of the four multi-period stocks as an example, and

uses the optimization model in this paper to �nd out the solution to the asset allocation problem

with a more accurate and close to the reality, which makes the risk control in the actual stock asset

investment more intuitive and speci�c.
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(a) A (b) B

(c) C (d) D

Fig. 4. Frequency histogram and normal distribution density function graph

Fig. 5. Partial periodic probability density distribution of return series

When the return target is established, the e�ective portfolio that minimizes risk can be found

as the optimal allocation, thus solving the problem of optimal asset allocation. Figure 6 shows the

proportion of equity assets under the same target risk (standard deviation), the horizontal axis is

the volatility of the equity portfolio, and the vertical axis is the optimal allocation weight of A

equity assets. It is clear that the implied volatility-based CVaR model allocates a lower proportion

of A-equity assets for any given volatility target. This is due to the fact that equity assets are much

more risky than the other three equity (B, C, and D) classes, especially in terms of tail risk. In

real investments, equity A assets are prone to volatility that signi�cantly exceeds historical averages,

especially during crises. The scenario tree modeling approach is able to e�ectively capture the

heteroskedasticity of equities and accurately describe the risk of overweighting Equity A allocations

resulting in over-expected volatility for multi-period assets. It can be seen that the introduction
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of implied volatility modeling can more accurately describe the risk of assets, which is an e�ective

improvement to the CvaR modeling approach.

Fig. 6. The proportion of equity assets under the same target risk (standard deviation)

It is assumed that the optimal allocation portfolio corresponds to the portfolio with the maximum

expected return, given a speci�ed risk objective for multi-period equity assets. The �rst 500 data

points (from 2019/03/02 to 2021/03/05) are used as in-sample data to calculate the optimal asset al-

location weights for the initial period using the proposed model. Subsequently, portfolio adjustments

are made every three months (i.e., one quarter) until the end of the sample period (2021/03/05),

resulting in a total of 24 adjustments. Each adjustment incorporates all available historical data up

to that point and recalculates the optimal asset allocation weights for the following three months

using the return forecasting model. The initial net asset value (NAV) is set to 1. Based on the

descriptive statistics and model outputs, weekly portfolio NAVs are computed, totaling 500 values.

The performance evaluation involves the following metrics:

(a) Annualized return: V 100/N − 1, where V is the �nal portfolio net value and N is the number

of investment periods.

(b) Annualized volatility: [
1

N − 1

N∑
i=1

(ri − r)2
]
×
√
100,

where ri is the weekly return and r = 1
N

∑N
i=1 ri is the average return.

(c) Return-to-risk ratio: De�ned as the ratio of annualized return to annualized volatility.

(d) Maximum drawdown:

max {(Vi − Vj) /Vi, j < i} ,

where Vi and Vj denote the portfolio NAVs at weeks i and j, respectively.

(e) Return-to-drawdown ratio: Computed as annualized return divided by maximum draw-

down.

It is assumed that the risk policy in the management of multi-period equity investments is to

keep the annualized volatility within 1%. Based on this risk objective, the net value of the multi-

period equity portfolio is calculated, and the net value of the serial multi-period equity portfolio

for the period 2019/03/03-2021/03/03 is shown in Figure 7, which shows that the equity portfolio

formulated based on the CVaR model of implied volatility has a consistently higher and smoother

net asset value than that of the portfolio constructed based on the CVaR model.
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Fig. 7. Multi-cycle stock portfolio net worth series female

The performance indicators of the portfolio are shown in Table 2. Based on the data in the table, it

can be seen that the equity asset portfolio constructed by the model in this paper not only dominates

in terms of annualized return, but also all the risk indicators are better than those predicted using

the empirical estimation method. What is more noteworthy is that the annualized volatility of the

constructed portfolio using the CvaR model for asset allocation decision is 1.207%, which breaks

through the pre-set risk target. In contrast, with the introduction of implied volatility based on the

CvaR model, the portfolio has an annualized volatility of 0.788%, which meets the requirements of

the risk policy.

Table 2. Portfolio performance indicators

Index CVaR Ours

Annualized return 4.566% 5.087%

Annualized volatility 1.207% 0.788%

Maximum pullback 1.237% 0.404%

Bene�t-risk ratio 3.751 6.353

Earnings retracement ratio 3.675 12.459

Assuming that no losses are expected with 95% probability, which is a more commonly used

risk management tool relative to volatility, 666 data points (2021/03/06-2023/10/30) are used for

the external sample test, which in turn computes the stock portfolio NAV series, which is shown in

Figure 8. Although the di�erence is not very large, the net worth curve of the implied volatility-based

CvaR model is more stable.

As shown in Table 3, there is a 95% probability that the risk objective of �no expected loss� is

not met for the asset allocation portfolios using the CVaR methodology. In contrast, portfolios that

use the implied volatility-based CVaR model for forecasting and decision-making are not expected

to lose money, which is consistent with the asset risk management objective. In summary, �tting

the return and risk structure of asset returns based on the implied volatility-based CVaR model and

constructing optimal allocation portfolios based on it leads to better investment performance and

better risk management. It also shows that in-depth study of the distributional characteristics of

asset returns and modeling of them can e�ectively improve the drawbacks of traditional methods in

the process of asset allocation, and has strong application value.
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Fig. 8. Net worth series

Table 3. Income-risk characteristics

Index CVaR Ours

Annualized return 4.088% 4.086%

Annualized volatility 0.449% 0.235%

Maximum pullback 0.289% 0.018%

Bene�t-risk ratio 8.949 17.046

Earnings retracement ratio 13.767 153.351

4. Conclusion

Based on the theory of volatility and conditional value-at-risk (CVaR), the portfolio optimization

problem is identi�ed and the implied volatility-based CvaR model is constructed using scenario

trees. The research sample is selected and the research data sources are also identi�ed, followed by

an arithmetic example analysis of this paper's model. In the actual stock asset investment process,

the proportion of resources invested in stock A of this paper's model is relatively small, which

e�ectively avoids the risk of stock price decline caused by stock A, and also veri�es the e�ectiveness

of the modeling method using scenario tree. In addition, based on the CvaR method, the risk goal

of "expected no loss" cannot be achieved, in contrast, the CVaR model based on implied volatility

satis�es the optimal allocation combination of stock assets and will not su�er losses, which e�ectively

overcomes the drawbacks of traditional methods in the process of multi-cycle stock asset allocation,

and provides investors with a safer risk management prevention of stock assets.
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