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abstract

Networks with smaller strong diameters generally have better fault tolerance because they enable
closer connections between vertices, leading to shorter information paths. This allows the network
to maintain communication and functionality more e�ectively during attacks or failures. In contrast,
larger strong diameters mean vertices are connected over longer distances, increasing vulnerability
to disruptions. Thus, the strong diameter is a key metric for assessing and optimizing network fault
tolerance. This paper determines the optimal orientations for the Cartesian and strong products of
even cycles, provides the minimum strong diameters and their bounds under speci�c conditions, and
establishes a lower bound for the maximum strong diameter. A conjecture about the exact value of
the maximum strong diameter is also proposed.
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1. Introduction

The structure of a network is fundamentally analogous to that of a graph, where routers in the
network correspond to vertices in the graph, and physical links represent edges connecting these
vertices. This parallel makes graphs an essential tool for analyzing complex networks. Furthermore,
in disciplines such as social sciences, biology, and computer science, employing graph theory concepts
like paths and connectivity to analyze model structures enhances our understanding of the properties
and behaviors of these models but also fosters the development of interdisciplinary knowledge and
innovation.
Compared to undirected networks, the research on directed networks still needs to be explored.

However, to fully understand complex real-world systems, integrating the study of both is essential.
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Directed networks reveal information �ow directionality and node dependencies, which is crucial for
analyzing dynamics in social networks, Internet data �ow, and ecosystem energy �ow. The strong
diameter of directed networks is critical as it measures fault tolerance between nodes, identi�es critical
nodes, and determines optimal transmission paths. It is vital in network topology optimization,
tra�c scheduling, and community structure detection. Understanding strong diameter properties
helps researchers and engineers assess network robustness and optimize transmission e�ciency.
We de�ne the graph G = (V (G), E(G)), where V (G) is the vertex set of graph G, and E(G) is

the edge set of graph G. The two vertices of an edge are called its end-vertices. We call an edge
with identical end-vertices a loop. We denote the number of vertices in a graph G by v(G) = |V (G)|
and refer to it as the order of G. We denote the number of edges by ϵ(G) = |E(G)|. If both v(G)
and ϵ(G) are �nite, G is called a �nite graph. This paper primarily studies �nite graphs. For graphs
G and H, if there exist two bijections θ : V (G) → V (H) and φ : E(G) → E(H) such that for any
e ∈ E(G), ψ(e) = (u, v) ⇔ ψ′(φ(e)) = (θ(u), θ(v)), then G and H are said to be isomorphic, denoted
by G ∼= H.
Let u, v ∈ V (G), then a uv-walk of length l is a sequence of verticesW = (v0, v1, . . . , vl). A walk in

which all edges e1, e2, . . . , el are distinct is called a trail, and a trail in which all vertices are distinct
is called a path. We call walks, trails, and paths that start and end at the same vertex closed walks,
closed trails, and cycles, respectively. We call a cycle of odd length an odd cycle, while we call a
cycle of even length an even cycle. A cycle of length l is referred to as a l-cycle, and a cycle of length
three is called a triangle. Any uv-walk contains a shortest uv-path, any closed walk must contain a
closed trail, and any closed trail must contain a cycle.
For a connected undirected graph G, the eccentricity of v is de�ned as

e(v) = max{d(v, x) | x ∈ V (G)}, (1)

where d(v, x) represents the distance from v to x. The diameter of G is denoted as

diam(G) = max{e(v)|v ∈ V (G)}, (2)

thus, the diameter of an undirected graph G is the maximum distance between any two vertices iIn
an undirected graph, Certain concepts and conclusions relate to the direction of edges.n graph G.
By assigning a direction to each edge of an undirected graph G, we obtain a digraph D, referred to

as an orientation of graph G. If any two vertices in the orientation D can be mutually reached, D is
called a strong orientation of graph G. We call the orientation with the minimum diameter among all
possible orientations the minimum diameter orientation of graphG. We denote its minimum diameter
by d⃗(G). Among all strong orientations of graph G, the strong orientation with the minimum directed
diameter is called the optimal orientation of graph G. Similarly, we de�ne the minimum strong
diameter of a graph G as the minimum strong diameter among all possible orientations of graph
G, and we denote it by sdiam(G). According to the famous Robbins' theorem [21], a connected
undirected graph G has a strong orientation only if G has no bridge. Therefore, a strong orientation
must exist for a connected undirected graph G without bridges.
Let D(G) denote the family of all strong orientations of G. De�ne d⃗(G) = min{diam(D)|D ∈

D(G)}. Determining d⃗(G) for any connected undirected graph is highly challenging. In fact, Chvátal
and Thomassen [5] have proven that deciding whether an undirected graph has an orientation with
a diameter of 2 is an NP-hard problem. Additionally, the parameter d⃗(G) has been studied in
various speci�c classes of graphs, including complete graphs, complete bipartite graphs and complete
n-partite graphs (n ≥ 3) [11, 10, 12].
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Assume D = (V (D), A(D)) is a strong connected digraph. Chartrand et al. [3] �rst proposed the
concept of strong distance as a novel metric parameter in the study of strongly oriented graphs. For
any u, v ∈ V (D), we de�ne the strong distance sd(u, v) between u and v as the minimum number
of arcs in a strong connected subgraph of D that contains u and v. For each v ∈ V (D), de�ne the
strong eccentricity of v as

se(v) = max{sd(v, x) | x ∈ V (D)}, (3)

then, the strong diameter of D is

sdiam(D) = max{se(v) | v ∈ V (D)}. (4)

Lai et al. [13] de�ned the maximum strong diameter and minimum strong diameter of a connected
undirected graph G as follows. For any D ∈ D(G), the minimum strong diameter of G, denoted
sdiam(G), is de�ned as

sdiam(G) = min{sdiam(D) | D ∈ D(G)}, (5)

the maximum strong diameter of G, denoted SDIAM(G), is de�ned as

SDIAM(G) = max{sdiam(D) | D ∈ D(G)}. (6)

As one of the four classical products, the Cartesian product is often used to construct large-scale
networks. Let Ga = (Va, Ea) and Gb = (Vb, Eb) be two undirected graphs. The Cartesian product of
Ga and Gb is denoted as Ga ×Gb, where V (Ga ×Gb) = Va × Vb. Two distinct vertices uaub and vavb
(ua, ub ∈ V (Ga), va, vb ∈ V (Gb)) are adjacent if and only if ua = va and ubvb ∈ E(Gb), or ub = vb and
uava ∈ E(Ga). Ga and Gb are called the factor graph of Ga×Gb. The Cartesian product enables the
ordered combination of the structural features of two graphs, creating a graph with new structures
and properties. Interested readers can refer to the references [9, 22, 26, 6] for more research on
Cartesian products.
The strong product is also one of the most extensively studied products. Let Ga = (Va, Ea) and

Gb = (Vb, Eb) be two undirected graphs. Their Cartesian product is denoted as Ga ⊗ Gb, where
V (Ga ⊗ Gb) = Va × Vb. Two distinct vertices uaub and vavb (ua, ub ∈ V (Ga), va, vb ∈ V (Gb)) are
adjacent if and only if one of the following conditions holds: ua = va and ubvb ∈ E(Gb), ub = vb
and uava ∈ E(Ga), or uaub ∈ E(Ga) and vavb ∈ E(Gb). The de�nition of the strong product
graph ingeniously integrates the concepts of Cartesian product and direct product. It captures
the adjacency relationships of the original graphs and incorporates the comprehensive structural
features among di�erent graphs. Consequently, the strong product graph provides a powerful tool
for analyzing the compound properties of graphs. Readers interested in the latest research progress
on strong product graphs may refer to references [1, 25, 2, 28]. In addition to the strong product
operation, commonly used graph product operations include direct and lexicographic products. For
state-of-the-art research �ndings on these two types of products, readers can consult references [15,
14, 4, 19].
Considerable research has been conducted on strong diameter problems for graphs. Xiaofeng Guo

and Huifang Miao [18] proposed the minimum strong diameter of complete k-partite graphs. Juan
et al. [8] investigated the strong distance problem in the Cartesian product of graphs. Yi Huang and
Meirun Chen [7] provided the minimum and maximum oriented strong diameters of the Cartesian
product of paths. The minimum strong diameter orientation of 2-vertex dilation graphs was studied
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by Guoxiang Zhang and Aiming Yang [29]. Shuyang Liu and Feng Li [17, 16] explored the strong
radius and strong diameter of the strong product of complete graphs, as well as the strong radius
and strong diameter of the lexicographic product of complete graphs.
In this paper, we employ the Cartesian and the strong products to construct product networks of

cycles. We determine the exact values and bounds of these networks' minimum oriented diameter and
maximum strong diameter under certain conditions. Furthermore, we provide new lower bounds for
the maximum strong diameter and propose conjectures regarding their exact values. These �ndings
o�er insights into understanding and analyzing the complexity of cyclic structures and their potential
applications in network theory.

2. Preliminaries

Not all graphs have strong orientations (e.g., trees, star graphs, etc.), and only those with strong
orientations are of research signi�cance to us. Below, we present the edge connectivity of the Carte-
sian product of graphs and the famous Robbins theorem, and we prove that the Cartesian product
of cycles has a strong orientation.

Lemma 2.1. [21] A graph G has strong orientation if and only if G is biconnected.

Lemma 2.2. [23] Let G1 and G2 be two connected undirected graphs. Denote the order, minimum

degree, and edge connectivity of Gi(i = 1, 2) by ni, δi, and λi, respectively. Then, we have

λ(G1 ×G2) = min{δ1 + δ2, n1λ2, n2λ1}. (7)

Based on the above lemma, we can prove that the Cartesian product graph admits a strong
orientation by demonstrating that it is an l-connected graph with l ≥ 2.

Theorem 2.1. Let G1 and G2 be non-trivial connected simple graphs of order m and n, respectively.

Then G1 ×G2 has strong orientation.

Proof. Let G1 and G2 be connected simple graphs of order m and n, respectively. By Lemma 2.1,
the edge connectivity of G1 × G2 is minimized when G1 and G2 attain minimal edge connectivity,
order, size, and minimum degree. This minimum occurs at G1 = G2 = K2. Applying Lemma 2.2,
λ(G1 × G2) ≥ λ(K2 ×K2) = 2. Combined with Lemma 2.1, this ensures G1 × G2 admits a strong
orientation.

In [17], Liu provided a proof that the strong product graph admits a strong orientation, and we
present his results as follows.

Lemma 2.3. [17] Let G1 and G2 be non-trivial connected simple graphs of orderm and n, respectively.

Then G1 ⊗G2 has strong orientation.

In [7], Huang and Chen established the inequality sdiam(Pm×Pn) ≥ 2 diam(Pm×Pn) for Cartesian
product graphs. By applying the same methodology, we derive the following generalized results:

sdiam(Cm × Cn) ≥ 2 diam(Cm × Cn), (8)

sdiam(Cm ⊗ Cn) ≥ 2 diam(Cm ⊗ Cn). (9)

Below, we present the diameter formula for Cartesian product graphs, the distance formula for
strong product graphs, and derive the diameters for the Cartesian product and strong product of
cycles.
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Lemma 2.4. [27] diam(G1 ×G2 × · · · ×Gn) = diam(G1) + diam(G2) + · · ·+ diam(Gn).

Lemma 2.5. [20] If (g, h) and (g′, h′) are vertices of a strong product G⊗H, then

dG⊗H((g, h), (g
′, h′)) = max{dG(g, h), dH(g′, h′)}. (10)

By Lemma 2.4, we can obtain

diam(Cm × Cn) = diam(Cm) + diam(Cn), (11)

where diam(Cm) = ⌊m/2⌋ and diam(Cn) = ⌊n/2⌋. By Lemma 2.5 and the de�nition of diameter,
we have

diam(Cm ⊗ Cn) = max{diam(Cm), diam(Cn)}. (12)

3. Strong diameter of the Cartesian product of cycles

All the undirected graphs considered are simple, and all the directed graphs are simple, strong
connected directed graphs. For notation and terminology not mentioned above but used in the text,
please refer to references [17, 16].
By the de�nitions of oriented and strong diameters, if we can �nd a strong orientation F of a graph

G such that d⃗(F ) = diam(G), then we arrive at the minimum strong diameter sdiam(G) = 2diam(G)

of the graph G. Below, we give the optimal oriented diameters of the Cartesian product of cycles
under some conditions.

Theorem 3.1. Let m ≥ 3, n ≥ 2, then there exists F ∈ D(C2n × C2m) such that

(i) d⃗(F ) = diam(C2n × C2m) = m+ n,

(ii) In F , every vertex in C2n × C2m is in a cycle of length at most 2(m+ n).

Proof. Let Cm and Cn be two distinct cycles with m ≥ 3, n ≥ 2. Since C2n × C2m
∼= C2m × C2n,

without loss of generality, we will only discuss the case ofm ≥ n, and in the following we will consider
it in the following 3 cases.

Case 1. n = 2, m ≡ 1 (mod 2), and m ≥ 3. Orient F ∈ D(C2n × C2m) as follows (see Figure 1):

(1) For i = 1, 3, and j = 1, 2, · · · , 2n− 1, orient (i, j) → (i, j + 1), and orient (i, 2m) → (i, 1);

(2) For i = 2, 4, and j = 1, 2, · · · , 2n− 1, orient (i, j + 1) → (i, j), and orient (i, 1) → (i, 2m);

(3) For j ≡ 1 (mod 2), and i = 1, 2, · · · , 2m−1, orient (i+1, j) → (i, j), and orient (2m, j) → (1, j);

(4) For j ≡ 0 (mod 2), and i = 1, 2, · · · , 2m−1, orient (i+1, j) → (i, j), and orient (1, j) → (2m, j).

Clearly, for the strong orientation F , there is d⃗(F ) = m + 2. Now, consider the following cycles
(see Figure 1):

(1) (A1) (1, 1)(2, 1)(3, 1)(3, 2)(3, 3)(3, 4)(2, 4)(1, 4)(1, 5) (1, 6)(1, 1);

(2) (A2) (1, 5)(2, 5)(3, 5)(3, 6)(3, 1)(3, 2)(3, 3)(3, 4)(2, 4) (1, 4)(1, 5);

(3) (A3) (2, 2)(2, 1)(3, 1)(4, 1)(4, 6)(4, 5)(4, 4)(4, 3)(4, 2) (3, 2)(2, 1);

(4) (A4) (2, 5)(3, 5)(4, 5)(4, 4)(4, 3)(4, 2)(3, 2)(2, 2)(2, 1) (2, 6)(2, 5).
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Fig. 1. A strong orientation of C4 × C6.

It can be veri�ed that the above cycle has a length of at most 2(m+2) and that each vertex in F
is in a cycle of length at most 2(m+ 2). In addition, every vertex in F exists in a cycle of length at
least 4.

Case 2. n ≥ 3, m ≡ 1 (mod 2), and m ≥ 3. Orient F ∈ D(C2n × C2m) as follows (see Figure 2):

(1) For i ≡ 1 (mod 2), and j = 1, 2, · · · , 2n−1, orient (i, j) → (i, j+1), and orient (i, 2m) → (i, 1);

(2) For i ≡ 0 (mod 2), and j = 1, 2, · · · , 2n−1, orient (i, j+1) → (i, j), and orient (i, 1) → (i, 2m);

(3) For j ≡ 1 (mod 2), and i = 1, 2, · · · , 2m−1, orient (i, j) → (i+1, j), and orient (2n, j) → (1, j);

(4) For j ≡ 0 (mod 2), and i = 1, 2, · · · , 2m−1, orient (i+1, j) → (i, j), and orient (1, j) → (2n, j).

For the strong orientation F , there is d⃗(F ) = m+n. Now, consider the following cycles (see Figure
2):

(1) (B1) (1, 1)(2, 1)(3, 1)(3, 2)(3, 3) · · · (3, 10)(2, 10)(1, 10)(1, 1);

(2) (B2) (3, 3)(3, 4) · · · (3, 8)(2, 8)(1, 8)(1, 9)(2, 9)(3, 9)(3, 10)(3, 1)(3, 2)(3, 3);

(3) (B3) (3, 1)(3, 2) · · · (3, 6)(2, 6)(1, 6)(1, 7)(1, 8)(1, 9)(2, 9)(3, 9)(3, 10)(3, 1);

(4) (B4) (1, 4)(1, 5) · · · (1, 9)(2, 9)(3, 9)(3, 10)(2, 10)(1, 10)(1, 1)(1, 2) (1, 3)(1, 4).
It can be veri�ed that the above cycle has a length of at most 2(m+ n) and that each vertex in F

is in a cycle of length at most 2(m+ n). In addition, every vertex in F exists in a cycle of length at
least 4.

Fig. 2. A strong orientation of C4 × C10.

Case 3. n ≥ 2,m ≡ 0 (mod 2). Orient F ∈ D(C2n × C2m) as follows (see Figure 3):
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(1) For i ≡ 0 (mod 2), and j = 2, · · · , 2m, orient (i, j) → (i, j − 1), and orient (i, 1) → (i, 2m);

(2) For i ≡ 1 (mod 2), and j = 1, 2, · · · , 2m−1, orient (i, j) → (i, j+1), and orient (i, 2m) → (i, 1);

(3) For j = 1, 3, · · · ,m, and i = 1, 2, · · · , 2n− 1, orient (i, j) → (i+1, j), and orient (n, j) → (1, j);

(4) For j = 2, 4, · · · ,m−1, and i = 2, 3, · · · , 2n, orient (i, j) → (i−1, j), and orient (2n, j) → (1, j);

(5) For j = m + 1,m + 3, · · · , 2m − 1, and i = 2, 3, · · · , 2n, orient (i, j) → (i − 1, j), and orient
(1, j) → (2n, j);

(6) For j = m + 2,m + 4, · · · , 2m, and i = 1, 2, · · · , 2n − 1, orient (i, j) → (i + 1, j), and orient
(2n, j) → (1, j).

For the strong orientation F , there is d⃗(F ) = m+n. Now, consider the following cycles (see Figure
3):

(a) (C1) (1, 1)(1, 2) · · · (1, 5)(2, 5)(3, 5) · · · (3, 12)(3, 1)(4, 1)(1, 1);

(b) (C2) (3, 3)(2, 3)(1, 3)(1, 4) · · · (1, 12)(2, 12) (3, 12)(3, 1)(3, 1)(3, 3);

(c) (C3) (2, 11)(2, 10) · · · (2, 6)(1, 6)(4, 6)(4, 5)(1, 5)(2, 5)(2, 4) · · · (2, 1)(2, 12)(2, 11);

(d) (C4) (4, 9)(4, 8) · · · (4, 4)(3, 4)(2, 4)(2, 3)(2, 2)(2, 1)(2, 12)(3, 12)(4, 12)(4, 11)(4, 10)(4, 9).
It can be veri�ed that the above cycle has a length of at most 2(m+ n) and that each vertex in F

is in a cycle of length at most 2(m+ n). In addition, every vertex in F exists in a cycle of length at
least 4. In summary, the proof is complete.

Fig. 3. A strong orientation of C12 × C4.

Based on the above Theorem 3.1, we give the value of the minimum strong diameter of the
Cartesian product of cycles and upper and lower bounds.

Theorem 3.2. Let C2m and Cn be two di�erent cycles, G = Cn × C2m(m ≥ 2, n ≥ 3), then

sdiam(G) = 2diam(G). (13)

Proof. Since C2m×Cn
∼= Cn×C2m, without loss of generality, we will only discuss the case of 2m ≥ n.

When m ≥ 3, n ≥ 3, the conclusion holds by Theorem 3.1 and the de�nition of the minimum strong
diameter, and below, we orientate the other cases separately as follows:

Case 1. m ≥ 2, n ≡ 1 (mod 2). Orient F ∈ D(Cn × C2m) as follows (see Figure 4):
(1) The orientation of F [Pn−1×P2m] is the same as that of F [P2n×P2m] in Case 2 of Theorem 3.1;

(2) For j ≡ 1 (mod 2), and i = 1, 2, · · · , 2m, orient (i, j) → (i+ 1, j);
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(3) For j ≡ 0 (mod 2), and i = 1, 2, · · · , 2m, orient (i+ 1, j) → (i, j);

(4) For i = n, j = 1, 2, · · · , n− 1, orient (i, n) → (i+ 1, n), orient (2m,n) → (1, n).
Case 2. m ≥ 2, n ≡ 0 (mod 2). Orient F ∈ D(Cn × C2m) as Case 2 of Theorem 2.1.
It is easy to verify that the orientation of both Case 1 and Case 2 is consistent with the question,

and the proof is complete.

Fig. 4. A strong orientation of C5 × C6.

Theorem 3.3. Let Cm and Cn be two odd cycles, G = Cn × Cm(m ≥ 3, n ≥ 3), then

2diam(G) ≤ sdiam(G) ≤ 2diam(G) + 1. (14)

Proof. Without loss of generality, we only prove the case m ≥ n. The same can be proved when
m < n. We orient Cn × Cm according to the following orientation:

(1) For i ≡ 1 (mod 2), and j = 1, 2, · · · , n− 1, orient (i, j) → (i, j + 1), and orient (i,m) → (i, 1);

(2) For i ≡ 0 (mod 2), and j = 1, 2, · · · , n− 1, orient (i, j + 1) → (i, j), and orient (i, 1) → (i,m);

(3) For j ≡ 1 (mod 2), and i = 1, 2, · · · ,m− 1, orient (i, j) → (i+ 1, j), and orient (n, j) → (1, j);

(4) For j ≡ 0 (mod 2), and i = 1, 2, · · · ,m− 1, orient (i+ 1, j) → (i, j), and orient (1, j) → (n, j).

Clearly, every vertex in F is contained in a cycle of length at most 2diam(Cn × Cm) + 1, i.e.,
sdiam(Cn×Cm) ≤ 2diam(Cn×Cm)+1, and by the de�nition of the minimum strong diameter, then
we get sdiam(Cn ×Cm) ≤ 2diam(Cn ×Cm) + 1, and also by (8), we have sdiam(G) ≥ 2diam(G), so
we can get (14). Proof is complete.

Next, we will provide the potential lower bound for the maximum strong diameter of the Cartesian
product of cycles. Before that, we will �rst present its possible maximum strong diameter.

Theorem 3.4. Let m ≥ 3, n ≥ 3, then there exists a strong orientation D of G = Cn×Cm such that

(i) if m ≡ 0 (mod 2), then sdiam(G) = mn,

(ii) if m ≡ 1 (mod 2), then sdiam(G) = mn+ 1.

Proof. Let P be a Hamiltonian path in Cm×Cn with vertex x = (1, 1) as the start vertex, and (u, v)

be a successor vertex of (u′, v′) if v < v′ for any vertices (u, v) and (u′, v′). If m is even (odd), the end
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vertex of path P is y = (n,m) (y = (1,m)). In the strong orientation D of Cm×Cn, P is the shortest
directed (x, y)-path and Q is the shortest directed (y, x)-path. Thus, we have |A(Q)\A(P )|= 1(or 2),
from which we know that P ∪Q is the minimum strong connected subgraph containing the vertices x
and y, and hence we have sdD(x, y) = mn(or mn+1)(See Figure 5). Moreover, this strong connected
subgraph contains all vertices in D, so we have sdiam(D) = mn(or mn+ 1).

(a) P and Q between x and y in Cn × Cm (m ≡ 1 (mod 2)). (b) P and Q between x and y in Cn × Cm (m ≡ 0 (mod 2)).

Fig. 5. P and Q between x and y in Cn × Cm.

Theorem 3.5. Let Cm and Cn be two di�erent cycles, G = Cn × Cm(m ≥ n ≥ 3,m ≡ 0 (mod 2),

then SDIAM(G) ≥ mn.

Proof. Since Cm × Cn
∼= Cn × Cm, without loss of generality, we only discuss the case m ≥ n.

According to the above Theorem 3.4, if m ≥ 3 and n ≥ 3, there exists a strong orientation D of
Cm × Cn such that sdiam(D) = mn. According to the de�nition of the maximum strong diameter,
we obtain

SDIAM(G) ≥ sdiam(D) ≥ mn, (15)

i.e., SDIAM(G) ≥ mn, the proof is complete.

Theorem 3.6. Let Cm and Cn be two di�erent cycles, G = Cn × Cm(m ≥ n ≥ 3,m ≡ 1 (mod 2),

then SDIAM(G) ≥ mn+ 1.

Proof. Proof is similar to Theorem 3.5.

4. Strong diameter of the strong product of cycles

In this section, we present the optimal orientation for the strong product of even cycles, as well as
the lower bounds for the minimum and maximum strong diameters of the strong product of cycles.
In [24], Ladinek and �pacapan obtained : For every even m,n ≥ 2, then

d⃗(C2n ⊗ C2m) ≤ max{m,n}+ 1, (16)

based on the orientation of the Cartesian product of the above cycles, we now present the minimum
oriented diameter of C2n ⊗ C2m.
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Theorem 4.1. Let m ≥ 3, n ≥ 2, then there exists F ∈ D(C2n ⊗ C2m) such that

(i) d⃗(F ) = diam(C2n ⊗ C2m),

(ii) In F , every vertex in C2n ⊗ C2m is in a cycle of length at most 2max(n,m).

Proof. In all the following cases, let G = C2n × C2m. The orientation with the minimum diameter
is referred to as the optimal orientation. The optimal orientation for the Cartesian product of cycles
is given in Theorem 2.1. We will discuss the following 3 cases.

Case 1. n = 2, m ≡ 1 (mod 2), and m ≥ 3. Orient F ∈ D(C2n ⊗ C2m) as follows (see Figure 6):

(1) Optimal orientation for C4 × C2m;

(2) Orient (2m, 2n) → (1, 1),(2n, 1) → (1, 2m);

(3) For i = 1, 2, 3 and j = 1, 2, · · · , 2m− 1, orient (i, j) → (i+ 1, j + 1);

(4) For i = 1, 2, 3 and j = 2, · · · , 2m, orient (i, j) → (i+ 1, j − 1);

(5) For i = 1, 2, 3, orient (i, 2m) → (i+ 1, 2m), and otient (i, 1) → (i+ 1, 2m);

(6) For j = 1, 2, · · · , 2m− 1, orient (2n, j) → (2n, j +1), and for j = 2, 3, · · · , 2m, orient (2n, j) →
(2n, j − 1).

Based on the above orientation, it is easy to see that the oriented distance between any two vertices
in F is less than or equal to 2diam(C2n ⊗ C2m). Therefore, we can conclude that d⃗(C2n ⊗ C2m) =

diam(C2n ⊗ C2m). Now, consider the following cycles (see Figure 6):

(1) (A1) (1, 1)(2, 2)(3, 3)(3, 4)(4, 3)(4, 2)(1, 1);

(2) (A2) (1, 3)(2, 2)(3, 1)(4, 6)(4, 5)(4, 4)(1, 3);

(3) (A3) (2, 5)(3, 4)(4, 3)(4, 2)(1, 3)(1, 4)(2, 5);

(4) (A4) (4, 4)(1, 3)(2, 1)(3, 1)(4, 6)(4, 5)(4, 4).

It can be veri�ed that the above cycle has a length of at most 2diam(C2n ⊗ C2m) and that each
vertex in F is in a cycle of length at most 2max(n,m). In addition, every vertex in F exists in a
cycle of length at least 4.

Fig. 6. A strong orientation of C4 ⊗ C6.

Case 2. n ≡ 0 (mod 2), m ≡ 1 (mod 2), and m ≥ 3, n ≥ 3. Orient F ∈ D(C2n ⊗ C2m) as follows
(see Figure 7):

(1) Optimal orientation for C2m × C2n;

(2) Orient (2m, 2n) → (1, 1),(2n, 1) → (1, 2m);
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(3) For i = 1, 2, · · · , 2n− 1 and j = 1, 2, · · · , 2m− 1, orient (i, j) → (i+ 1, j + 1);

(4) For i = 1, 2, · · · , 2n− 1 and j = 2, · · · , 2m, orient (i, j) → (i+ 1, j − 1);

(5) For i = 1, 2, · · · , 2n− 1, orient (i, 2m) → (i+ 1, 2m), and orient (i, 1) → (i+ 1, 2m);

(6) For j = 1, 2, · · · , 2m− 1, orient (2n, j) → (2n, j +1), and for j = 2, 3, · · · , 2m, orient (2n, j) →
(2n, j − 1).

Based on the above orientation, it is easy to see that the oriented distance between any two points
in F is less than or equal to 2diam(C2n ⊗ C2m). Therefore, we can conclude that d⃗(C2n ⊗ C2m) =

diam(C2n ⊗ C2m). Now, consider the following cycles (see Figure 7):

(1) (B1) (1, 1)(1, 2)(3, 3)(3, 4)(3, 5)(3, 6)(4, 5)(4, 4)(4, 3) (4, 2)(1, 1);

(2) (B2) (2, 3)(3, 4)(3, 5)(3, 6)(3, 7)(4, 8)(4, 7)(4, 6)(4, 5) (1, 4)(2, 3);

(3) (B3) (1, 8)(2, 7)(3, 6)(4, 5)(4, 4)(4, 3)(1, 4)(1, 5)(1, 6) (1, 7)(1, 8);

(4) (B4) (4, 4)(1, 5)(1, 6)(1, 7)(1, 8)(2, 9)(3, 8)(4, 7)(4, 6) (4, 5)(4, 4).

It can be veri�ed that the above cycle has a length of at most 2diam(C2n ⊗ C2m) and that each
vertex in F is in a cycle of length at most 2max(n,m). In addition, every vertex in F exists in a
cycle of length at least 4.

Fig. 7. A strong orientation of C4 ⊗ C10.

Case 3. n ≡ 0 (mod 2),m ≡ 0 (mod 2),m ≥ 2, n ≥ 2. Orient F ∈ D(C2n ⊗ C2m) as follows:

(1) Optimal orientation for C2m × C2n;

(2) Perform orientation for (2)-(6) in Case 2.

Based on the above orientation, it is easy to see that the oriented distance between any two points
in F is less than or equal to 2diam(C2n ⊗ C2m). Therefore, we can conclude that d⃗(C2n ⊗ C2m) =

diam(C2n ⊗ C2m). Now, consider the following cycles (C8 ⊗ C4):

(1) (C1) (4, 3)(1, 4)(2, 5)(3, 6)(3, 7)(4, 6)(4, 5)(4, 4)(4, 3);

(2) (C2) (4, 6)(1, 5)(2, 4)(2, 3)(3, 2)(4, 1)(4, 8)(4, 7)(4, 6);

(3) (C3) (4, 4)(1, 3)(2, 2)(2, 1)(3, 8)(3, 1)(3, 2)(3, 3)(4, 4);

(4) (C4) (1, 6)(2, 5)(3, 4)(4, 3)(4, 2)(1, 3)(1, 4)(1, 5)(1, 6).

It can be veri�ed that the above cycle has a length of at most 2diam(C2n ⊗ C2m) and that each
vertex in F is in a cycle of length at most 2max(n,m). In addition, every vertex in F exists in a
cycle of length at least 4. In summary, the proof is complete.
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Next, we derive the minimum strong diameter of the strong product of cycles under this condition
through the above Theorem 4.1.

Theorem 4.2. Let C2m and Cn are two di�erent cycles, and G = Cn ⊗ Cm (m ≥ 4, n ≥ 3,m ≡
0 (mod 2)), then sdiam(G) = 2diam(G).

Proof. Since Cm×Cn
∼= Cn×Cm, without loss of generality, we only consider the case where m ≥ n.

When m ≥ 6, n ≥ 4(n≡ 0 (mod 2), it is evident from Theorem 4.1 and the de�nition of the minimum
strong diameter that the conclusion holds. Below, we orient the graph for the other as follows:

Case 1. n ≡ 1 (mod 2),m ≡ 0 (mod 2). Orient F ∈ D(Cn ⊗ Cm) as follows:
(1) Orient Cn × Cm according to Case 1 of Theorem 3.2;

(2) Orient (1, 1) → (m,n),(n, 1) → (1,m);

(3) For i = 1, 2, · · · , n− 1, and j = 1, 2, · · · ,m− 1, orient (i+ 1, j + 1) → (i, j);

(4) For i = 1, 2, · · · , n− 1, and j = 2, 3, · · · ,m, orient (i, j) → (i+ 1, j − 1);

(5) For i = 1, 2, · · · , n− 1, orient (i, 1) → (i+ 1,m), and orient (i+ 1, 1) → (i,m);

(6) For j = 2, 3, · · · ,m, orient (n, j) → (1, j − 1), and orient (1, j) → (n, j − 1).
Case 2. m = 4, n = 4, orient
(1) (1, 1) → (1, 2) → (1, 3) → (1, 4) → (1, 1), (3, 1) → (3, 2) → (3, 3) → (3, 4) → (3, 1);

(2) (2, 1) → (2, 4) → (2, 3) → (2, 2) → (2, 1), (4, 1) → (4, 4) → (4, 3) → (4, 2) → (4, 1);

(3) (1, 1) → (2, 1) → (3, 1) → (4, 1) → (1, 1), (1, 3) → (2, 3) → (3, 3) → (4, 3) → (1, 3);

(4) (1, 2) → (2, 2) → (3, 2) → (4, 2) → (1, 2), (1, 4) → (2, 4) → (3, 4) → (4, 4) → (1, 4);

(5) (3, 4) → (1, 4), (4, 2) → (3, 1) → (2, 4), (1, 4) → (2, 1) → (3, 2) → (4, 3), (4, 4) → (3, 3) →
(2, 2) → (1, 1) → (4, 4), (4, 1) → (1, 2) → (2, 3) → (3, 4), (2, 4) → (1, 3) → (4, 2), (4, 3) →
(1, 4);

(6) (4, 1) → (1, 4), (2, 4) → (1, 1) → (4, 2), (4, 3) → (1, 2) → (2, 1) → (3, 4), (4, 4) → (3, 1) →
(2, 2) → (1, 3) → (4, 4), (1, 4) → (2, 3) → (3, 2) → (4, 1), (4, 2) → (3, 3) → (2, 4), (3, 4) →
(4, 3).

Clearly, cases 1 and 2 satisfy sdiam(G) = 2diam(G), thus the theorem is proven.

For the minimum strong diameter of the strong product of odd cycles, we have established both
upper and lower bounds.

Theorem 4.3. Let Cm and Cn are two di�erent odd cycles, and G = Cm ⊗Cn (m ≥ 5, n ≥ 3), then

2diam(G) ≤ sdiam(G) ≤ 2diam(G) + 1. (17)

Proof. Without loss of generality, we only prove the case m ≥ n. The same can be proved when
m < n. We orient Cm ⊗ Cn according to the following orientation:

(1) For i ≡ 1 (mod 2) and j = 1, 2, · · · ,m− 1, orient (i, j) → (i, j + 1), and orient (i,m) → (1, j);

(2) For i ≡ 0 (mod 2) and j = 1, 2, · · · ,m− 1, orient (i, j + 1) → (i, j), and orient (i, 1) → (i,m);

(3) For j ≡ 1 (mod 2) and i = 1, 2, · · · , n− 1, orient (i, j) → (i+ 1, j), and orient (n, j) → (1, j);

(4) For j ≡ 0 (mod 2) and i = 1, 2, · · · , n− 1, orient (i+ 1, j) → (i, j), and orient (1, j) → (n, j);

(5) For i = 1, 2, · · · , n− 1 and j = 1, 2, · · · ,m− 1, orient (i+ 1, j + 1) → (i, j);
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(6) For i = 1, 2, · · · , n− 1 and j = 2, · · · ,m, orient (i, j) → (i+ 1, j − 1);

(7) For i = 1, 2, · · · , n− 1, orient (i+ 1, 1) → (i,m), and orient (i, 1) → (i+ 1,m);

(8) For j = 1, 2, · · · ,m− 1, orient (n, j + 1) → (1, j), and orient (j + 1, 1) → (j,m).

As can be seen in Figure 8, every vertex in F is contained in a cycle of length at most 2diam(Cm⊗
Cn) + 1, i.e., sdiam ≤ 2diam(Cm ⊗ Cn) + 1, and by the de�nition of the minimum strong diameter,
then we get sdiam(Cm⊗Cn) ≤ 2diam(Cm⊗Cn)+1, and also by (9), we have sdiam(G) ≥ 2diam(G),
so we have (17). Proof is complete.

Fig. 8. A strong orientation of C5 ⊗ C9.

In the above theorems, we did not provide the minimum strong diameter and diameter orientations
for C3 ⊗ C3. So we prove them as follows.

Theorem 4.4. Let Cm and Cn be two di�erent cycles, with G = Cm ⊗ Cn(m = 3, n = 3). Then,

d⃗(G) = 2 and sdiam(G) = 3.

Proof. Let Cm and Cn be two di�erent cycles, with m = 3 and n = 3. Based on the structure
of C3 ⊗ C3, the point (1, 1) can connect to every other vertices in G through paths of length 1. If
d⃗(C3 ⊗ C3) = 1 were true, it would imply that, for the vertex (1, 1), there exist directed paths of
length one from (1, 1) to the remaining 8 vertices. This construction, however, would not yield a
strongly connected directed graph, as no diameter of length one exists. Thus, d⃗(C3 ⊗ C3) ≥ 2. We
orient C3 ⊗ C3 as follows:

(1) (1, 2) → (3, 2) → (2, 2) → (1, 2);

(2) (1, 1) → (2, 1) → (3, 1) → (1, 1), (1, 3) → (2, 3) → (3, 3) → (1, 3);

(3) (1, 1) → (1, 2) → (1, 3) → (1, 1), (3, 1) → (3, 2) → (3, 3) → (3, 1);

(4) (3, 2) → (1, 3) → (2, 1) → (3, 2), (2, 3) → (1, 2) → (2, 3), (3, 3) → (1, 1) → (2, 2) → (3, 3);

(5) (3, 1) → (1, 3) → (2, 2) → (3, 1), (2, 3) → (3, 2) → (1, 1) → (2, 3), (3, 3) → (1, 3) → (2, 1) →
(3, 3).

It is easily veri�ed that d⃗(G) = 2 and sdiam(G) = 3.
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Theorem 4.5. Let m ≥ 3, n ≥ 3, then there exists a strong orientation D of Cm ⊗ Cn such that

sdiam(D) = mn.

Proof. Proof is similar to Theorem 3.4.

We de�ne ρ(G) = diam(G)− d⃗(G). Combined with Theorem 3.1, we have the following Corollary
4.1 and Corollary 4.2.

Corollary 4.1. Let m ≥ 3 and n ≥ 2, then ρ(C2n × C2m) = 0, where ρ(C2n × C2m) = diam(C2n ×
C2m)− d⃗(C2n × C2m).

Proof. According to the Theorem 3.1, if m ≥ 3 and n ≥ 2, then d⃗(C2n × C2m) = m + n. It is also
easily seen that diam(C2n × C2m) = diam(C2n) + diam(C2m) = m + n. ρ(C2n × C2m) is de�ned as
ρ(C2n × C2m) = diam(C2n × C2m)− d⃗(C2n × C2m), thus we obtain ρ(C2n × C2m) = 0.

Corollary 4.2. Let m ≥ 3 and n ≥ 2, then ρ(C2n × C2m) = 0, where ρ(C2n ⊗ C2m) = diam(C2n ⊗
C2m)− d⃗(C2n × C2m).

Proof. The proof is similar to Corollary 4.1.

Conjecture 4.1. Let Cn and Cm be two di�erent cycles, G = Cn×Cm(m ≥ n ≥ 3,m ≡ 0 (mod 2)),

then SDIAM(G) = mn.

Conjecture 4.2. Let Cn and Cm be two di�erent cycles, G = Cn×Cm(m ≥ n ≥ 3,m ≡ 1 (mod 2)),

then SDIAM(G) = mn+ 1.

Conjecture 4.3. Let Cn and Cm be two di�erent cycles, G = Cn ⊗ Cm(m ≥ 3, n ≥ 3), then

SDIAM(G) = mn.

5. Applications and numerical simulations

This section delves into the application prospects of strong and Cartesian product networks in net-
work structure design. Using simulation methods, we will conduct meticulous numerical simulations
to determine the upper and lower bounds of the minimum and maximum strong diameters and the
oriented diameter. By leveraging comprehensive simulations and precise calculations, we aim to gain
a thorough understanding of the characteristics of these two network structures in terms of strong
diameter and oriented diameter.
Additionally, this section explores the minimum and maximum strong diameter boundaries of

Cartesian product networks and strong product networks with di�erent factor graphs, drawing on
existing research results. We compare the results to reveal the in�uence of di�erent product op-
erations and factor graph combinations on crucial network parameters. This comparison not only
highlights the impact of these factors on network properties but also lays a crucial theoretical founda-
tion and provides valuable design guidance for constructing complex network structures with speci�c
strong diameter properties.
To facilitate a comparative analysis of the data, we �rst present the optimal oriented diameter of

Cartesian product networks of paths, the optimal oriented diameter of Cartesian product networks
of cycles and paths, and the minimum strong diameter of strong product networks of paths, based
on the �ndings of previous studies.
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In [11], Koh and Tay successfully determined the minimum oriented diameters of Cartesian product
networks of paths and Cartesian product networks of cycles and paths. They achieved this by
constructing minimum diameter orientations for these two types of networks. The speci�c results
are as follows: Let Pm and Pn be two distinct paths. When m ≥ 3, n ≥ 6, and (m,n) ̸= (3, 6), we
obtain d⃗(F ) = diam(Pm × Pn) = m + n − 2. On the other hand, let C2n be an even cycle. When
n ≥ 2 and k ≥ 4, we have d⃗(F ) = diam(C2m × Pn) = m+ k − 1. These results greatly facilitate our
data computation and veri�cation. Following the methodological framework established in (8) and
(9), we extend Huang's approach to determine the lower bound for the strong diameter in strong
products of two paths: sdiam(Pm ⊗ Pn) ≥ 2max(m− 1, n− 1).
In the following research, we will conduct four sets of comparative experiments focusing on the

minimum oriented diameter of Cartesian product networks of cycles and the minimum strong diame-
ter of strong product networks of cycles. The �rst set of experiments will �x a speci�c parameter and
calculate and compare the minimum oriented diameters of Cartesian product networks with di�erent
factor graphs and the minimum oriented diameters of networks obtained from di�erent product op-
erations on the same factor graphs. The second set of experiments will comprehensively compare the
minimum oriented diameters of networks with di�erent factor graphs and product operations. In the
third set of experiments, we will again �x a parameter and investigate the minimum strong diameters
of product networks obtained from the same factor graphs under di�erent product operations. We
will also introduce strong product networks of paths for comparison. The fourth set of experiments
will provide a comprehensive comparison based on the �ndings from the third set of experiments.
Through this series of experimental designs, we aim to gain a more comprehensive understanding
of the behavioral characteristics of product networks under di�erent conditions, leading to more
accurate conclusions.

(a) Minimum Oriented Diameter of Cm × C20, Cm × P20 and

Pm × P20.
(b) Minimum Oriented Diameter of Cm × C20 and Cm × P20.

Fig. 9. Minimum Oriented Diameter of Cm ⊗ C20, Cm × P20, Pm × P20 and Cm ⊗ C20.

In the �rst set of experiments, we �xed the number of vertices in the second factor graph at n = 20

to meet the requirements and facilitate observation. The number of vertices in the �rst factor graph
was set to 6 ≤ m ≤ 30 with m ≡ 0 (mod 2). We calculated the minimum oriented diameters of
the Cartesian product of cycles, the Cartesian product of paths, the Cartesian product of cycles and
paths, and the strong product of cycles and plotted Figure 9. From this �gure, it is evident that
under the same product and order, d⃗(Cm × Cn) ≤ d⃗(Cm × Pn) ≤ d⃗(Pm × Pn). Observing the data
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in Figure 9 (b), we can see that the minimum oriented diameter of the strong product network of
cycles is signi�cantly smaller than that of the Cartesian product network of cycles. Additionally,
d⃗(Cm ⊗ Cn) only changes with increasing m when m ≥ 20. By analyzing the product structures
of these four types of graphs, we found that the observed changes are due to the di�erences in the
diameters of the factor graphs: the performance of the product network of factor graphs with smaller
diameters is better than that of the product network of factor graphs with larger diameters.
In the second set of experiments, we set the number of vertices in the two factor graphs to be

30 ≤ m ≤ 60 and 30 ≤ n ≤ 60, respectively, with m ≡ 0 (mod 2) and n ≡ 0 (mod 2). We then
calculated d⃗(Cm ×Cn), d⃗(Cm × Pn), and d⃗(Pm × Pn), see as Figure 10. Comparing the values of the
minimum oriented diameters, we conclude that d⃗(Cm ×Cn) ≤ d⃗(Cm ×Pn) ≤ d⃗(Pm ×Pn). Observing
and comparing the value ranges, we �nd that d⃗(Cm × Cn) and d⃗(Pm × Pn) are equally a�ected by
changes in the orders of the two factor graphs, resulting in their value ranges forming oblique planes.
Although the value range of d⃗(Cm×Pn) is also an oblique plane, the values on the left are higher than
those on the right, indicating that d⃗(Cm × Pn) is more in�uenced by v(Cm). Meanwhile, the value
of d⃗(Cm ⊗ Cn) at any given moment depends solely on either v(Cm) or v(Cn), exhibiting a di�erent
characteristic from the other three product networks. Through analysis and comparison, we discover
that the smaller the diameter of the factor graph, the smaller the minimum oriented diameter of the
product graph. Additionally, the more edges in the product graph, its minimum oriented diameter
is smaller.

(a) Minimum Oriented Diameter(Cm × Cn). (b) Minimum Oriented Diameter(Pm × Pn).

(c) Minimum Oriented Diameter(Cm × Pn). (d) Minimum Oriented Diameter(Cm ⊗ Cn).

Fig. 10. Minimum Oriented Diameter of Cm × Cn, Pm × Pn, Cm × Pn and Cm ⊗ Cn.
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In the third set of experiments, we perform numerical simulations to compare the minimum strong
diameters of product networks. First, we �x the number of vertices in the second factor graph at
n = 20 and set the number of vertices in the �rst factor graph to be 10 ≤ m ≤ 30. We then calculate
sdiam(Cm × Cn), sdiam(Cm ⊗ Cn), and sdiam(Pm × Pn) (with m and n being odd numbers at
di�erent instances). From Figure 11(a), it can be observed that the numerical comparison yields
sdiam(Pm × Pn) ≥ sdiam(Cm × Cn) ≥ sdiam(Cm ⊗ Cn). Moreover, the curves of sdiam(Pm × Pn)

and sdiam(Cm × Cn) are relatively smooth, while sdiam(Cm ⊗ Cn) exhibits a sawtooth pattern.
Because the values of sdiam(Pm × Pn) and sdiam(Cm × Cn) are simultaneously a�ected by both
factor graphs. In contrast, the value of sdiam(Cm ⊗ Cn) is in�uenced primarily by the factor graph
with the larger order.

(a) Minimum Strong Diameter of Cm × C20, Cm ⊗ C20 and

Pm ⊗ P20.
(b) Minimum Strong Diameter of Cm ⊗ Cn.

(c) Minimum Strong Diameter of Cm × Cn. (d) Minimum Strong Diameter of Pm ⊗ Pn.

Fig. 11. Minimum strong diameter of Cm × Cn, Pm × Pn, Cm × Pn and Cm ⊗ Cn.

In the fourth set of experiments, we comprehensively compare the minimum strong diameters of
product networks through numerical simulations. We set the number of vertices in the factor graphs
to be 10 ≤ m ≤ 30 and 10 ≤ n ≤ 30, with m and n being odd numbers at di�erent instances
and calculate sdiam(Cm × Cn), sdiam(Cm ⊗ Cn), and sdiam(Pm ⊗ Pn). From Figure 11 (b)-(d), it
can be observed that the numerical comparisons yield the same conclusions as in experiment three.
Regarding the value range distribution, the values of sdiam(Cm ⊗ Cn) and sdiam(Pm ⊗ Pn) are
in�uenced primarily by one factor graph, resulting in their value ranges exhibiting a "V" shape. In
contrast, the value range of sdiam(Cm × Cn) presents an oblique plane because both factor graphs
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simultaneously in�uence its values. Furthermore, since odd cycles and even cycles with a di�erence
of 1 have the same diameter, the value ranges of sdiam(Cm ⊗ Cn) and sdiam(Pm ⊗ Pn) exhibit a
wavy pattern.
In summary, through the numerical comparisons of the product above networks, we can draw

the following conclusions: when the diameter of the factor graphs is smaller, the resulting product
network, under the same product operation, has a smaller minimum oriented diameter and minimum
strong diameter. Additionally, more complex product operations lead to higher connectivity of the
product network, resulting in smaller minimum oriented diameter and minimum strong diameter.
These �ndings provide valuable insights into understanding the impact of di�erent product operations
and factor graph combinations on the critical parameters of product networks. They lay a solid
foundation for designing and optimizing future complex network structures with speci�c diameter
characteristics.

6. Conclusion

In this paper, we have constructed a new product network using strong product and Cartesian
product operations. These networks not only retain the characteristics of small networks but also
meet the requirements of large-scale network design. This approach provides a new perspective for
deeply understanding network topology, lays a solid data foundation, and o�ers a multi-dimensional
analysis viewpoint. Additionally, this paper determines the minimum oriented diameter of Cartesian
and strong products of cycles, as well as their upper and lower bounds under certain conditions.
We have also established the minimum strong diameter of strong and Cartesian products of cycles,
along with their upper and lower bounds under speci�c conditions, and explored the range of their
maximum strong diameter. These �ndings open new avenues for network fault tolerance research
and the development of network design and optimization strategies.
In the future, We plan to continue focusing on strong distance problems and further investigate the

strong distance parameters of critical network structures such as hypercubes and twisted hypercubes.
This will deepen our understanding of the interactions between these network structures and provide
more theoretical support and practical guidance for constructing e�cient and robust complex network
systems.
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