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abstract

An (unrooted) binary tree is a tree in which every internal vertex has degree 3. In this paper, we

determine the minimum and maximum number of total dominating sets in binary trees of a given

order. The corresponding extremal binary trees are characterized as well. The minimum is always

attained by the binary caterpillar, while the binary trees that attain the maximum are only unique

when the number of vertices is not divisible by 4. Moreover, we obtain a lower bound on the number

of total dominating sets for d-ary trees and characterize the extremal trees as well.
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1. Introduction

A dominating set D is a set of vertices in a graph G such that every vertex that is not in D has

a neighbour in D. The set D is a total dominating set (abbreviated as TDS) if every vertex has

a neighbour in D, whether it lies in D or not. For a thorough review of total domination, see the

book by Henning and Yeo [9]. Krzywkowski and Wagner [11] studied the number of TDS (henceforth

denoted by δt(G)) in a graph G. The trivial bounds on the number of TDS in a graph with n vertices

are 0 ≤ δt(G) ≤ 2n − n − 1. Here, the lower bound holds with equality if and only if G has one or

more isolated vertices (in this case, G does not have any TDS). The upper bound holds with equality

if and only if G is a complete graph. For a tree T with n vertices, δt(T ) ≤ 2n−1− 1, with equality for

the star. The lower bound for trees is of order Θ(9
n
7 ). The extremal trees are obtained as unions of

subdivided stars, and they are generally not unique. Krzywkowski and Wagner also obtained a sharp

lower bound on δt(T ) including both the order and the total domination number and characterized
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the extremal graphs. Haynes and Henning [6] considered trees with unique minimum TDS, see also

Henning [7]. There are also similar results on dominating sets [3, 13, 15], minimal dominating sets

[4, 10] and minimal TDS [1, 8, 5].

A vertex of a tree that has exactly one neighbour is a leaf ; otherwise, it is called an internal vertex.

A binary tree (more precisely, unrooted binary tree) is a tree in which all internal vertices are exactly

of degree 3 (see for instance [14]). Such trees arise for example in the context of phylogenetics. More

generally, if all internal vertices of a tree are exactly of degree d + 1, it is known as a d-ary tree. It

is easy to see that a d-ary tree with k internal vertices has k(d− 1) + 2 leaves, thus kd + 2 vertices

in total.

A rooted binary tree has a distinguished root of degree 2, while all other internal vertices have degree

3. Here and in the following, whenever we only write �binary tree� without further speci�cation, we

refer to unrooted binary trees.

This paper focuses on the number of TDS in binary trees, speci�cally on the maximum and

minimum number of TDS in binary trees of a given order. Similar results have been obtained for the

number of subtrees [14], the number of independent sets and the number of matchings [2] in binary

trees. See also [12] for analogous results on the number of (not necessarily total) dominating sets.

In the following section, we will show that the minimum number of TDS of a d-ary tree with k

internal vertices is 2k(d−1)+2. This minimum is attained by the binary caterpillar for binary trees

(a binary caterpillar is a binary tree in which the internal vertices form a path), while for d > 2

there are generally many d-ary trees that attain the minimum (see Theorem 2.1). Also, for k ≥ 4,

the second smallest possible number of TDS in a binary tree is 25 · 2k−2, and the binary trees that

attain this value can also be characterized (Theorem 2.4). Lastly, the binary trees with maximum

number of TDS are established in Theorem 3.7 and Theorem 3.8. In the case where the number of

internal vertices is even (thus the total number of vertices is ≡ 2 mod 4), there is always a unique

tree attaining the maximum, while there is a family of trees attaining the maximum if the number

of internal vertices is odd.

2. d-ary trees with minimum number of TDS

As a �rst result, we obtain the minimum number of TDS in d-ary trees and characterize the extremal

cases. The precise statement reads as follows.

Theorem 2.1. For every d-ary tree T with k ≥ 2 internal vertices, we have

δt(T ) ≥ 2k(d−1)+2.

Strict inequality holds if and only if there is a vertex of degree d+1 in the tree induced by the internal

vertices of T (equivalently, if there is an internal vertex that is not adjacent to a leaf).

Proof. Recall that T has k(d − 1) + 2 leaves. The set of all internal vertices in T is a TDS of T ,

and any subset of leaves can be added to this set. So we always have (at least) 2k(d−1)+2 TDS. Let

T ′ be the tree formed by the internal vertices of T , and suppose �rst that T ′ does not have a vertex

of degree d + 1. Then every vertex in T ′ has degree at most d and must therefore be adjacent to a

leaf in T . This implies that every internal vertex in T must be included in every TDS of T , which

readily proves that δt(T ) = 2k(d−1)+2.
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Conversely, suppose that there is a vertex v of degree d + 1 in T ′. Then v has no leaf neighbour

in T . Now the set that consists of all vertices in T except for v is a TDS of T that has not been

counted before, showing that strict inequality holds.

For d = 2, the condition that the tree induced by the internal vertices has no vertex of degree 3

is equivalent to this tree being a path. In this case, T must be a binary caterpillar. So we have the

following corollary.

Corollary 2.2. The binary caterpillar is the unique tree with the minimum number of TDS among

all binary trees of a given order.

By contrast, for d > 2, there are generally many trees of a given order that attain the minimum.

Next we determine the binary trees with the second smallest number of TDS. Let us start with

some terminology. An internal vertex that is adjacent to at least one leaf is called a support vertex.

Otherwise, we call it a lea�ess vertex. We will repeatedly make use of the fact that every TDS

has to contain all support vertices of a tree (since they are required to totally dominate their leaf

neighbours). A broom B(n,m) is a tree with n vertices that consists of a path with m vertices and

n−m leaves that are all adjacent to one leaf of the path.

Lemma 2.3. Let T be a binary tree with exactly one lea�ess vertex and k ≥ 5 internal vertices in

total. Then

δt(T ) ≥ 25 · 2k−2,

with equality if and only if the tree formed by the internal vertices of T is the broom B(k, k− 2) (see

Figure 1).

T

k − 3

B(k, k − 2)

k − 3

Fig. 1. B(k, k − 2) is the tree formed by the internal vertices of T .

Proof. First, let w be the unique lea�ess vertex in T and v1, v2, v3 be the neighbours of w. Let T ′

be the tree formed by the internal vertices of T . Consider the following cases:

Case 1. None of the vertices v1, v2, v3 is a leaf in T ′.

The set of all internal vertices in T except for w, plus an arbitrary subset of the remaining vertices,

is a TDS of T . This already results in 2k+3 TDS.

Case 2. One of the vertices v1, v2, v3 is a leaf in T ′.

Suppose v1 is a leaf in T ′. Let x1, x2 be the leaves attached to v1 in T . The set of all internal

vertices in T except for w, plus an arbitrary subset of the remaining vertices containing at least one

of w, x1 and x2, is a TDS of T . Thus, we already have at least 7 · 2k TDS.

Case 3. Two of the vertices v1, v2, v3 are leaves in T ′.

In this case, B(k, k − 2) is the tree formed by the internal vertices of T . Suppose that v1, v2 are

leaves in T ′. Let x1, x2 and x3, x4 be the leaves attached to v1 and v2 respectively in T . Every TDS

of T must contain all internal vertices except for w (since they are support vertices). Once these are
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included, all vertices except for v1 and v2 are already totally dominated, so one can add an arbitrary

subset of the remaining vertices provided that it either contains w or one of x1, x2 and one of x3, x4.

Thus we have a total of 2k+2 + 9 · 2k−2 = 25 · 2k−2 TDS in T .

Now, it only remains to observe that 25 · 2k−2 < 7 · 2k < 2k+3 to complete the proof.

We now show that the tree with the minimum number of TDS among the trees with one lea�ess

vertex has the second smallest number of TDS among all binary trees.

Theorem 2.4. For every k ≥ 4, the binary tree whose internal vertices form the broom B(k, k − 2)

is the binary tree of order 2k + 2 with the second smallest number of TDS.

Proof. If the number k of internal vertices is 4, there are only two nonisomorphic binary trees, so

the statement becomes trivial. Now assume that k ≥ 5, and let T be a binary tree with at least two

lea�ess vertices, say w and w′. By a similar approach as in Lemma 2.3, T has at least 25 · 2k−2 TDS

that either contain all the internal vertices in T , or all the internal vertices but w. Moreover, the set

of all vertices in T −{w,w′} is a TDS, thus δt(T ) ≥ 25 ·2k−2+1. By Lemma 2.3, this means that the

tree whose internal vertices form the broom B(k, k−2) has fewer TDS. Combined with Corollary 2.2

and Lemma 2.3, this already yields the statement.

3. Binary trees with maximum number of TDS

In this section, we consider the upper bound for the number of TDS, which is more di�cult to obtain.

As a �rst step, we show that a binary tree with maximum number of TDS cannot have two distinct

internal vertices that are each adjacent to precisely one leaf (see Proposition 3.3). The structure will

be made more precise in Lemma 3.6, and fully characterized in Theorem 3.7 and Theorem 3.8. The

extremal trees are unique up to isomorphism when the number of vertices n is not divisible by 4

(thus n ≡ 2 mod 4), while they are not unique if n is divisible by 4.

In the following, we need several auxiliary quantities associated with rooted (binary) trees. Let

T be a rooted tree, and v its root. We consider four di�erent types of vertex subsets that are total

dominating except possibly for v. The vertex v can be included in such a set or not, and it can be

totally dominated by the other vertices or not. This gives us a total of four combinations that are

indicated by subscripts in the notation we use: the �rst subscript is 1 if v is included, and 0 otherwise;

the second subscript is 1 if v is totally dominated (i.e., one of the neighbours of v is included in the

set), and 0 otherwise. Thus the four possible combinations are as follows:

• δ11(T, v) is the number of total dominating sets of T that include v;

• δ01(T, v) is the number of total dominating sets of T that do not include v;

• δ10(T, v) is the number of vertex subsets of T where v is included and all vertices but v are

totally dominated;

• δ00(T, v) is the number of vertex subsets of T where v is not included and all vertices but v are

totally dominated;

Note that δt(T ) = δ11(T, v)+δ01(T, v). We start with the following lemma that relates the di�erent

quantities.
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Lemma 3.1. Let T be a rooted binary tree with root v. We have

δ11(T, v) ≥ δ01(T, v), and

δ11(T, v) ≥ 3δ10(T, v) ≥ 3δ00(T, v).

Proof. For every set D that is counted by δ01(T, v) (δ00(T, v), respectively), D∪{v} is a set counted

by δ11(T, v) (δ10(T, v), respectively). This is an injective relation, thus the two inequalities δ11(T, v) ≥
δ01(T, v) and δ10(T, v) ≥ δ00(T, v) follow immediately.

Next, let D be a set that is counted by δ10(T, v). By de�nition, D does not contain a neighbour

of v. If any nonempty subset of neighbours of v (there are three such subsets, since v has degree 2)

is added to D, we obtain a set that is counted by δ11(T, v). Thus δ11(T, v) ≥ 3δ10(T, v), completing

the proof.

In the following, we will use abbreviations to simplify our notation: for a tree T with root v, we

write Tab instead of δab(T, v) for simplicity. Moreover, we need a version of this notation for birooted

trees: in the following lemma, S is a tree with two distinguished vertices (roots) u and v. We write

Sab
cd for the number of vertex subsets of S where all vertices, except possibly u and v, are totally

dominated. The indices a, b, c, d indicate the status of these two vertices: a = 1 (c = 1, respectively)

means that we count sets where u (v) is included. Otherwise, a = 0 (c = 0). Likewise, b = 1 (d = 1,

respectively) means that we count sets where u (v) is totally dominated. Otherwise, b = 0 (d = 0).

So for instance S01
10 is the number of vertex subsets of the tree S where all vertices except for u are

totally dominated, and u is contained, but v is not.

Our next lemma describes the e�ect of a certain transformation on the number of total dominating

sets.

T

L l
S

u v Rrx

x1

y

y1

T ′

L l
S

u v

R

x1
x

r

y

y1

Fig. 2. The trees T and T ′ in Lemma 3.2.

Lemma 3.2. Suppose that a tree T can be decomposed as shown in Figure 2, where L and R are

rooted binary trees with roots l and r respectively, S has distinguished vertices u and v, and x1 and y1
are leaves adjacent to support vertices x and y respectively. Furthermore, consider the tree T ′ obtained

by removing the edges xx1 and yr from T and replacing them by xr and yx1, thus exchanging R and

the leaf x1 (see again Figure 2).

If both L and R are nontrivial rooted binary trees, i.e., if they have each more than one vertex,

then δt(T
′) > δt(T ).

Proof. With the notation introduced earlier, let us set

L1 =
∑

0≤b≤1

L1b, L0 =
∑

0≤b≤1

L0b, R1 =
∑

0≤b≤1

R1b, and R0 =
∑

0≤b≤1

R0b.
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Also, let L = L1 + L0 and R = R1 +R0.

We start by determining the number δt(T ) of TDS of T , �rst in the case that u ̸= v. For the

leaves x1 and y1 to be totally dominated, every TDS of T must contain x and y. Thus l, r, u, v are

automatically totally dominated. Note also that the restriction of any TDS of T to L,R, S has to

be total dominating except possibly for the vertices l, r, u, v. We now distinguish di�erent types of

TDS depending on whether u and v are contained.

Let us start with TDS that contain both u and v. There are
∑

0≤b,d≤1 S
1b
1d possibilities for the

restriction to S. Since u, v are assumed to be contained, x, y are already totally dominated. Thus

there are L possible choices for the restriction to L (l can be contained or not, and it can be totally

dominated within L or not). Likewise, there are R possible choices for the restriction to R. Since

we can also choose whether x1, y1 are contained or not, we end up with

4LR
∑

0≤b,d≤1

S1b
1d,

possible combinations in this case. Using a similar argument, we �nd that there are

2R(L+ L1)
∑

0≤b,d≤1

S0b
1d,

possible TDS that contain v, but not u (thus x needs to be totally dominated by either x1 or l).

Analogously, there are

2L(R+R1)
∑

0≤b,d≤1

S1b
0d.

TDS containing u, but not v. Lastly, we get

(LR+ LR1 +RL1 + L1R1)
∑

0≤b,d≤1

S0b
0d,

possible TDS containing neither u nor v.

The combination of the four cases gives us the formula

δt(T ) = 4LR
∑

0≤b,d≤1

S1b
1d + 2R(L+ L1)

∑
0≤b,d≤1

S0b
1d + 2L(R+R1)

∑
0≤b,d≤1

S1b
0d

+ (LR+ LR1 +RL1 + L1R1)
∑

0≤b,d≤1

S0b
0d. (1)

Now if u = v, following similar reasoning, we have

δt(T ) = 4LR
∑

0≤b≤1

S1b + (LR+ LR1 +RL1 + L1R1)
∑

0≤b≤1

S0b. (2)

Next suppose that there are no vertices in S, and that instead xy is an edge of T . Again by similar

reasoning, we have

δt(T ) = 4LR. (3)

Next we determine the number δt(T
′) of TDS of T ′, �rst in the case that u ̸= v. For the leaves

x1 and y1 to be totally dominated, every TDS of T ′ must contain y, so v is automatically totally

dominated as well. Again, we distinguish di�erent types of TDS depending on whether or not u, v

are contained.
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If v is not contained in a TDS, then either x1 or y1 needs to be for y to be totally dominated,

giving us three possibilities for x1, y1. If v is contained in a TDS, then we have four possibilities

instead.

For u, we have four possible situations in a TDS: if u is contained and also totally dominated inside

of S, then there are LR+ δt(L)δt(R) possibilities for the restriction to {x} ∪ L ∪R (LR where x is

contained in the set, δt(L)δt(R) where it is not). If u is contained in a TDS, but not totally dominated

inside of S, then x must be an element, and there are LR possibilities. If u is not contained in the

set, but totally dominated by a neighbour in S, then there are LR− L0R0 possibilities including x

and L11R11 + L01R11 + L11R01 not including it. Lastly, if u is neither included in a TDS nor totally

dominated by a neighbour in S, then we have LR−L0R0 possibilities. Combining all these gives us

the formula

δt(T
′) = (LR+ δt(L)δt(R))

∑
0≤d≤1

(4S11
1d + 3S11

0d)

+ (LR− L0R0 + L11R11 + L01R11 + L11R01)
∑

0≤d≤1

(4S01
1d + 3S01

0d)

+ LR
∑

0≤d≤1

(4S10
1d + 3S10

0d) + (LR− L0R0)
∑

0≤d≤1

(4S00
1d + 3S00

0d). (4)

Now if u = v, by similar reasoning we have

δt(T
′) = 4(LR+ δt(L)δt(R))(S11 + S10)

+ 3(LR− L0R0 + L11R11 + L01R11 + L11R01)(S01 + S00). (5)

Finally, if there are no vertices in S, and instead an edge between x and y, we have

δt(T
′) = 4LR+ 3δt(L)δt(R). (6)

It remains to show that if |L|, |R|> 1, then δt(T
′) > δt(T ) in all three cases. Set ∆t = δt(T

′)−δt(T ).

If u ̸= v, then by (1) and (4) we have

∆t = α1

∑
0≤d≤1

S11
1d + α2

∑
0≤d≤1

S11
0d + α3

∑
0≤d≤1

S01
1d + α4

∑
0≤d≤1

S01
0d

+ α5

∑
0≤d≤1

S00
1d + α6

∑
0≤d≤1

S10
0d + α7

∑
0≤d≤1

S00
0d ,

where

α1 = 4δt(L)δt(R),

α2 = LR+ 3δt(L)δt(R)− 2LR1,

α3 = 2L0R− 4L0R0 + 4L11R11 + 4L01R11 + 4L11R01,

α4 = 2LR− LR1 −RL1 − L1R1 − 3L0R0 + 3L11R11 + 3L01R11 + 3L11R01,

α5 = 2LR− 2L1R− 4L0R0,

α6 = LR− 2LR1 = L(R0 −R1), and

α7 = 2LR− LR1 − L1R−L1R1 − 3L0R0 = R0(L1 − L0) +R1(L0 − L1).



218 oyewumi et al.

We show that the �rst �ve of these coe�cients (α1 to α5) are all non negative. First, α1 is trivially

strictly positive. Next,

α2 = LR+ 3δt(L)δt(R)− 2LR1 = LR0 + 3δt(L)δt(R)− LR1

= LR0 + 2L11R11 + 3L11R01 + 2L01R11 + 3L01R01

− L11R10 − L01R10 − L10R11 − L10R10 − L00R11 − L00R10

≥ 2L11R11 − L11R10 − L01R10 − L10R11 − L10R10 − L00R11 − L00R10.

By Lemma 3.1, we have L11 ≥ 3L10 and R11 ≥ 3R10, so 2L11R11 = L11R11 + L11R11 ≥ 3L10R11 +

3L11R10 and thus

α2 ≥ 3L11R10 + 3L10R11 − L11R10 − L01R10 − L10R11 − L10R10 − L00R11 − L00R10

= 2L11R10 + 2L10R11 − L01R10 − L10R10 − L00R11 − L00R10.

Since also L11 ≥ L01, L11 ≥ L00, L10 ≥ L00, and R11 ≥ R10 by Lemma 3.1, it follows that α2 ≥ 0.

Next, observe that L1,R1 > 0 and L0,R0 ≥ 0. Also, L1−L0 ≥ 0 and R1−R0 ≥ 0 by Lemma 3.1.

Thus, we immediately get

α3 = 2L0(R1 −R0) + 4L11R11 + 4L01R11 + 4L11R01 ≥ 0

and

α5 = 2LR− 2L1R− 4L0R0 = 2L0R− 4L0R0 = 2L0(R1 −R0) ≥ 0.

Similarly, since L1 − L0 ≥ 0, we have

α4 = R0(L1 − L0) +R1(L0 − L1) + 3L11R11 + 3L01R11 + 3L11R01

≥ 3L11R11 − L1R1 = 2L11R11 − L11R10 − L10R11 − L10R10

≥ 3L11R10 + 3L10R11 − L11R10 − L10R11 − L10R10 ≥ 0.

Since we have now established that α2, α4, α5 ≥ 0, it follows that

∆t ≥ α1

∑
0≤d≤1

S11
1d + α3

∑
0≤d≤1

S01
1d + α6

∑
0≤d≤1

S10
0d + α7

∑
0≤d≤1

S00
0d . (7)

Recall that we are assuming u ̸= v. For every set that is counted by S10
01 or S10

00 , we can add v to

it plus a neighbour of u to obtain a set that is counted by S11
11 and S11

10 respectively. Hence, we have

S11
11 ≥ S10

01 , S11
10 ≥ S10

00 , (8)

and analogously

S01
11 ≥ S00

01 , S01
10 ≥ S00

00 . (9)

Thus
∑

0≤d≤1 S
11
1d ≥

∑
0≤d≤1 S

10
0d and

∑
0≤d≤1 S

01
1d ≥

∑
0≤d≤1 S

00
0d in (7), which gives us

∆t ≥ δt(L)δt(R)
∑

0≤d≤1

S11
1d + (3δt(L)δt(R) + α6)

∑
0≤d≤1

S10
0d + (α3 + α7)

∑
0≤d≤1

S00
0d .
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Finally, we make use of Lemma 3.1 again to obtain

3δt(L)δt(R) + α6 ≥ 3δt(L)R11 − LR1

= 3(L01 + L11)R11 − (L00 + L01 + L10 + L11)(R10 +R11)

≥ 3(L01 + L11)R11 −
(
L01 +

5

3
L11

)
· 4
3
R11

=

(
5

3
L01 +

7

9
L11

)
R11 > 0

and

α3 + α7 = 2L0R− 4L0R0 + 4L11R11 + 4L01R11 + 4L11R01 +R0(L1 − L0) +R1(L0 − L1)

= L0(2R− 4R0 +R1 −R0) + L1(R0 −R1) + 4L11R11 + 4L01R11 + 4L11R01

= 3L0(R1 −R0) + L1(R0 −R1) + 4L11R11 + 4L01R11 + 4L11R01

≥ 4L11R11 − L1R1 ≥ 4L11R11 −
4

3
L11 ·

4

3
R11 > 0.

So we can conclude that

∆t ≥ δt(L)δt(R)
∑

0≤d≤1

S11
1d > 0,

in the case that u ̸= v. If u = v, then we have

∆t = α1(S11 + S10) + α4(S01 + S00).

Since α4 ≥ 0,

∆t ≥ α1(S11 + S10) = 4δt(L)δt(R)(S11 + S10) > 0.

Lastly, if there is an edge between x and y and S is empty, then we simply have ∆t = 3δt(L)δt(R) >

0.

From Lemma 3.2, we immediately get the following partial characterization of binary trees with

maximum number of TDS.

Proposition 3.3. In a binary tree T with maximum number of TDS among all binary trees of the

same order, there cannot be two internal vertices adjacent to exactly one leaf each. In other words,

with at most one exception all internal vertices are lea�ess or adjacent to two leaves.

Proof. If there were two such vertices x and y, then we could decompose the tree as in Lemma 3.2

and obtain a new tree T ′ of the same order with more TDS, which is an immediate contradiction.

In the proof of the next lemma and proofs of our main theorems, we will use the following lemma

from [11].

Lemma 3.4 (see [11, Lemma 2]). Let T1 and T2 be two trees, and let u, v be vertices of T1 and T2,

respectively. Consider the tree T obtained by adding the edge uv to the union T1 ∪ T2. We have

δt(T ) ≥ δt(T1)δt(T2),

with equality if and only if u and v are precisely a distance of 2 away from a leaf in T1 and T2,

respectively (u and v may themselves be leaves).
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If a binary tree has more than four vertices, and there is no internal vertex adjacent to exactly

one leaf, then the internal vertices induce a binary tree. Thus the number of internal vertices must

be even, which in turn implies that the total number of vertices is of the form 4k + 2 (2k internal

vertices, 2k + 2 leaves). On the other hand, if there is one internal vertex adjacent to exactly one

leaf, then the number of internal vertices must be odd, and the total number of vertices is a multiple

of 4.

When an edge e of a binary tree T is removed, each of the two components can be considered as a

rooted binary tree (rooted at one of the ends of e). We call any such rooted binary tree a branch of

T . In the following, by a binary branch of type X (or X-branch for short), we mean a branch whose

shape is as shown in Figure 3. The number of lea�ess internal vertices (x in the �gure) will be called

the length of such a branch. An X-branch of length x has 4x+3 vertices. Note that x = 0 is allowed

as well.

vx vx−1 v2 v1

x

Fig. 3. A branch of a binary tree of type X.

For later purposes, we will need the number of TDS in an X-branch. If the length x is 0, then

this number is easily seen to be 3, so suppose that x > 0. When x = 1, there are 25 TDS: both

support vertices have to be included. If the root v1 is also included, one can add an arbitrary subset

of leaves, for which there are 24 possibilities. Otherwise, one needs to include at least one neighbour

of each support vertex, giving us 32 possibilities for a total of 24 + 32 = 25.

For x > 1, we can apply Lemma 3.4. Since the vertices v1, v2, . . . , vx in Figure 3 are all at distance

2 from a leaf, we can express the number of TDS as a product of x − 1 factors 7 (the number of

TDS in a 4-vertex star) and one factor 25. Thus the number of TDS of an X-branch of length x is

25 · 7x−1. Of those, 16 contain the root vx if x = 1, and 4 · 25 · 7x−2 = 100 · 7x−2 if x = 1.

Alternatively, one can also obtain these formulas by a direct argument, noticing that all support

vertices have to be included in a TDS, and additionally at least one neighbour of each support vertex.

Lemma 3.5. Let T consist of the vertex w and branches A,B, S that are rooted at the neighbours

va, vb, v of w, respectively. Suppose that A and B are X-branches of length a and b, respectively

(a ≥ b ≥ 1), see Figure 4. Then we have

δt(T ) = 7a+b−4

30625(2S11 + S10) +


26656(2S01 + S00), a = b = 1,

25900(2S01 + S00), a > 1, b = 1,

25000(2S01 + S00), a, b > 1.

 (10)

Now let T ′ consist of the same branch S (rooted at v) as in T and an X-branch C of length a+b+1

(rooted at vc, which is connected to v by an edge), see Figure 5. Then we have

δt(T
′) = 7a+b−4(60025(S11 + S01) + 34300(S10 + S00)). (11)

Observe that T and T ′ are of the same order. If v is either a leaf or a lea�ess internal vertex, then

δt(T
′) > δt(T ).
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T

S
A Bv

vbva

w

a b

Fig. 4. The binary tree T with two X-branches A and B

T ′

S

C
v vc

a+ b+ 1

Fig. 5. The binary tree T ′ with an X-branch C

Proof. We begin with the tree T . For any TDS D of T , consider D′ = D ∩ V (S). Note that D′

must totally dominate all vertices of S except possibly v. We consider four di�erent cases, depending

on whether v is contained in D′ or not, and whether it is totally dominated or not. The number of

possibilities for the set D′ is then S11, S10, S01, or S00, respectively. In each case, we determine the

number of possibilities for the set D \D′, which is a vertex subset of A ∪B ∪ {w}.
• Suppose �rst that D′ is total dominating in S, and that it contains v, so that w is totally

dominated by v. There are S11 possibilities for D′ in this case. Note that all support vertices of

A and B are necessarily contained in D, so that all lea�ess internal vertices (in particular va, vb)

are automatically totally dominated. Hence one can freely choose whether or not to include w.

So D \ D′ consists of arbitrary TDS in A and B, and possibly w. Since A is an X-branch of

length a, it has 25 · 7a−1 TDS as observed earlier. Likewise, B has 25 · 7b−1 TDS. Thus there are

2 · 25 · 7a−1 · 25 · 7b−1 · S11 = 1250 · 7a+b−2S11 possible combinations in total.

• Next consider the case that D′ contains v, but that v is not totally dominated. There are S10

possibilities for D′ with this property. We need to include w, but can otherwise choose arbitrary

TDS in A and B as in the previous case, giving us 625 · 7a+b−2S10 combinations.

• If D′ is total dominating in S, but does not contain v, then at least one of va and vb must be

contained in D. Apart from that, D \D′ consists of arbitrary TDS in A and B, and possibly w. We

have to split into three subcases depending on the values of a and b:

• a = b = 1. In this case, A and B both have 25 TDS, 16 of which contain the root while the

other 9 do not. Thus we �nd that T − S has

2 · (162 + 2 · 16 · 9) = 1088.

TDS that contain at least one of va, vb (the initial factor 2 takes vertex w into account).

• b = 1, but a > 1. Here, A has 100 · 7a−2 TDS that contain va and 75 · 7a−2 TDS that do not

contain it. Thus T − S has

2 · (16 · 100 · 7a−2 + 16 · 75 · 7a−2 + 9 · 100 · 7a−2) = 7400 · 7a−2.
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TDS that contain at least one of va, vb.

• a, b > 1. Now, an analogous calculation yields that T − S has

2 · (1002 · 7a−2+b−2 + 2 · 100 · 75 · 7a−2+b−2) = 50000 · 7a+b−4.

TDS that contain at least one of va, vb.

In each case, we multiply by the number of possibilities for D′, which is S01.

• Lastly, if D′ does not contain v and does not totally dominate it either, then w and at least

one of va and vb must be included in D. Distinguishing the same three cases as before, we have 544

possibilities for D \D′ if a = b = 1, 3700 · 7a−2 possibilities if b = 1, but a > 1, and 25000 · 7a+b−4

possibilities if a, b > 1. In each case, we multiply by the number of possibilities for D′, which is S00.

Combining all four cases and factorising, we get (10).

In the same way, for any TDS D of T ′, consider D′ = D ∩ V (S), and distinguish the same four

cases as before. If v is totally dominated in D′, then D \D′ can be an arbitrary TDS of C, for which

there are 25 ·7c−1 possibilities. This gives us 25 ·7c−1(S11+S01) possible combinations. If D′ does not

totally dominate v, then vc needs to be included in D \D′, giving us 100 · 7c−2 possibilities for D \D′

and thus 100 ·7c−2(S10+S00) possible combinations. Again, combining the cases and factorising gives

us (11).

It remains to verify that δt(T
′) > δt(T ) if v is either a leaf or a lea�ess internal vertex. With

c = a+ b+ 1, (10) and (11) give us

δt(T
′)− δt(T ) = 7a+b−4

1225(−S11 + 3S10) +


6713S01 + 7644S00, a = b = 1,

8225S01 + 8400S00, a > 1, b = 1,

10025S01 + 9300S00, a, b > 1.


So for certain real numbers α, β with 5 < α, β < 9, we have

δt(T
′)− δt(T ) = 1225 · 7a+b−4(−S11 + αS01 + 3S10 + βS00). (12)

It remains to show that −S11 + αS01 + 3S10 + βS00 is positive by considering the following cases.

Case 1: v is a leaf. Plugging S11 = 0, S01 = 0, S10 = 1, and S00 = 1 into (12) shows that

δt(T
′) > δt(T ).

Case 2: v is an internal vertex. Let x and y be the neighbours of v in S. Since we are assuming

that v is lea�ess, neither of the neighbours is a leaf. Thus S11, S01 > 0.

Let D be a TDS of S that contains v. If we remove v from D, D − {v} still totally dominates

v but might not totally dominate x and y. If D − {v} totally dominates x and y, then it is a set

counted by S01. Otherwise, if x or y is not totally dominated by D − {v}, we add exactly one of its

neighbours to D − {v} to form a set D′ that is counted by S01. Since we are (at most) adding one

neighbour for each of x and y, we can have at most four sets counted by S11 that map to the same

set D′. Thus S11 ≤ 4S01 and therefore

−S11 + αS01 + 3S10 + βS00 ≥ (α− 4)S01 + 3S10 + βS00 > 0,

completing the proof.
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Lemma 3.6. Let n be a multiple of 4, n ≥ 8, and suppose that the binary tree T has the maximum

number of TDS among all binary trees with n vertices. Let u be the unique internal vertex that is

adjacent to exactly one leaf (which exists by Proposition 3.3). Let this leaf neighbour be v, let R and S

be the two branches rooted at the other two neighbours of u, and let R1, R2, S1, S2 be the sub-branches

of R and S as in Figure 6 (which must exist since the roots of R and S cannot be leaves). Then each

of R1, R2, S1, S2 is either of type X or a single vertex.

T

v

u

R

R1 R2

S

S1 S2

Fig. 6. Decomposition of a tree with maximum number of TDS

Proof. Assume to the contrary that one of R1, R2, S1, S2 is neither a single vertex nor of type X.

For each internal vertex w in R1 ∪R2 ∪ S1 ∪ S2, consider the branch of T that consists of w and all

vertices for which the unique path to u passes through w (i.e., everything �below� w in Figure 6).

Pick w in such a way that this branch, which we denote by B, is not of type X and is minimal

with this property. Such a branch must exist by our assumption on R1, R2, S1, S2. Then each of the

sub-branches B1 and B2 of B that are rooted at neighbours w1 and w2 of w must be a single vertex

or of type X (by minimality of B). If both B1 and B2 are single vertices, then B is of type X, a

contradiction. If one of them is a single vertex, but the other is not, then w has exactly one leaf

neighbour, which is also impossible (since u is the only such vertex).

Thus B1 and B2 are both of type X. If either of them has length 0, then the entire branch B is of

type X as well, which is a contradiction. Thus we are exactly in the situation of Lemma 3.5: we can

replace B by a single branch of type X, which yields a tree T ′ with δt(T
′) > δt(T ) by Lemma 3.5.

The lemma applies since the neighbour of w other than w1, w2 must be lea�ess (it lies on the path

between w and u, and it cannot have a single leaf neighbour since the only such vertex is u). This

contradicts the assumptions on T , thus completing the proof.

Theorem 3.7. Let n be a multiple of 4, and let T be a binary tree of order n that has the maximum

number of TDS among all trees of order n.

• If n = 4, then T is a star and δt(T ) = 7.

• If 8 ≤ n ≤ 16, then T is of the form shown in Figure 7, with δt(T ) = 32, 200, 1400 for n = 8, 12, 16

respectively.

• If n ≥ 20, then T is of the form shown in Figure 8, where a, b are positive integers with a+ b =
n
4
− 3, and

• δt(T ) = 10000 · 7n−20
4 .
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n
4
− 2

Fig. 7. The optimal binary tree when 4 | n and n ≤ 16

a b

Fig. 8. The optimal binary tree when 4 | n and n ≥ 20.

Proof. The case n = 4 is trivial, so assume that n ≥ 8. By Lemma 3.6, we already know that T

must be of the form shown in Figure 6, where R1, R2, S1, S2 are either single vertices or X-branches.

If R1 is a single vertex, then so is R2, and vice versa, since u is the only vertex that has exactly one

leaf neighbour. The same applies to S1 and S2. This leaves us with the following cases:

Case 1: |R1|= |R2|= |S1|= |S2|= 1. In this case, n = 8 and T is of the form shown in Figure 7. It

is easy to compute δt(T ) = 32. Since this is in fact the only binary tree of order 8 up to isomorphism,

the statement is trivial in this case.

Case 2: |R1|= |R2|= 1 or |S1|= |S2|= 1, but not both. Without loss of generality, we can assume

the former. Now S1, S2 must be X-branches, and it follows that T is of the form shown in Figure 8

for some nonnegative integers a, b with a+b = n
4
−3. This implies that n ≥ 12. By means of (11), we

�nd that δt(T ) = 200 · 7n−12
4 if a = 0 or b = 0, and (10) yields δt(T ) = 10000 · 7a+b−2 = 10000 · 7n−20

4

if a, b > 0 (which is only possible for n ≥ 20). Since 10000 · 7n−20
4 > 200 · 7n−12

4 , the former can be

excluded for n ≥ 20.

Case 3: R1, R2, S1, S2 are X-branches. This means that T has the shape shown in Figure 9

for some nonnegative integers a, b, c, d (the lengths of R1, R2, S1, S2, respectively). There are the

following possibilities:

(a) a = c = 0 (or a = d = 0, b = c = 0, b = d = 0). This means that R and S are both X-branches.

By Lemma 3.5, T cannot have the maximum number of TDS in this case.

(b) a = b = 0, but c, d > 0 (or c = d = 0 and a, b > 0). We can apply Lemma 3.4 to the two edges

other than uw1 that are incident with w1, which gives us

δt(T ) = 91 · 25 · 7c−1 · 25 · 7d−1 = 56875 · 7c+d−2 = 56875 · 7
n−24

4 ,

where necessarily n ≥ 24.

(c) exactly one of a, b, c, d (without loss of generality a) equals 0. Applying Lemma 3.4 in the same

way as before to edges incident with w1 and w2, we get

δt(T ) = 25 · 25 · 7b−1 · 25 · 7c−1 · 25 · 7d−1 = 390625 · 7
n−28

4 ,

where n ≥ 28.

(d) a, b, c, d > 0. Again, Lemma 3.4 applies, and we obtain δt(T ) = 390625 · 7n−28
4 (with n ≥ 32)

as in the previous case.
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Since both 56875 · 7n−24
4 < 10000 · 7n−20

4 and 390625 · 7n−28
4 < 10000 · 7n−20

4 , Case 3 cannot yield

the maximum number of TDS (the trees depicted in Figure 8 have a greater number of TDS). As we

have covered all cases, the proof is complete.

T

a b

c d

u v

w1

w2

Fig. 9. The shape of T with four X-branches.

Theorem 3.8. Let n ≡ 2 mod 4, n ≥ 6, and suppose that the binary tree T has the maximum

number of TDS among all binary trees with n vertices. Then T is of the form shown in Figure 10,

and

δt(T ) =


16, n = 6,

91, n = 10,

625 · 7n−14
4 , n ≥ 14.

n−6
4

Fig. 10. The optimal binary tree when n ≡ 2 mod 4.

Proof. Every binary tree T with at least three vertices can be decomposed as shown in Figure 11,

where R is a branch. This is true since T will always have an internal vertex that is a leaf in the

subtree induced by its internal vertices and therefore has two leaf neighbours. As in the proof of

Lemma 3.6, R can be split further into its root and two subbranches R1 and R2. By the same

argument as in the proof of Lemma 3.6, R1 and R2 have to be single vertices or X-branches. If both

are single vertices, then n = 6 and there is nothing to prove as there is only one binary tree with 6

vertices up to isomorphism. If exactly one of them is a single vertex, then the root of R has exactly

one leaf neighbour. Since we are assuming n ≡ 2 mod 4, there would have to be a second vertex

with this property (if there is only one, then n has to be a multiple of 4, as has been mentioned

earlier). However, this has been ruled out by Proposition 3.3. So the only possibility that remains is
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that R1 and R2 are both X-branches. In this case, T is of the form shown in Figure 10. The formula

for δt(T ) follows easily, either by a direct argument based on the observation that all support vertices

have to be included in a TDS, plus at least one neighbour of each support vertex, or by splitting T

into two X-branches and applying Lemma 3.4.

R

Fig. 11. Decomposition with branch R.

To summarize, the maximum number of TDS in a binary tree with n vertices is given by Table 1

for n ≤ 16, and otherwise by

max
|T |=n

δt(T ) =

{
10000 · 7n−20

4 , n ≡ 0 mod 4,

625 · 7n−14
4 , n ≡ 2 mod 4.

Table 1. Maximum number of TDS in small binary trees

n 2 4 6 8 10 12 14 16

max|T |=n δt(T ) 1 7 16 32 91 200 625 1400
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