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Abstract. A simple model of an unreliable network is a probabilistic graph in which
each edge has an independent probability of being operational. The two-terminal reli-
ability is the probability that specified source and target nodes are connected by a path
of operating edges. Upper bounds on the two-terminal reliability can be obtained from
an edge-packing of the graph by source-target cutsets. However, the particular cutsets
chosen can greatly affect the bound. In this paper we examine three cutset selection
strategies, one of which is based on a transshipment formulation of the k-cut prob-
lem. These cutset selection strategies allow heuristics for obtaining good upper bounds
analogous to the pathset selection heuristics used for lower bounds. The computational
results for some example graphs from the literature provide insight for obtaining good
edge-packing bounds. In particular, the computational results indicate that, for the pur-
poses of generating good reliability bounds, the effect of allowing crossing cuts cannot
be ignored, and should be incorporated in a good edge-packing heuristic. This gives
rise to the problem of finding a least cost cutset whose contraction in the graph reduces
the source-target distance by cxactly one.

Notation

G =(V,E) Graphonnode set V and edge set E.
D= (V,E) Directed Graph on node set V and arc set E.

n,m Number of nodes and edges of the graph respectively.

s,t The source and target node of the graph respectively.

Pe Operating probability of edge e.

cap(e) Capacity of an edge e.

SCE Network State: the subset of operating edges of the graph.

7(s,t,8S) binary connection function. 1 if s and ¢ are connected by only
edges in S, 0 otherwise.

Rel(G,s,t) The two-terminal reliability of G with respect to nodes s and &.

Ch,...,Cx  Asetof k edge-disjoint cutsets of G.

My, ..., M A setof k edge-disjoint pathsets of G.

FiCW)) Amount of flow along an arc (1, j).

cost(t, 5) Cost per unit flow along an arc (1, ).
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Introduction

A simple model of a communications network is a graph G = (V, E) in which
each edge e € E operates with an independent probability p.. The two-terminal
reliability Rel(G, s,t) of G with respect to a source node s and target node ¢ is
the probability that s and t are connected by a path of operating edges. A state
of the network is a subset S C E which represents precisely the operating edges.
The probability P(S) that the network is in state S is [],cg Pe [ [cep_s(1 — Pe) -
Define r(s,t,S) to be 1if s and ¢ are connected in state S, and 0 otherwise.
The two-terminal rcliability Rel( G, s, ), can be expressed in terms of all possible
network states as follows:

Rel(G,s,t) = Y P(S)7(s,1,5).
SCE

The number of possible nctwork states is, in general, exponential in the size of
the network, and computing the two-terminal reliability exactly known to be NP-
hard [20], in other words, an amount of time which is exponential in the size of the
network will be required, in general, to compute the reliability exactly. As aresult,
much research has been devoted to methods for estimating or approximating relia-
bility. These methods cither approximate the reliability by sampling or incomplete
enumeration techniques, or by limiting the information extracted from the graph.
Sampling or Monte Carlo techniques obtain an estimate of the reliability by sam-
pling random network states. The accuracy of the estimate increases as more sam-
ples are taken. An excclicnt comparison of Monte Carlo-based approximations is
described in [9]. Incomplcte enumeration, such as the partial factoring described
in [8], approximate the reliability by only partially completing an exact computa-
tion. One generally obtains upper and lower bounds from the partially completed
exact computation. Both sampling and partial enumeration are restricted by the
amount of time the problem solver is willing to spend on the problem. In contrast,
methods such as cutset or pathset based methods, including those described in this
paper, only use partial structure information. In this approach one approximates
the problem by accounting for only some of the graph structure, and then solving
the approximate problem exactly. These computations are not generally limited
by the computation time, but rather the amount of information which is used to
approximate the graph. In other words, the computations can usually be carried
to completion in rcasonable time, but accuracy of the estimates are limited by the
amount of the actual graph structure which is accounted for. For example, in this
paper the behavior of the network is approximated by accounting only for certain
cutsets, as opposed to all possible failure modes.

A collection of subgraphs Gy = (V, E1), G2 = (V, E2),...,Gr = (V, Ey),
in which B, E,, . .., E; arc all mutually disjoint subscts of E, is called an edge-
packing of the graph G = (V, E). Inother words, it is a collection of edge-disjoint



subgraphs of G. An s, t-path or pathset is a minimal set of edges which connect
s and ¢, an s,t-cutset or cutset is a minimal set of edges whose removal from
the graph leave s and ¢ disconnected. One obtains lower and upper bounds on
the two-terminal reliability by edge-packing the graph with pathsets and cutsets,
respectively. If My, Ma, ..., My is a collection of k edge-disjoint s, t-paths, then

k
Ral(G,s5,1) >1-]] (1 -1 p,) : e

i=1 eEM;

IfC,,Ca,...,Cy is a collection of k edge-disjoint s, t-cutsets, then

k
Rel(G,s,t) <1-T] (1 -TIa —p,)). @

1=l e€eC;

Applying the above bounds to a particular edge-packing is straightforward, but
these formulations say nothing about how the edge-packings (pathsets or cutsets)
should be chosen in order to obtain the best bound. For example, one might se-
lect a maximum number of edge-disjoint paths, shortest paths, most reliable paths,
or combinations of thcse. In general, the selection of paths or cutsets affects the
bound. Nor is the strategy for selecting an optimal edge-packing straightforward.
In particular, the problem of selecting a set of edge-disjoint s, t-paths which max-
imizes the lower bound is NP-hard [16]. )

Two-terminal lower bounds based on edge-packings by s, t-paths have been
studicd a great deal. This is well surveyed in two recent research monographs [5]
and [19]. The most successful path selection strategy appears to be the mincost
method of Brecht and Colbourn [3] [4]). It is a heuristic method which employs
network flow techniques. If each edge e € E is assigned a capacity cap(e), a
Jflow assignment assigns to each edge a flow f(e) such that 0 < f(e) < cap(e).
Flows have direction; this is usually accommodated by transforming an undirected
graph into a directed graph by replacing each edge with a pair of directed arcs.
The flow f(e) on arc e is flow in the direction of the arc. An s, t-flow is the net
amount of flow from s 10 t. A maximum s,t-flow is an s,t-flow of maximum
value. If each edge is also assigned a cost cost( e), the cost of a flow assignment
is ) .cg fe)cost(e).

Network flows have been studied a great deal and some excellent presentations
are given by Gondran and Minoux {12], Lawler [14], and Ford and Fulkerson [11].
A network in which cach cdge has a capacity of 1 and which has an s, ¢-flow with
integer value f must have f edge-disjoint s, t-paths. The largest f can be is c, the
size of a minimum cardinality s, ¢-cutset. Brecht and Colbourn assign to each edge
a cost of — log(p.) and compute a minimum cost flow assignment for each of the



integer flow values f between 1 and c. In each case this results in k = f edge-
disjoint s, t-paths M ... M; which minimizes 2,,, Y een; — 108(pe) or equiv-

alently maximizes 2,,, > een, —Pe- The largest which results from among these
edge-packings is what they call the mincost lower bound. The method is heuristic
because the edge-packing M, ..., My which maximizes 2,,1 Y een, —Pe does
not in general maximize (1); but lt appears to be an effective strategy. Brecht {3]
has reported on the relative performance of different two-terminal lower bounds
(including the Kruskal-Katona bounds) and observes that the mincost Iower bound
is the best in the majority of his test cases.

The Kruskal-Katona bound is the other main combinatorial method for comput-
ing reliability bounds. It is based on a reliability polynomial in which coefficients
of the polynomial count the states of a particular size in which s and ¢ are con-
nected. The Kruskal-Katona bounds, however, apply only to graphs in which each
edge operates with the same probability. Computational results on example graphs
in [3] [5] suggest that, even under this assumption, the edge-packing lower bounds
are better than the Kruskal-Katona bounds in the two-terminal problem.

Edge-packing upper bounds have not been studied to the same extent. In this
paper we describe three strategies for selecting s, t-cutsets and compare the two-
terminal upper bounds that result.The first strategy always selects a maximum
number of edge-disjoint cutsets. The second selects minimum capacity cutsets in
a greedy manner using nciwork flows. Finally, Wagner [21] has recently shown
that the k-cut problem (defined in the next section) can be formulated as a trans-
shipment problem, and hence can be solved in polynomial time. The solution to
the k-cut problem provides a bounding strategy for upper bounds which is anal-
ogous to the mincost strategy for lower bounds. A brief synopsis of the paper
follows.

In Section 1 we present the first two selection algorithms, and introduce the k-
cut problem. In Section 2 we review the steps of the network simplex method. In
Section 3 Wagner’s k-dicut transshipment formulation is described along with a
graph theoretic implementation for finding k edge-disjoint s, ¢-cutsets of minimum
cost. Finally, in Section 4 we apply these bounding strategies to some example
graphs from the literawre. These results provide insight into the requirements of
a good cutset sclection heuristic, and gives rise to a new minimum cost cutset
selection problem.

1.0 Selecting Edge-Disjoint Cutsets

The maximum number of edge-disjoint s, t-cutsets a graph can have is equal to the
length of ashortest s, ¢-path [17]. A maximum number of edge-disjoint s, t-cutsets
can be found easily by performing a breadth-first search starting from the source
node s. Let [ be the length of ashortest s, t-pathinG. LetV;,i = 1,..., l be the set
of nodes reachable from s along a path of length i. Let E; be the set of all edges



between a node in V; and V;_;. Each E; contains a unique s, t-cutset which in
edge-disjoint from that of Ej, j # 4. This appears to be the first selection strategy.
used for computing two-terminal upper bounds based on edge-packings by cutsets
[6] [10]. The resulting bounds reported in [6)] for the graph in Figure 4.1 are
competitive with the subgraph counting Kruskal-Katona bounds, notwithstanding
the fact that the Kruskal-Katona bounds apply only when the edges probabilities
are the same.

Recall that for an edge-packing C) , .. ., C; by s, t-cutsets, the two-terminal up-
per bound is given by equation (2). It is evident from this formulation that a large
number of small cutsets would tend to keep the upper bound low. Nevertheless,
selecting a maximum number of cutsets often results in relatively large cutsets
(in part as a result of the fanout effect of a breadth-first search). Large cutsets
work against keeping the upper bound low. This suggests using an edge-packing
with small, failure prone s, t-cutsets, and not necessarily a maximum number of
s, t-cutsets. We again employ the theory of network flows.

Instead of selecting an edge-packing with a maximum number of cutsets, the
idea here is to select a cutset C for which the factor 1 “Zeec( 1—p,) is minimum.
This is equivalent to selecting a cutset C for which ), ~(1 —pe) is a maximum.
If all edges operate with the same probability p, this is equivalent to selecting a
minimum cardinality s, ¢t-cutset; it need not be a minimum cardinality cut if the
edge probabilities differ.

Maximizing [],cc 1 — p. is equivalent to minimizing — log (3°,¢c(1 — pc))-
If we assign to each cdge e a capacity of —log(1 — p.) the problem becomes a
linear minimization problem, namely, finding an s, t-cutset C which minimizes
Y eec — 10g(1 — p.); in other words, finding a minimum capacity cutset. Again,
the maximum network flow problem can be solved efficiently, and as a side-effect
produce a minimum capacity cutset. See for example Hu [13]. The complete edge-
packing is obtained by selecting an s, t-cutset C which minimizes 1 - )", (1 -
Pe) » contracting the cdges of this cutset, and repeating this process until no fur-
ther edge-disjoint cuts exist. Contracting an edge involves deleting the edge and
collapsing its two end nodes into a single node.

Nel and Colbourn [15] used this greedy selection of minimum capacity cutsets
to obtain upper bounds for the graph in Figure 4.1 and observed that the resulting
bounds are better than those obtained using the breadth-first search for more than
99% of all the possible s, t pairs.

The last selection strategy is based on a transshipment formulation of the k-cut
problem. Given a graph G = (V, E) with distinguished nodes s, and ¢, and a real
valued cost cost(e) associated with each edge e € E, the k-cut problem is to find
k edge-disjoint s, t-cutsets C1, ..., C¢ which minimizes 35, (T .c, cost(e)).
If each edge is assigned a cost of — log (1 —p.) , an edge-packing which solves the
k-cut problem minimizes 3%, ,¢q, — 10g(1 — p.) or equivalently, maximizes



2{-‘,, Y eec,(1—pe). Again maximizing }:f;l Y eec,( 1 — pe) may not minimize
Yk (1 = Teeq (1 — Pe)), but is a heuristic analogous to the mincost pathset
selection for the lower bounds. For k = 1 the problem reduces to the minimum
capacity cutset problem described above. When k = ¢ a maximum number of
edge-disjoint cutsets is selected, but the bounds may differ from those obtained
using a maximum number of cutsets selected by breadth-first search.

Wagner [21] has recently shown that the k-cut problem can be formulated as
a transshipment problem, and hence can be solved in polynomial time. Trans-
shipment problems are special cases of linear programming problems and can be
solved very elegandy with the network simplex method. In the next section we
briefly review the steps in the network simplex method {7]. In Section 3 we illus-
trate the solution of the k-cut problem using this simplex method. The transfor-
mations and algorithms are illustrated in a graph-theoretic context (as opposed to
a linear programming context and lead to easy computer implementation. For a
linear programming formulation, as well as correctness proofs for the transforma-
tions see [21].

2.0 The Network Simplex Method

The network simplex method is a well known method for solving transshipment

problems; for an excclient general description see Chvtal [7]. We review the
basic steps of the network simplex method to clarify the transshipment formulation
of the k-cut problem in the next section. Readers familiar with transshipment
problems and the network simplex method can skip to the next section without
loss of continuity.

An instance of a transshipment problem is a directed graph D = (V, E) in
which each node has an associated demand (regative demands indicated sources,
and positive demands indicate sinks) and each arc (i,7) € E has an associated
cost cost(, ). The objective is to assign a non-negative amount of flow f(3, j) to
each arc (4, ) € E such that the net flow to each node equals its demand, and the
cost of the flow assignment Z(,. JEE f(4,7)cost(4, j) is minimized. In addition,
it is usually assumcd that the total supply equals total demand (i.e. the sum of
the node demands is zcro). Transshipment problems can be solved very elegantly
with the network simplex algorithm. We illustrate the steps involved using the
following example from [7].

In figure 2.1 the arc labels are the arc costs and the node demands for nodes
v,...,v7 are 0, 0, 6,10, 8, —9, and —15, respectively. A feasible tree solution
for a transshipment problem is a flow assignment which meets the flow constraints,
and in addition, the subgraph consisting of all arcs with non-zero flow is a forest.
Arcs with 0 flow are usually added to complete a spanning tree. A feasible tree
solves the transshipment problem if it also minimizes the objective function. If
a transshipment problem has a feasible solution, it has a feasible tree solution
and, moreover, has an optimal feasible tree solution [7]. The network simplex
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Figure 2.1

algorithm operates exclusively on feasible tree solutions and itcratively refines
them until an optimal tree results. We illustrate this starting with the following
feasible tree solution; general methods for finding initial solutions are discussed
in (7).

-9

Figure 2.2

In figure 2.2 the edge labels are the assigned flows; the node labels are the
demands. It is easy to verify that this solution meets the flow constraints. The



network simplex method iterates with the following steps.

Step1:  Starting with a reference node which is assigned a price of 0, deter-
mine “fair prices” y; for each remaining node ; as follows. y; = y; + cosl(i, 5)
for (4, ) an arc in the current feasible tree. For example, selecting node 7 as the
reference node and setting y; = 0 we obtain the following node prices (figure 2.3).

33 } > 62

51

Figure 2.3

Step 2: Select an entering arc. Choose a non-tree arc (£, ) such that y; +
cost(1,7) < yj. If nosucharc exits the current tree is optimal and we can stop. For
example, choosing arc (7, 5) as the entering arc, in which case y7 + cost(7,5) =
59 < ys, we obtain figure 2.4

' L

Figure 24
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Step 3: . Selcct aleaving arc (pivot step). Examine the unique cycle formed
by the entering arc and the current feasible tree. Define a forward traversal of this
cycle to be in the direction of the entering arc, and reverse otherwise. Identify the
smallest flow assignment f from among the reverse arcs in the cycle, in this case
f = 8 onarc (1,5). Subtract this amount of flow f from all reverse arcs in the
cycle and add this amountf to all the forward arcs. This defines a new feasible tree
solution, as shown in figure 2.5.

Figure 2.5

These three steps are iterated until an optimal soludon results.

3.0 The Dicut Transshipment Formulation

Recall that the k-cut problem is to find k edge-disjoint s, t-cutsets Ci, ...,Ck
which minimizes L., (3,ec, cost(e)). In the case of a directed graph D =
(V,E) callan arc (1,;) € C of an s,t-cutset C a forward arc if its tail is in the
component of the subgraph D\C which contains the source node s, and call it
a reverse arc otherwise. Define F(C) to be the set of forward arcs of C. The
directed k-cut problem is that of finding k edge-disjoint s, t-cutsets Cy,...,Ck
which minimizes Y., (3,er(c, cosi(€) ). The directed k-cut problem includes
the undirected k-cut problem under the following transformation. Replace each
edge e = (4,7) in the undirected graph with a pair of arcs (1, ) and (7,) and
assign to each arc the same cost cost(e).

An s, t-cutset is an s, t-dicut if all its arcs are forward arcs. The k-dicut problem
is that of finding k edge-disjoint s, t-dicuts Ci, ..., Gy which minimizes 3°% |
(EeGC‘ cost( e)). The k-dicut problem includes the directed k-cut problem (and
hence the undirected problem) under the following transformation. Replace each
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arc (1, 7) by two new arcs (1, w) and (j, w), where w is a new node incident only
with these two arcs. Assign cost(i,w) = cost(1, j) and cost(j, w) = 0.

Thé main result of Wagner [21] is that the k-dicut problem (and hence the k-cut
problem) can be formulated as a specially structured transshipment problem, and
that the solution to the transshipment problem can be transformed into the required
k-cut edge-packing. In what follows we illustrate this transformation from an
undirected k-cut problem to an instance of the transshipment problem, and its so-
lution using the network simplex method. Again, the description is graph-theoretic
and is easily implemented on a computer. We illustrate the steps involved using
the very simple instance of an undirected 1-cut problem (k = 1) in figure 3.1.
This instance consists of a graph with two edges having costs of 10 and 1.

10 1
Se — !

b
Figure 3.1

Step 1: Transform the undirected problem into an instance of a directed
problem by replacing each edge with a pair of oppositely directed arcs (figure 3.2).

10 1
s -
b
10 1
Figure 3.2

Step2:  Transform the directed instance into an instance of the k-dicut prob-
lem by replacing each arc (1, j) by a pair of arcs (1, w) and (j, w), introducing
a new node w incident only with these two arcs. In addition, add a directed path
P of length k from s to ¢ but otherwise disjoint from the graph, and assign each
edge of this path a cost of 0 (figure 3.3).

Figure 3.3

Step 3: Construct the transshipment graph from the previous graph as fol-
lows. Each node is assigned a demand equal to the sum its incoming arc costs mi-
nus its outgoing arc costs. The arc costs are all replaced by 0, except the arcs of the

12



added s, t-path which are each assigned a cost of -1. Finally, for every arc (1, 7),
add a new arc (7, 1) with a cost of 1. The resulting graph, shown below, forms the
instance of the transshipment problem. The transhipment formulation transforms
a graph G = (V, E) into a new graph G’ = (V', E') with |V’| = |V| + 2|E| and
|E| = 2(4]E] + k). Thus while the size of the graph is increased it is clearly a
polynomial transformation. The resulting graph appears in figure 3.4.

-1

Figure 3.4

The next few figures illustrate the iterations of the network simplex method for
this instance of the transshipment problem. Because of the special structure of the
dicut transshipment problem an initial feasible tree solution is easily constructed
from the intermediate graph obtained in Step 2 above.

i) Arcs with non-zero costs are included and assigned their cost.
ii) The added s, t-path is included (this cannot form a cycle).
iii) Other zero-cost arcs are added to complete a spanning tree of the graph (this
ensures that an entering arc does, in fact, create a cycle).

(For a more general discussion on forming initial tree solutions see [7].) This
results in the initial feasible tree solution in figure 3.5; nodes are labeled with their
demands, and arcs are labeled with their assigned flow.

The first iteration of the network simplex method goes as follows. i) starting
with the source node s, nodes are priced using the edge costs of the original trans-
shipment graph. The resulting prices are shown on the node labels in figure 3.6. ii)
An entering arc is chosen; shown by the dashed arc. iii) The arc with the smallest
reverse flow is chosen as the leaving arc; shown by the double arrowhead.

Once the leaving arc is chosen the flow assignments are adjusted. The second
iteration results in the following feasible tree (figure 3.7).

No further iterations arc possible and so the feasible tree solution in figure 3.8
is optimal.

13



Figure 3.5

Figure 3.7

The final requirement is to transform the optimal tree solution of the transship-
ment problem into the desired edge-packing for the original k-cut problem. Let
T be the resulting optimal tree. Define the weight of the unique ¢, j-path in T to

14



Figure 3.8

be the sum of the forward arc costs minus the sum of the reverse arc costs. De-
fine IT, = 0 and IT; to be the weight to the unique s, i-path in T'. Next, partition
the node set V into r classes Vj,..., V; such that V; contains all nodes with the
same weight I, and V; contains the nodes with the largest n values, V3 the sec-
ond largest, and so on. Define K; to be the set of all arcs leaving V;. The sets
Ky,..., K, are disjoint dicuts with the property that exactly k of the dicuts are
s, t-dicuts [21]. Moreover, each of these k dicuts contains exactly one of the k
arcs from the s, t-dipath P added to the graph. The arcs of these s, ¢-dicuts are
easily associated with edges of the original graph by reversing the transformation
process used to create the transshipment graph from the original graph. In the
optimal tree solution above each node is labeled with its IT value. The resulting
partition is Vi = {s,al,a2,b}, and V> = {t,cl,c2}, which corresponds to cut-
set {(s,t), (b,cl), (b,c2)} in the dicut graph (step 2) or cutset {(b,c)} in the
original undirected graph.

4.0 Computational Experience

In this section we apply the three cutset selection strategies to some example
graphs from the literature. The first example, shown in Figure 4.1, is a skeleton
of the American ARPA computer network which was used in the original appli-
cations of the breadth-first search method in [6], and again in [15]. The second
example, shown in Figure 4.2, has been used by Fishman [9] for comparing Monte
Carlo methods for estimating reliability. The accompanying tables, Table 1 and
Table 2, show the upper bounds on the two-terminal reliability obtained using the
three edgepackings for a variety of source-target pairs. In each case the bounds
are shown for a range of edge operation probabilities. In these experiments all the
edges in the graph were assigned the same operation probability, but this is not a
restriction of the method itself.

Two observations are apparent from Tables 1 and 2. First, the breadth-first
search method gives distinctly inferior bounds. Second, the minimum capacity

15



Figure 4.1

and k-cut methods give the same results in most cases, but where they do differ in
the first example, the minimum capacity bounds are often much better. (The places
in Table 1 where the minimum capacity and the k-cut results differ are marked
with an *.) However, as the following small examples show, neither method is
uniformly better than the other. In the figure 4.3.

u
991
s t
9
v
Figure 4.3

the minimum capacity method would select the cuts {(s,v),(u,v),(u,t)}, and
then no further cuts arc possible. The resulting two-terminal upper bound for this
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Figure 4.2

cutsetis 1 — (.1)(.1)(.1) = .999.

On the other hand, for & = 1, the k-cut method would also select {( s, v),(u,v),
(u,t)}, producing the same bound, but for k = 2 would select {(s, u), (s,v)}
and {(u,t), (v,t)} which gives abound of (1 — (.009)(.1))(1 - (.009)(.1)) =

.998201. In this example the k-cut selection strategy gnves the better bound.

In the following example (figure 4.4)

u

Figure 44

the minimum capacity method would select the cut {(s,v), (u,t)} and {(s, u),
(v,t)}, which gives the bound (1—(.1)(.1))(1—-(.01)(.01)) = .989901. Onthe
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Table 1: Upper bounds for ARPANET (Figure 4.1)
S, edge breadth-first minimum
pairs prob. search capacity k-cut
1,57 .1 005313 .000678* 000858
3 316912 .100855* .109906
S 773118 467359+ 471039
a 961798 .831290* 831472
9 998889 .986934 986934
95 .999868 997120 .997120
.99 .999999 .999897 .999897
2041 .1 .000010 .000002* .000003
3 025465 .012426* .013551
.5 263124 .198977* .209805
1 672467 629237+ 631690
9 960393 .957706* 957717
95 990025 989666 989666
99 999600 .999597 .999597
22,23 .1 000646 000332 000332
3 095321 063725 063725
5 440022 359201 .359201
7 .796691 739611 739611
9 979011 970095 970095
95 994875 992506 992506
99 999799 .999700 .999700
22,34 .1 002543 000260* 000277
3 .246897 083277+ 087981
.5 670065 456794* 473635
7 900914 .832166* .838262
9 989899 .987003* 987033
95 997494 997125* 997126
99 999900 .999897 999897
29,31 .1 005154 001965 .001965
3 225704 139170 139170
5 .620920 521507 521507
N 882441 .852469 .852469
9 988999 987912 987912
95 997375 997244 997244
.99 999899 999898 .999898
42,53 .1 005313 001592 001592
3 316912 .164916 164916
S 173118 577529 577529
7 961798 874847 874847
9 .998990 996006 996006
95 999868 997369 997369
99 999999 999899 .999899

other hand, for k = 1 the k-cut method would select {(s, v), (u,t) }, which gives
abound of .990000, and for k = 2 the cuts would be {(s, u), (s,v) } and {(u,?),
(v,t) } which gives a bound of (1 — (.01)(.1))(1 — (.01)(.1)) = .998001. In
this example the minimum capacity method produces the better bound.

This second example is instructive because it accounts for the discrepancy be-
tween the minimum capacity results and the k-cut results in Table 1. In particu-
lar, the same total collection of edges are selected by each method to obtain two
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Table 2: Upper bounds for Figure 4.2

5,0 edge breadth-first minimum
pairs prob. search capacity k-cut
11,19 .1 059497 034411 034411
3 511503 .380866 .380866
5 847870 753662 .753662
7 971582 946039 946039
9 .998998 998000 .998000
95 .999875 999750 999750
.99 .999999 .999998 .999998
14,20 B 126979 073441 073441
3 579705 431649 431649
5 .861328 765625 .765625
a 972291 .946729 946729
9 .998999 998001 .998001
95 999875 999750 999750
99 .999999 .999998 999998
12,15 .1 027878 016124 016124
3 451325 336057 336057
5 834622 741886 741886
7 970874 945349 945349
9 998997 997999 997999
95 999875 999750 999750
.99 999999 999998 999998
1,20 .1 007555 007555 .007555
3 .296521 296521 .296521
.5 730294 730294 730294
) 944660 944660 944660
9 997998 997998 .997998
95 999750 999750 999750
.99 .999998 999998 .999998
29 .1 059497 034411 .034411
3 511503 .380866 380866
.5 .847870 753662 753662
N 971582 946039 946039
9 998998 .998000 .998000
95 999875 999750 999750
.99 .999999 2999998 999998
6,9 R .027878 016124 016124
3 451325 .336057 .336057
5 834622 741886 741886
7 970874 945349 .945349
9 998997 997999 998000
95 999875 .999750 .999750
99 .999999 .999998 .999998

edge-disjoint cutsets. However, it is the way the edges are grouped into individ-
ual cutsets which affects the value of the resulting bound. Let us elaborate. For
a particular value of k, the k-cut method selects a collection K of edges from
the original graph with the property that these edges can be partitioned into k
edge-disjoint s, t-cutsets. It is the cost of the entire collection of edges which is
minimized, and not the cost of individual cutsets. Consider the graph G obtained
from the original graph G by contracting all of the edges in E — K. The length
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of a shortest s, t-path in G, is precisely k and, morcover, every edge in G is
on a shortest s, t-path. In other words, if the edges in G are partitioned into &
edge-disjoint s, t-cutsets, every edge participates in exactly one cut. One obtains
Wagner’s partition of K into cutsets by applying the breadth-first search method
to the resulting graph G . However, the partition of K into k edge-disjoint cutsets
is not, in general, unique. In the last example the graphs G and G, are, in fact, the
same and for k = 2 the minimum capacity and k-cut methods partition the same
collection of edges into different cuts. The distinction is that the cutsets obtained
from the k-cut method are non-crossing , whereas the cutsets obtained using the
minimum capacity method can cross. Deleting a minimal s, t-cutset partitions a
graph into two components, one containing s and the other containing t. Two
s, t-cutsets are non-crossing if all the edges of one is contained within one of the
components obtained by deleting the other; otherwise, the cutsets are crossing.
The difference in the minimum capacity and k-cut bounds in Table 1 is accounted
for by using the minimum capacity method to repartition the complete set of edges
sclected by the k-cut method.

The reliability bound given by equation (2) does not require that the cutsets be
non-crossing, only that they be edge-disjoint. The restuls in Table 1 show that
the effects of allowing crowssing cuts are significant. While the differences for
the example in Table 1 are accounted for by repartitioning the k-cut edges using
the minimum capacity method, there is no guarantee that the minimum capacity
method would find a maximum number of cutsets. This is demonstrated in the first
of the previous two examples, where greedy selection of the cutset makes further
selection of cutsets impossible.

The previous discussion begs the question of whether or not the edge-set ob-
tained from the k-cut method can be partitioned into k edge-disjoint s, t-cutsets by
a method other than breath-first search. In particular, it gives rise to the following
cutset selection problem.

Given a graph G = (V, E) with distinguished nodes s and ¢, and rcal costs
cost{ e) assigned to every edge e, find a least cost s, t-cuiset C such that if all the
edges of C are contracted, the length of a shoriest s, t-path decreases by exactly
one. Again, the cost of the cutsetis ) cost(e). An efficient algorithm for this
problem would provide an alternative partitioning heuristic and would ensure a
maximum number of cutsets. Such an algorithm would have immediatc applica-
tion in computing reliability bounds.

Finally, there are situations in which non-crossing cutsets may be dcsirable.
AboElIFotoh [1] has recently developed a heuristic method for computing two-
terminal reliability bounds which is based on forming series-parallel approxima-
tions of the original graph. His method makes an improvement over the edge-
packing bounds in as much as it starts with, and preserves, an edge-packing by
s, t-cutsets. However, a restriction of his approach is that the cutsets must be non-
crossing. Thus the k-cut selection strategy, which ensures non-crossing cuts, has
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immediate application to his approach.

One way to improve the reliability bound is to use more cutsets by allowing
cutsets to overlap, That is, removing the restriction that the cutsets be edge-
disjoint. Shanthikumar [18] has used this approach to obtain bounds based on
consecutive minimal s, t-cutsets. Consider an ordered collection of edge cut-
sets Cy € Gy £,...,Cy. The ordered collection of cutsets is consecutive if
an edge belonging to cutsets C; and C;, C) < G,, also belongs to any cutset C,
C1 £ C £ C,. Shanthikumar obtains a collection of consecutive s, t-cutsets as
follows. Nodes are labeled 1,...,n, with s = 1 and t = n. The cutsets are C;,
i=1...n— 1, where C; contains the unique s, t-cutset contained in the edges
between the nodes {1,...,1} and {i + 1,..., n}. This collection of cutsets will,
in general, be greater than the maximum number of edge-disjoint cutsets, and the
probability that at least one cutset fails can be computed easily if the cutsets are
consecutive [18]. One minus the probability that a least one cutset fails is precisely
the upper reliability bound.

The disadvantage of using these consecutive cutsets is that the particular cutsets
selected depends on the ordering imposed on the nodes. In particular a cutset
whose contribution to the bounds is greatest may be missed and, in general, no
crossing cuts are allowed. This suggests using the edge-packing methods as a
way of assigning the node ordering in Shanthikumar’s approach. For example, if
the nodes are labelled according to the k-cut partitions, the consecutive set of cuts
will include all the cutsets selected by the k-cut method.

5.0 Conclusions

We have examined three strategies for edge-packing a graph with s, t-cutsets,
along with the reliability bounds which result. These selection strategies make
possible two-terminal upper bounds which are analogous to the two-terminal lower
bounds obtained from edge-packings by s, t-paths. Wagner’s transshipment for-
mulation of the k-cut problem makes possible a powerful heuristic for constructing
an edge-packing by non-crossing s, t-cutsets. However, the computational results
indicate that, for the purposes of generating good reliability bounds, the effect of
allowing crossing cuts cannot be ignored, and should be incorporated in a good
edge-packing heuristic. This gives rise to the problem of finding a least cost cutset
whose contraction in the graph reduces the source-target distance by exactly one.
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