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Abstract. We define a closure opcration on a particular family of graphs that has
the property that the resulting graph is hamiltonian if and only if the original graph is
hamiltonian.

1. Introduction

No successful characterization of hamiltonian graphs is known. Many results with
sufficient conditions are known however. One of the earliest theorems to which
many of the later results owe their success is the beautiful result of Dirac [2]: Let
G be a graph on = vertices, if the minimum degree of @, § = §(G) > n/2 then
@ is hamiltonian.

Success has been achieved for some special graphs by considering so-called
neighbourhood conditions. Ore, [4), extending Dirac’s work, considered a neigh-
bourhood condition, namely the sum of the degrees d(x) + d(y) for any pair of
independent vertices z and y. He showed that if this sum was at least » for all such
pairs then G was hamiltonian. Recently Faudree, Gould, Jacobson and Schelp,
{3], proved a number of interesting results by considering as the neighbourhood
condition, the cardinality of N(z) U N(y) for pairs of independent vertices z
and y (where here and in what follows N(z) (respectively, N[z]) denotes the
set (closed set) of neighbours of the vertex z). For example they show that if
NC = |N(z) UN(y)| satisfies NC > s for all such pairs in a 2-connected graph
G then G contains a cycle of order at least s + 2 or (if n < s+ 2) G is complete.

Bondy and Chvatal, [1], extended Ore’s result by defining the closure of a graph
G to be the graph cl( Q) obtained from G by recursively joining independent pairs
of vertices whose degree sum is at least n. They showed that G is hamiltonian if
and only cl(G) is hamiltonian. This is particularly useful of course when for
example cl( G) is complete. In this paper we consider a dilferent closure operator
that, given satisfactory conditions on G, leads to the same result.

A dominating setin a graph G is a subset S of the vertices such that every vertex
of V(G)-S is adjacent to at least one member of S. We consider a question of
when so-called 3-domination-critical graphs are hamiltonian and give a partial
answer. The graph G in Figure 1 has the property that it has no dominating set
of size 2 but the addition of any new edge creates a new graph G’ containing a
dominating set of size 2, i.e. there exists vertices z and y such that the union of
their closed neighbourhoods covers all vertices of G'. Such graphs G are known
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as 3-domination critical, or simply, for purposes in this paper, critical. A nice
discussion of such graphs appears in a paper of Sumner and Blitch, [5]. Sumner
conjectured that every 3-domination critical graph has a hamiltonian path. This
was recently proved by Wojcicka [7]. The problem of when they are hamiltonian
remains open. Our results shed some light on this quesdon. We do not need quite
as strong a condition as G being critical but only that the addition of any new edge
creates a new graph G’ containing a new dominating set of size 2. Sumner and
Wojcicka [6] refer to such graphs as being 3-conservative. In light of this, we will
simply call such graphs conservative. Clearly critical graphs are conservative.

Figure 1

2. Domination Closure of Graphs

First consider the graph of Figure 1. It is easily seen to be hamiltonian but cannot
be shown to be so by the previously mentioned theorems. The closure of this graph
isiself, i.e. cl(G) = G, since all degrees are 3 < n/2. The maximum allowable
value of NC for this graph is 3, as seen by considering the vertices z and y, which
again does not yield a hamiltonian circuit by the methods of [3).

For convenience we adapt some of the notation of [5] here. Lete = ab ¢ E(G);
if there exists a vertex ¢ such that N{a] U N[c] covers all vertices of G except
the vertex b, we will write [a,c] — b.

We will define the domination closure of a graph G, D*(G), by means of a
combination of a neighbourhood condition and a closure operation, namely, if
d(b) > 3 then whenever [a,c] — b for independent vertices a and ¢ of G, we
add the edge ac. First we look at this concept and its relation to Hamilton circuits
for conservative graphs.

Theorem 1. Suppose that G is 2-connected and consevative. If [a,c] — b
for some pair of independent vertices {a,c} € V(Q), where d(b) > 3, then
G' = G + ac is hamiltonian if and only if G is hamiltonian.

Proof: Clearly if G is hamiltonian then G’ is also. Suppose for some pair of in-
dependent vertices {a, c}, where [a,c] — band d(b) > 3, that G’ is hamiltonian
while G is not. Then G’ contains a Hamilion path P = {v;,v,,...,v,} from
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a = v 0 ¢ = v, where n= |V (G)|. The vertices vy and v, cover all the vertices
of this path in G with the exception of b = v,. As in the usual proof of Dirac’s
Theorem, we must have, in G, that v, is not adjacent to v;_; if v; is adjacent to v;
otherwise G would be hamiltonian. Let M = max ¢ such that v;v; € E(G) and
m = min j such that vjv, € E(G). We consider two possibilides, p > M and
p < M. We will consider only some of the resulting subcases in detail since other
cases are similar and we leave them to the reader.

CaseA. p> M.

Given [v1,v,] — vpandp > M, thenvyv; € E(G) fori=2,3,...,M and
vjun € B(G) forj = m,m+1,...,n—1;j # p. We consider three possibilities
for m.

Case Al. m=M + 1.

Case Al.1 There exists anedge viv; € E(G) withl i< M, m<j<n
Then if vj_ v, € E(G), G is hamiltonian, hence we may assume that if such a
v;v; exists then vj_j v, € E(G) which in turn implies that v;_; = vp. (See Figure
2).

Figure 2

G being conservative and v;v, ¢ E(G) implies that 3z € V(G) such that (in
Q) either [v;, z] — v, or {v,, ] — v;.

Case Al.1.1 [v;, z] — v,. In this case we have (z = v, or zv, € E(G)) and
(zva € E(Q)). ‘

If £ = vp, i.e. [v;,vp] — v,, we consider two cases. First suppose j # n—1,
then vpv;.1 € E(G) and G has a Hamilton path as follows:

v \/ \/

M m N

p+l

O

Figure 3

Suppose that ; = n — 1. Then it is easy to show that G is hamiltonian if
p # m+ 1 hence we may assume thatp = m+1 andthusm = n—3,p = n—2 and
J = n—1. Recall that, by assumption, d(vp) > 3 whichimplies that v,v, € E(G)
for some 1 < t < M. Hamilton circuits in the casest = M andt < M are
illustrated in Figure 4, again a contradiction, thus z # vp.

If zv, € E(G), since zv, ¢ E(G) (and z # v,) then either z belongs to the
set {vi1,...,um -1} Or T = vy. The first is impossible since this would imply the
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Figure 4

existence of edges v;vp, vp-1v, € E(G) forsome1 < i< Mandm <p<n
and G is hamiltonian. Therefore we need = = vy, but this also leads to a contra-
diction, i.e. the circuit C = {vy,...,v;,¥j,..., U0, Umy e, Vp, Upr, ... Vi1, V1 } S
hamiltonian. We thus have that Case A1.1.1 cannot hold.

Case A1.1.2 [v,, 2] — v;. In this case we have (z = v, or zv, € E(G)) and
(zvi € B(G)).

If zv, € B(G) we have z ¢ {v;,...,uy—1} or G is hamiltonian as be-
fore. If z = v, for some k& > M then neither v, nor z is adjacent to v, con-
tradicting the fact that [v,,z] — v; unless, in this last case, i1 = 1. Now the
existence of the edge v, v; contradicts the choice of M. Thus we must have
T = vy, however, as we have seen before, this leads to the Hamilton circuit
C={v1,...,v,9,...,n,Um,..., v, Uy, ..., Vi1, v1 } again a contradiction.

Ifz = vp, ie. [va,vp] — vj, since m > M we must have that v, is adjacent
to every vertex in {v1,..., vy }/v;, in particular v,uy € E(G) and we have the
same contradiction as above. Therefore we must have,

Case Al.2 y;v; ¢ E(G) forall1 < i< M, m < j < n Thusany v, —v, path
must pass through at least one of vy, and vy,,. G, by assumption, was 2-connected
so that vy and vy, are not cut points which implies there exists ani,1 < i < M,
and j, m < j < =, such that v;v,, and vy v; € B(G).

The following cases that conclude Case A.l assume the existence of these two
edges.

Figure 5

It is easy to see (Figure 5) that v;_; v, € E(G) would imply a Hamilton circuit
thus we may assume that v;_; = v,. Since we are assuming in particular that
vivy, € E(G) weeitherhavethat3z € V(G) suchthat[v;, z] — vy or[vg, 2] —
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v; (in G). In each of these cases we must allow for the possibility that zv, € E(G)
oI T = vy,

Case pAl.Z.l [vi,z] — v,. In this case we have (zv, € E(G) or z = vp) and
(zva € E(G)).

Ifzvp, € E(G) thenz ¢ {v1,...,van_1}leaving z = vy as the only possibility,
however as we can see (Figure 5 with v; relabelled vp) that this again contradicts
the fact that G is non-hamiltonian.

If z = v, (ie. [v;,v] — vy),and also if j # n— 1 then vyv;.1 € E(G)
and we have a contradiction similar to the case in Figure 3. Thus take j = n— 1
and consider the possibilities of p # m + 1 and p = m + 1. The first case has a
Hamilton circuit C = {vl yor s Vi Umy Uny Umily ooy Ui, UM, ooy Vi, 1)1} while if
p=m+1,d(vp) > 3 implies vvr € E(G) forsome 1 <t < M. Ift < M
we are done as this is an earlier case. If ¢ = M we find the Hamilton circuit
C={v1,...,%,Ym,Vn, ..o, Ums1, UM, ., Vi+1, V1 } and again we’re done.

We are left with one final possibility under Case A1l.

Case A1.2.2 [v,, 2] — v;. In this case we have (zv, € E(G) or z = v,) and
(zv; € E(@)).

If zv, € E(G) thenz ¢ {v1,...,vp_1} Or we have a previous case. However
we then must have zv; € E(G) leaving us with £ = vy (note that v; # v; by the
maximality of M). Now consider the circuitC = {v,...,v;,vm ..., Vp=1,¥n,...,
Vp, UM, ..., Vi+1, v1 } and we have a contradiction once more.

Finally, if z = vp, (i.e. [va, vp] — v;), we must have that v, is adjacent to every
vertex in {vy,...,vy—1}/v; by the choice of m. If i # 1, then viv, € E(G)
contradicts the choice of M. If { = 1, then v; vy, contradicts the choice of M.

Case A2. M =m.

In the event that M = m most cases are similar to those in Case A1. We outline
them for completeness but leave the details to the reader.

Ifviv; € E(G) where1 < i< M =m < j < nand vj_1v, € E(G) then
G is hamiltonian thus we may assume if such a v;v; exists then vj_jv, € E(G)
which in turn implies v;_; = v,. We have v;v, ¢ E(G) and need to consider that
there exists z € V(G) such thatin G

CaseA2.1 [v;, ] — v,. In this case we have (zv, € E(G) or z = v,) and
(zva & B(G)).

Case A2.2 [v,,z] — v;. In this case we have (zv, € E(G) or z = v,) and
(zv; € E(G)).

In the first case we are led to z = v, and we need to consider subcases j # n—1;
j=n—landp# M+ 1l;andj=n—1landp= M + 1. In the last of these
subcases we again appeal to the fact that d(vp) > 3. In Case A2.2.2 the main
division of the subcases centers on whether or not v, = vy+1. In the last of these
subcases we also appeal to the fact that d(v,) > 3. The final contradiction helps
us conclude that no such edge v;v; € E(G) exists under Case A2 implying that
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vy is a cut point, however this contradicts the fact that G is 2-connected and we’re
done.

Case A3. m= M+ 2.

Suppose that M = m — 2 50 that v, = vp+1. As before we may assume there
isnowvv; € E(G) wherel < i< M, m < j < nand, since d(vp) > 3,3t
such that 1 < ¢ < M and vy, € E(G). Since neither v, nor vy, is a cut point we
must have either that 37 such that vysv; € E(G) where m < j < nand we have
a Hamilton circuit (see Figure 6)

or otherwise 3¢ such that vpv, € E(G), m < ¢ < nand vyv,, € E(G) and
again we have a contradiction (see Figure 7).

Figure 7

Asm < M is impossible under the assumption thatp > M, Case A is finished.
CaseB. p< M.

In this case we have the following possibilities: B1: m = M + 1; B2: M = m;
B3: m < p. The first two cases are symmetrical to earlicr cases dealt with under
the assumption that p > M, leaving only the last case 10 consider. Again we
outline the steps.

Case B3: m < p. The situation is illustrated in Figure 8.

Figure 8

We have v; adjacentto all of {vz, ..., Um-1,Vp+1,...,vp } While v, is adjacent
to the set {vm, ..., Vp_1,UM+1,...,¥n1}. vp has degree at least 3 but cannot be
adjacent to any of the vertices in the subpaths {vi,...,vm-2}, {vm,...,vp2},
{vp+2,...,va} and (vp42, ..., v, } without creating a Hamilton circuit. For ex-
ample, suppose vpvp—2 € E(G), then C = {vy,...,vp_3,vp,Vp1, V5, V1, ..,
vp+1,v1 } is 2 Hamilton circuit in G. On the other hand, if for example VpUm_1 €
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E(G), then C = {v1,...,Um—1,Vp,Vp—1,-++,Vm, Un, Un-1,-..,Ups1, V1 } iS 2
Hamilton circuit in G. The edge voum+1 € E(G) leads to a similar contradiction.
Thus G is hamiltonian if and only if G’ is hamiltonian and we are done.

In the proof of Theorem 1 it is important to note that at each stage we only used
edges of G (with the possible exception of the existence of the Hamilton path
from v; to v,). Suppose that G is a 2-connected conservative graph, we define its
domination closure, D*( G), to be G together with all edges ac where [a,¢c] — b
in G for some vertex b satisfying d(b) > 3. If a graph G contains a spanning
2-connected conservative subgraph G then we take the domination closure of G
to have edge set E(D*(G)) = E(G) U E(D*(Gop)). Theorem 1 then leads to

Theorem 2. Suppose that G contains a spanning 2-connected conservative sub-
graph then the domination closure of G is hamiltonian if and only if G is hamil-
tonian.

Corollary 1. Suppose that G is 2-connected and critical, then the domination
closure of G is hamiltonian if and only if G is hamillonian,

If we return to the graph of Figure 1 we in fact find that in this case D*(G)
is almost complete (see Figure 9). The useful fact here is that in D*(G) all
the degrees are now large enough so that the Bondy-Chvatal closure applies, i.e.
c(D*(@)) = K3, and G is thus seen to be hamiltonian.

Figure 9

Note that the condition used by Faudree et al, [3], does not lead to the conclusion
that G is hamiltonian in cases where there are a few points of small degree since
NC would be small in this case. Further, the cI(G) of Bondy and Chvaital will
not be complete in such cases. The advantage of D*( Q@) is that there may well
be a number of points of small degree in G which are no longer small in D*(G),
and we can then apply a different neighbourhood condition. The next result is an
example of such a condition.

Corollary 2. Under the conditions of Theorem 2, G is hamiltonian if cl( D*(G))
is complete.
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3. Concluding Remarks

The condition that d(b) > 3 is possibly not necessary. In most of the cases where
it was used it can be avoided but we could not see how to do this in particular
in case B3. It is unlikely that the conservative condition could be dropped; for
example, the complete bipartite graph K 3 has the property that the addition of
any new edge creates a new dominating set of size at most 2 but it is clearly non-
hamiltonian. Replacing one of the ‘3’ vertices here by a complete subgraph gives
a new graph with similar properties and so on.
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