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Toughness of directed graphs
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abstract

We initiate a study of the toughness of directed graphs by considering the natural generalization of

that for ordinary graphs. After providing some general results, computations are completed for a few

natural examples. Maximum possible toughness is also considered. Some open problems are posed.
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1. Introduction

The toughness of a graph [1, 2, 6, 7] is a measure of its vulnerability to vertex removal. If the

links between nodes in a network always re�ect two-way connections, then the toughness of the

corresponding graph measures how well the network can withstand node losses. However, if the

network has links that are only one-way, then an appropriate directed graph needs to be considered.

We shall refer to a directed graph as a digraph and only consider simple digraphs. These are

de�ned on a set of vertices with a set of arcs, each of which has the form (u, v). The ordinary graphs

we consider, however, may have multiple edges. Throughout this article, strong connectivity for a

digraph is taken as the analog of connectivity for an ordinary graph. That is, vertices u and v in

a digraph G are in the same component if there exists both a path from u to v and a path from

v to u in G. Thus, throughout, the modi�er `strong' is dropped in reference to connectivity and

components.

For each digraph G, let κ(G) denote the connectivity for G. Given a set of vertices U in a digraph

G, the number of components in the subgraph of G induced by U is denoted by ω(U). A separating

set for G is a set S of vertices of G such that ω(G \S) > 1. We extend Chvátal's de�nition [2] of the
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toughness of an ordinary graph and allow G to be a digraph by

τ(G) = min

{
|S|

ω(G \ S)
: S is a separating set for G

}
.

A tough-set for G is a separating set S for which τ(G) = |S|/ω(G \ S). All standard notation and

terminology not presented here can be found in [8].

2. Directed versus ordinary graphs

There will be no ambiguity in using the same parameter names for both the categories of ordinary

graphs and digraphs, as the context will always be clear. Moreover, we consider the following two

constructs for moving between these categories. Given a simple ordinary graph G, let G∗ be the

digraph on the same vertex set with two arcs (u, v) and (v, u) for each edge {u, v}. Conversely, given
a digraph G, its underlying graph G is the ordinary graph (not necessarily simple) with an edge

{u, v} for each arc (u, v). An arc (u, v) in a digraph is said to be reversible if (v, u) is also an arc.

A digraph is symmetric if every arc is reversible. The following two lemmas are immediate from the

de�nitions.

Lemma 2.1. For any graph G, τ(G∗) = τ(G).

That is, Lemma 2.1 equates the toughness of a symmetric digraph with that of a corresponding

ordinary graph. For example, since we know [2] that the toughness of the ordinary cycle Cn is 1, we

now have that τ(C∗
n) = 1 as well.

Lemma 2.2. For any digraph G, τ(G) ≤ τ(G). Moreover, if G is symmetric, then equality holds.

In general, we rarely expect equality to hold in Lemma 2.2 for digraphs that are not symmetric.

However, Figure 1 displays a nontrivial example in which equality does hold.
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Fig. 1. τ(G) = τ(G) = 1
2

Note there that any vertex serves as a tough set for G, while only the central vertex plays that

role for G.

The following theorem extends immediately from ordinary graphs to digraphs.

Theorem 2.3 ([2]). For a digraph G, τ(G) ≤ κ(G)/2.

Although equality in Theorem 2.3 holds for the example from Figure 1, equality is unlikely to

hold unless the digraph is rich in reversible edges. Thus we consider more typical types of connected

digraphs.
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3. Three classes of digraphs

For each integer n ≥ 2, we take Zn to be the set {1, 2, . . . , n}, where addition is taken modulo n. The

directed cycle Cn is the digraph on vertex set Zn with an arc (i, i + 1) for each i. The �rst class of

digraphs we consider is a generalization of this construction. For each positive integer r < n, de�ne

Cr
n to be the digraph on vertex set Zn with an arc (i, i + j) for each i and 1 ≤ j ≤ r. Of course,

C1
n = Cn. Figure 2 displays the case in which n = 12 and r = 2.
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Fig. 2. C2
12

The value of the graphs Cr
n to us comes principally from their connectivity, which we establish in

Theorem 3.2. Much of the work for the proof of that result is done by the following technical lemma.

Lemma 3.1. Given any integers a ≤ b and 1 ≤ s ≤ r < n, there exist s disjoint paths contained

in the segment {a + 1, . . . , b + s} of Cr
n that join the vertices {a + 1, . . . , a + s} to the vertices

{b+ 1, . . . , b+ s}.

Proof. We may assume that a = 0. By the Division Algorithm, we have b + s = qs + d for some

q ≥ 1 and 0 ≤ d < s. We �rst join {1, . . . , s} to {(q − 1)s + 1, . . . , qs} by adding s to each vertex

a total of q − 1 times. If d = 0, then we are done. So assume d ≥ 1. It remains for us to join

{(q− 1)s+1, . . . , b, b+1, . . . qs} to {b+1, . . . , qs, qs+1, . . . , b+ s}. This is done by adding s to each

vertex in the intial portion {(q−1)s+1, . . . , b}, which joins it to the �nal portion {qs+1, . . . , b+s}.

Theorem 3.2. For integers n and r with 1 ≤ r < n, κ(Cr
n) = r.

Proof. Since {1, . . . , r} is a disconnecting set of size r, it remains to show that at least r vertices

must be removed to disconnnect Cr
n. By Menger's Theorem, it su�ces to produce r internally disjoint

paths from {n} to {k}, for each 1 ≤ k ≤ n− 1.

First consider the case in which k > r. By the Division Algorithm, we have k − 1 = qr + d for

some q ≥ 1 and 0 ≤ d < r. For each 1 ≤ i ≤ r, we have the arc (n, i). This gives r internally disjoint

paths from {n} to the set {1, . . . , r}. By Lemma 3.1, we can extend these to be internally disjoint

paths that reach {k − r, . . . , k − 1}. Finally, for each r ≥ i ≥ 1, we have the arc (k − i, k), and this

extends our paths to be r internally disjoint paths from {n} to {k}.
Now consider the case in which k ≤ r. We have the arc (n, k), and, for each 1 ≤ i ≤ k− 1 we have

the path of (n, i) followed by (i, k). Thus we currently have k internally disjoint paths from {n} to

{k}. Further, for each k + 1 ≤ i ≤ r, we have the arc (n, i), which gives us r − k internally disjoint

paths from {n} to {k + 1, . . . , r}. By Lemma 3.1, we can then extend these to be internally disjoint

paths that reach {n− r+k, . . . , n−1}. Finally, for each r ≥ i ≥ k+1, we have the arc (n+k− i, k),

and this extends our paths to be r − k additional internally disjoint paths from {n} to {k}.
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Theorem 3.3. For integers n and r with 1 ≤ r < n, τ(Cr
n) =

r
n−r

.

Proof. Observe that S = {1, . . . , r} is a disconnecting set such that every vertex of Cr
n \ S forms an

isolated component. Thus, ω(Cr
n \ S) = n− r, and τ(Cr

n) ≤ r
n−r

.

Now let S be any disconnecting set for Cr
n. By Theorem 3.2, |S|≥ r. Of course, ω(Cr

n \ S) ≤
n− |S|≤ n− r. Thus, τ(Cr

n) ≥ r
n−r

.

Our second class of digraphs references the ordinary complete graph Km on m vertices. Since our

construction involves a direct product with K∗
m it has lots of reversible edges.

Theorem 3.4. For integers n,m ≥ 2, τ(Cn ×K∗
m) =

m
n
.

Proof. Let S = {(1, 1)} ∪ {(2, j) : 2 ≤ j ≤ m}. Observe that S is a disconnecting set of size m.

For each 1 ≤ i ≤ n, there is now a component of the complement of S contained in the remaining

portion of {i} ×K∗
m. That is, ω((Cn ×K∗

m) \ S) = n. Thus, τ(Cn ×K∗
m) ≤ m

n
.

Now let S be any disconnecting set. If |S|< m, then there must be some 1 ≤ j ≤ m such that S

is disjoint from Cn × {j}, whence S is not a disconnecting set. Thus |S|≥ m. For each 1 ≤ i ≤ n,

there can be at most one component of the complement of S contained in the remaining portion of

{i} ×K∗
m. Hence ω((Cn ×K∗

m) \ S) ≤ n, and we have τ(Cn ×K∗
m) ≥ m

n
.

In contrast with Theorem 3.4, it follows from Lemma 2.1 and a result of Chvátal [2] that

τ(K∗
n ×K∗

m) = τ((Kn ×Km)
∗) = τ(Kn ×Km) =

n+m− 2

2
.

Of course, this agrees with Theorem 3.4 when n = 2. For our third class of digraphs, we consider

the tori, which have no reversible edges.

Theorem 3.5. For each integer n ≥ m ≥ 2, τ(Cn × Cm) ≤ m
n+m2−2m

.

Proof. Let S = {(i,m + 1 − i) : 1 ≤ i ≤ m}. Observe that S is a disconnecting set of size m. In

(Cn × Cm) \ S, each vertex (i, j) with 1 ≤ i, j ≤ m and j ̸= m+ 1− i forms an isolated component.

Further, for each m+ 1 ≤ i ≤ n, the subgraph {i} × Cm forms a component. Thus

ω((Cn × Cm) \ S) = m(m− 1) + n−m = n+m2 − 2m.

Since K∗
2 = C2, Theorem 3.4 gives τ(Cn × C2) = 2

n
, and we thus have equality in Theorem 3.5

when m = 2. In fact, we conjecture equality there for all m. What are some other natural digraphs

for which the toughness can be computed?

4. Maximum toughness

The determination of the maximum toughness among ordinary graphs with a �xed number of vertices

and edges has been studied extensively [3, 4, 5]. In our consideration of digraphs here, we have

encountered, for example, three digraphs with 9 vertices and 18 arcs. Speci�cally, we saw that

τ(C∗
9) = 1, τ(C2

9) =
2
7
, and τ(C3 × C3) ≤ 1

2
. In fact, those values illustrate the following result.
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Theorem 4.1. If G is a digraph on n ≥ 4 vertices with 2n arcs, then τ(G) ≤ 1.

Proof. We consider here the ordinary degree of vertices in G. Since the sum of the degrees in G is

4n, there must be a vertex v with deg(v) ≤ 4. Thus we have either in-deg(v) ≤ 2 or out-deg(v) ≤ 2.

If in-deg(v) ≤ 2, then take S = {u : (u, v) is an arc}, and, if out-deg(v) ≤ 2, then take S = {u :

(v, u) is an arc}. In any case, |S|≤ 2, and v is an isolated vertex in G \ S, whence ω(G \ S) ≥ 2.

Therefore, τ(G) ≤ |S|
ω(G\S) ≤ 1.

Since τ(C∗
n) = 1, Theorem 4.1 gives that the maximum toughness among digraphs with n vertices

and 2n arcs is 1. This leads us to the following conjecture.

Conjecture 4.2. For any n ≥ 4 and 0 ≤ m ≤ n(n−1)
2

, the maximum toughness among digraphs with

n vertices and 2m arcs equals the maximum toughness among ordinary graphs with n vertices and m

arcs.

Conjecture 4.2 suggests that the toughest way to build a network in which only one-way links are

available is to pair together links to make them reversible.
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