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A version of the discrete Fourier transform that is valid in noncommutative
groups is presented together with examples and an application to the study of dif-
ference sets in groups of order 4 p?.

Apology and Introduction

Efforts to apply algebraic methods to combinatorial problems have from the outset
faced a paradox. While a central theme of any algebraic structure theory is to
enumerate intrinsic properties of the objects of the relevant category, one loses the
way back to the original combinatorial problem unless additional data is tracked
throughout. Thus, for example, the coding theorist using linear algebra who fails
to keep track of the basis of message bits has no future even though a central theme
of linear algebra is that all bases of a vector space are equivalent.

A most important part of algebraic combinatorics concerns the transfer of in-
formation between a “combinatorially relevant” coordinate system and a “alge-
braically expedient” coordinate system. This situation is shared by other subjects.
For example, Diophantine equations are studied with rings other than the integers
but special machinery is used to return to the integers.

The application of rings (or more properly finite dimensional R-algebras, for
R a commutative ring) to combinatorics has been initiated a number of times.
Although I. Schur introduced “Der zu einer Permutationsgruppe gehoerende Ma-
trizenring” [18], the value of these rings in combinatorics seems to have been
first clearly recognized by R. C. Bose and D. M. Mesner [2]. Since then, gen-
eralizations and variations on their theme have been called cellular rings by B.
Weisfeiler and A. A. Lehman [20], [6], coherent configurations by D. G. Higman
(8], and based rings by G. Lusztig [13].

A major challenge is to develop methods that transfer information between the
combinatorial and algebraic frameworks for these rings. Progress could be useful
in a number of areas including: the application of discrete Fourier transform for
non-commutative groups [5], construction of generalized Hadamard matrices [3],
partial addition sets [7], and of ¢-designs in the sense of Delsarte [4]; and even
possibly the study of known P-Q schemes [1] by construction of anti-t-designs in
the sense of Brouwer.

Years ago R. C. Bose argued strongly that the best place to develop new meth-
ods is in the study of explicit celebrated open problems. For at least this reason,
difference sets in explicit groups interest me, Thus the word apology is used here
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in the slightly archaic sense: “not as an admission of guilt or regret but rather a
desire to make clear the grounds for some course, belief or position” [19].

Section 2 begins with background material from group representation theory
and presents “the inversion formula”. It is a formula for an element of a group
ring in terms of this element’s images under each of the group’s irreducible repre-
sentations. This formula reduces to the familiar discrete Fourier transform in case
the group is abelian and thus it might be regarded as a non-commutative general-
ization. In this regard, the formula is perhaps not as satisfactory as eg. [15, 3.2.21]
because the “Fourier coefficient” associated with a particular representation is nei-
ther unique nor an element of the underlying field. Instead, it is a certain equiva-
lence class of elements of the group ring itself. In section 3, this nonuniqueness
is exploited in the study of difference sets. Arithmetic arguments of McFarland
[14] are adapted and combined with celebrated results of Segre [16,17] on arcs in
Desarguesian planes and a little finite geometry to show that difference sets do not
exist in certain groups of order 4 p> in Theorem 3.1.

This research was partially supported by National Security Agency grant MDA
904-91-H-0048 and encouragement of and helpful conversations with J. Tiams, S.
Magliveras and K. W, Smith are acknowledged.

2. Group representations and the inversion formula

Let G be a finite group written multiplicatively and let R be an integral domain
containing the integers Z. The group ring RG consists of formal R-linear com-

binations
T= Zzgg; T, €ER
geG

of elements of G with component wise addition and multiplication determined by
the multiplication of G and the distributive laws.

A representation of G over R with representation space the R-module V is a
group homomorphism

©: G — the units of Homp(V).

The representation p endows V' with a (left) RG-module structure (gv: = p(g)v)
and there is a one to one correspondence between G-representations over R and
RG-modules. In a certain sense, the variety of RG-modules reflects the variety of
ways to impose an additive structure on the multiplicative structure G and obtain
aring.

There are at least two G-representations with representation space RG that play
important combinatorial roles. The left regular representation

A:G — Homgp(RG)(A(g)x = gx).
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and the right regular representation
P:G — Homg(RG)(P(g)z = zg™}).

If G is not abelian then A and P are not equal (see example 2.5) but they are
equivalent in a natural way because RG is a Frobenius algebra [15,§2.8]. It is
shown in section 3 how they appear together in difference set constructions.

Of course, an “algebraically expedient basis” for the group ring RG mustreflect
its ring structure, Since G is finite, The Krull-Schmidt theorem implies that RG is
an internal direct sum of indecomposable RG-sub bimodules. This decomposition
is reflected in the expression of 1 as a sum of central primitive idempotents [15,
p.19] :

1=) e, andso RG=) @eRGe;. 2.1)

Associated with each e;, is an irreducible representation p;, where p;(g) = ge;.
The associated RG-module is RGe}, where and e} is any primitive idempotent not
annihilated by e;. Relative to any R-basis {1, ..., b, } of RGe}, p;(g) is realized
as an invertible n by » matrix with entries in R. The character associated with e;,

is the function from G to R defined by x;(g) = trace(y;(g)). The domains of
both p; and x; are extended to RG by “linearity”.

It is natural from an algebraic point of view to replace R with an algebraic
extension of its quotient field if necessary to arrange so that each summand is as
small as possible and there are as many summands as possible. Any such field K
is called a splitting field for G. If R is a splitting field of G then the number of
terms in (2.1) is the number of conjugacy classes in G [15, Th 3.1.23].

Thus, the central primitive idempotents in K G form an algebraically expedient
basis in case G is abelian and K is a splitting field of characteristic zero. In this
case, the discrete Fourier transform of an element § of KG has i-th coefficient
x;(6) € K, where (as above)

8e; = x;(6)e;.

and the inversion formula reads

§=81=6Y ef=) Seiei= Y xi(B)e;.

Suppose G is not abelian. Then an arbitrary § € KG is no longer a K -linear
combination of central primitive idempotents. However there remains the formula

6=58) et = beiei= Y pi(d)e;.

whose i-th coefficient is in the summand K Ge;, of K G and is therefore unique,
by (2.1). Unfortunately, explicit computation with KGe; is difficult, even for
straightforward groups G, and for this reason, we return to KG and say §; € KG
is an p;-th alias of & if p;(8) = ;(6;). Now the the (general) inversion formula
is:
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Theorem 2.2. Let K a field of characteristic zero and take {e;} (o be the central
primitive idempotent for KG. For § € KG, we have

5= e(8)ei,

where 8; is any ;-th alias of 8, that is p;(8) = p;(5;).
Proof: In the group algebra K G we have the equation:

&= 5283 = Eaei &= 2%‘(5)8.‘ = Efp(&')ei-

|

In combinatorial applications the element § is actually in the integer group ring

Z G and for this reason it is desirable to use the inversion formula in Q G. There

is an explicit formula [15, Th 3.2.22] for the central primitive idempotents of a
group ring over a splitting field:

o= M S xta, @3

geG -

that can be used to obtain the central primitive idempotents in QG.

Corollary 2.4. Suppose m is the exponent of G and { € C a primitive m-th
root of unity. Let T be the Galois group of K = Q[{] over Q. Then K isa
splitting field for G. For each o € T, o induces a permutation of {e;} (and so
also {p;} and {x:}) by means of

eatn) = S IGI Ea(x,(g"))g

geG

The central primitive idempotent in Q G are indexed by the I" -orbits X1, X3, ...,
X on {e;} and have the form:

=T

ei€X;

Proof: A celebrated theorem of Brauer [15, Th 3.4.11] asserts that the cyclotomic
field K is a splitting field for G. Now K is Galois over Q and so the sums E; are
central idempotents in Q G. If E; could be written as the sum of two idempotents
in the center of Q G, then each which would split into a sum of central primitive
idempotents in a I" -orbit, contrary to the definition of E;. |

Example 2.5: Consider the Quaternion group of order 8.
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G = (z,ylz* = ¢* = 1,27y zy = 2? = ¢?) = {1, 3,22, 2%, y, 39, 7%y, 2%y}

For the elements in this order,

1
while, P(y) =

A(y)=l ]

Consider the matrix:

X
I
G R
]

-1 1
having multiples of the central primitive idempotents:

{e1,62,e3,ea} = {(1 £ z)(1+ z*)(1 £ y)/8}ies = (1 —2%) /2,

as its columns. (In columns 5 through 8 2 es is multiplied by (1 £ y), (1 +
), as these expressions are easy aliases for elementary diagonal matrices in the
explicit representation ¢ given below.) Relative to the Q basis of QG given by
the columns of M , the left regular representation of Q G is realized explicitly as a
direct sum of irreducible representations since M A () M; and M7 'A (y) My
are:

bt b ek ek | et b ek b
1

Ptk kb | b kb ik
U

bk et pumd ek § pd ek b
1
—
1
b

1 1
1 -1
-1 1

-1 -1
and
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Foreachg € @, define p(g) tobe the4 by 4 matrix obtained from M;! A (g) M)
by deleting rows and colums 1 through 4. Then ¢ is arepresentation of G that turns
out to be irreducible over Q. However, G has 5 confugacy classes and so Corol-
lary (2.4) implies that p is reducible over Q [4]. Indeed for M, having the same
first four columns as M; but with columns 5 through 8 obtained by muliplying
2es by (1 + iy), (1 £ iy) (These expressions are easy aliases for elementary
matrices the explicit representation given by the last 2 by 2 block of M; ! A (g) M2
below.), M} A (z) Mz and M} A (y) M, have the form:

1 1
1 -1
-1 1

-1 -1

and

-1 t
1 —1

Although the central primitive idempotents of Q[{]G have the same form as
those in Q G, the columns of M give a basis of Q[1])G that could be organized
to have four 1 by 1 blocks follwed by one 2 by 2 block and so that e; appears as
the identity on the ith blocks,

and y -1

-1 —
1 i

A (g) is “multiply on the left by g” and P(g) is “multiply on the right by g~!.”
The characters of G are usually presented in the character table having rows
labelled by characters and colums labelled by conjugacy classes in G:

1 z? z,22  yy  zy,3°
X1 1 1 1 1 1
X2 1 1 -1 1 -1
X3 1 1 1 -1 -1
Xa 1 1 -1 -1 1
Xs 2 =2 0 0 0

which in turn gives the central primitive idempotents by equation (2.3). In prac-
tice, there are powerful methods for computing character tables and they are really
the first step in an analysis of this type.
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Example 2.6: Consider G = (z|z®" = 1) the cyclic group of order 2*. The
character table of G is the Van derMonde matrix:

M(zh) = (¢7%);

where ¢ is a primitive 2"-th root of unity. The value j = 0 corresponds to the
trivial representation and j is odd if and only if the representation is faithful. The
idempotent formula (2.3) reads :

-1
ex =27y (g7)g = 27" T11+ M(=2)2".
geG =0

The faithful characters form one orbit under the Galois group Autg Q (), so the
nontrivial central primitive idempotents in Q G are the remarkably simple:

-1
er=25"[1-2") T [1+2*}k=0,1,...,n- 1.

t=k+1

This simplicity accounts for some the relative ease with which difference sets in
2-groups can be analyzed.
Example 2.7: The group

G={(z,y,2l5 =y =2* = L, yz=zy,z2= 25" ,yz = zy~!)

of order 36 has 11 rational central primitive idempotents that are given in (3.4):

=) () () 2)/3%,

=) DN, 2N1-2)/36, 2= 23 9)(1-2)/18,
e3=()_ 1) (2—y—1?)(1+21) /18, f=()_ 2)(2—y—y?)(1-2%)/18,
ea=(2-z—-22)()_ 1) (1+2%)/18, fa=(2—-z-3*)(}_ 9)(1-2%)/18,
es=(2-z-22)(Q_zp)(1+2%)/18, fs=(2—z—32) (D zy)(1-2*)/18,
es=(2—3-32) () 2*9)(1+2%) /18, fs=(2—z—22)(}_ 2?y)(1-2%)/18,

where " g denotes the sum of the powers of g € G. Kibler [11] gives the subset
A in G having sum in ZG:

5=+ )+ 0+ mdzz+ (Y )2,
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as a difference set, and so p(86¢')) = 9 for each nontrivial irreducible represen-
tation p of G (see section 3). The inversion formula (2.4) requires yp-aliases for §
and these are most easily computed using explict representations for  of the form
given in Lemma 3.2. For example, the explicit representation associated with f¢
is:

wzi-j 0

pe(z'y’) = ( 0 w;-z;) 1 P6(2) = ((l) —Ol) wherew # 1= uw’.
s0

p6(8) = ps(1+ 2)ps(D_ 1) + p6( Y 2)p6(2*) + ps (D, Xy)ps(z2)
+p6() 1) p6(2*) = 3ps(2*),
2
sice pe(Taiv) = (14T 0 0 ) = 0.for (0} # s} #
{1,2} and p¢(3_ zy*) = 3. The inversion formula can be written down as:

§=13 (5e0+e1+ez+eg—m2e4+zes+es+zzf3+zzzzf4+zzf5+z3f6) .

In the next section it is shown that much of the nature of these aliases is al-
ready apparent from the difference set equation. The simple nature of each alias is
exploited in a geometric argument that shows this example to be truly exceptional.

3. Difference sets and the inversion formula

A subsetA of the group G is adifference set (with parameters v = |G|, k = |A],\)
if for each g € G, g # 1, there exist exactly ) solutions to

gy~ =g,2,y €A.

The set A -is a difference set in G exactly if

86~ =(k—N1+X) GinZG,

8= 330,80 = T0 !, T26= T,
geA geA 9€G
and 1 is the identity element of G. The parameter n= k — ) is called the order of
A.
Each difference set A in G gives rise to a symmetric design that admits G as
a sharply transitive group of automorphisms. This design has points and blocks
labelled by elements of G and incidence zIy if and only if y~'z € A. Here

where:

gzlgyifandonlyif (gy) ‘gz € A ifandonlyify g 'gz =y 'z €A,
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50 G acts on points and on blocks by the left regular representation. The incidence
matrix of the design is P(§), the right regular representation of G.

Let R = Q[¢] be asplitting field for G as in Corollary (2.4) and suppose that A
isa difference setin G and leteo, €1, .. ., e: be the central primitive idempotents of
RG labelled so that eg = ()° G) /|G| is the idempotent associated with the trivial
representation. Further, as is always possible, take p; to be an explicit unitary
matrix representation. Then the difference set equation

s8N =nl+ 1) G

implies
ke ifi=0
. . ! = @, (e, =
0i(8) pi(8)' = e;66 € { ne; otherwise.

The choice of R = Q[¢{] comes heavily into play in most cases where one can
proceed. On the basis of only the above information, one can actually solve for
i(8) and thereby obtain rather elementary aliases for § as in Lemma 3.3.

In order to illustrate this method, consider groups of order 4 p?, p an odd prime.
A theorem of Menon implies that A is of Hadamard type and has parameters k =
2p? — p, A = p? — p and order n = p?. Kibler [11] has settled the case p = 3 by
computer. A beautiful theorem of McFarland [14] asseits that p = 3 when G is
abelian. liams [9] has shown that p = 3 if a Sylow 2-subgroup is not cyclic. One
of the seven remaining cases is settled in the main theorem of this section:

Theorem 3.1. If p is an odd prime and the group
G=(z,9,2lz° =P =2* = l,yz=zy,27 ' z2 =z 2z lyz = y71).
possesses a difference set then p = 3. (cf. example 2.7)
Notation of numbered results will be cummulative in this section.

Lemma 3.2. Set H = (z,y) and let { a primitive p-th root of unity. Let H*
denote the character group Hom(H,C*) of H. Then K = QI[(¢, 1], is a splitting
field for G and the irreducible representations for K G are defined by:

pi(@)=pi(1)=1,p5() =7:j=0,1,2,3;
m(z)=(“0“’ A—(%),mm(*f,”’ )\?T),m(z))=(‘,’ 3)

p,‘(m)=(>‘(0") }"(OT)),PA(!IF()‘(O!’) }‘?T),px(z)=((l) _Ol):
xe H —{1}.

Proof: Each of the indicated functions defines a unitary representation of G and
is irreducible. Two of the indicated functions could be equivalent only if their
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restrictions to the cyclic subgmups generated by z, y and z are equivalent. The
only possibilities are ¢y & o and py = py. Taking this into account we have
identified a subspace of KG of dimension 4+ 22 (PP-1)/2+23(p*-1)/2=|G|.

The result follows. ]

Call a system of distinct representatives for the AutqQ [{]-orbits on the non-
trivial characters of H a cyclic basis for H* {14, p6).

Lemma 3.3, Suppose § € ZG satisfies p(66(—1) = p? I for all of the nontrivial
pin(32). Ifp=1 (mod 4), let a,b € Z such that a®> + b*> = p. Then § has a
w-alias of the form g&'g’, where g,9' € G and &' equals:
i) p,

ii) (axbz)g(atbz) wherege Gand p=ypy,p3 0r p\) EA,

iii) —pif p=p) forsome AEA,

iv) (a = bz) 2,=0 22ih? wherehe H,t€Z and p = py, A €A, or

V) (axbz) Y00 2/hY whereh € H,t € Z and p=py, A€ A.
In particular, only cases i) and iii) occur when p = 3 (mod 4).

The proof of this crucial lemma is postponed.

Since the p-aliases for § € Z G provided by Lemma 3.3 are in Z G, Corollary
(2.4) applies. Call a system of distinct representatives for the Autq Q [¢]-orbits
on the nontrivial characters of H a cyclic basis for H* {14, p6]. By Corollary 2.4,
the central primitive idempotents in Q G are,

Fo=ey = #E}I(l+zz)(l+z),
Ei=e, = #EH(I-!-Z’)(I ~2),
1

B =ep +ep = ﬁzH(l - 2%)

E‘
E,=
yoe € 2p2

(34
ql
Fp= kEepk— 252 [pz(k:e'rp)—EH] PEA,

where A is a cyclic basis for the characters of H. The inversion formula given in
Theorem (2.2) over Q for § now reads:

§=(2p" —p)EoxpE1+ By + Y  8,E, + 7, F,,
pEA
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where 83, 6, v, are the appropriate aliases for § determined in Lemma 3.3. Thus

( 2 -p g, ):I:—(l—-z))EH(l-l-zz) &y H(1-2%)
=Y [8,(1422) +9,(1-22)[p ) (kerp)— Y | H).
weh

In order to postpone consideration of the more complicated aliases appeanng
in Lemma 3.3, multiply this equation by (1 + 22) to obtain:
251+ ) - (=214 5 £ 21 S H(1+ 2
p°8(1+ 2°) — -2—( z (1= z) z

= ESP[pE(kercp) - EH](I'P 2%).

PEA

By Lemma 3.3, there exist e € {0,1},¢, € {~1,1} andd, € G; p € A such
that §, = pe,d,, and

p5(1+2%)—p)  G+z"Y  H(1+2°)= ) epdy[p Y (kerp—Y  HI(1+2%).

pEA
Thus
8(1+422) -3 G= Y epdy 3 (kerp)(142%) - ”d""d“z.r{(uz
©EA 35)
where

di=[{p € Aley=1,d, € 2'H - %)}
~Kp €Alep = —1,dy € 2H - (*)}I.
Now dy + dj has absolute value less than or equal to p + 1 and is even since

p+tl=|A|=dp + 4, (mod 2)

so {do,d; } = {-1 :!:p}or{O tp—-1}.

Now view G/(zz) = H{2? )/(zz) U zH{(2?)/(2?) as the union of two Desar-
guesian affine planes of order p (lines are cosets of subgroups of the elementary
abelian group H{22)/(22)). The parallel classes in both planes are indexed by
v € A and each term dy, 3" (keryp) (1 + 22) is the set of points on a line in the
paralle] class indexed by ¢ in one of the planes. We have shown that one H {z?)-
coset, say I1 = wH U w22 H, = € G contains at least p — 1 of these lines, say
£ € L, and the associated e, are all equal, say to .
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Lemma 3.6. The support S of §(1 — 2?) in wH is either a conic Q with one
point at infinity or the disjoint union of S and an affine tangent line £.

Proof: The restriction of equation (3.5) to elements of G in IT gives the multiset
equation
5(1+2)NM = (1 - +9) (L€ L).

Since each point of IT is counted 0, 1 or 2 times on the left, no three of these lines
are on the same point. Together with the line at infinity, the lines in L form a “line
arc” and therefore |L| < p. Since |[L| > p — 1, theorems of Segre [16,17] imply
that they are tangents to a conic having exactly one point at infinity. The lines
tangent to such a conic cover the p(p — 1) /2 affine exterior points twice, the p
affine absolute points Q once and the p(p—1) /2 affine interior points zero times.
The support of 6(1 — 22) is exactly the set of points covered once and so is Q in
case|L| = p, 2 + (N Q) incase |L] = p— 1 and £ is the affine tangent to Q not
inL. |

Sete = p — |L| and take A € A be chosen so that ker ) is not in the paraliel
class of the ideal point of Q and is not parallel to the tangent £ to Q not in L in

case e = 1. Then, in the notation of (3.2) ps(8) = (-c- _.Ed) and one of ¢, d

d
DM =) mdd,

ges

equals

where m; = |A Ngker)| — 1|A N gzker)|, for appropriate g € IT. Observe that

0) Y my=|ANaH|-|ANw2H|;

1) m; = +e foratleast (p — 1) /2 values of j; €XN))

2) mj =€+ 1 (mod 2) exactly once in which case |m;| < 2; and

3) |mj| <2+ |e].
because there are (p — 1) /2 passing lines to, one tangent line to and (p — 1) /2
secant lines to Q in the parallel class of A. In addition note that the p-tuple
(mo,...,mp_y) is unique modulo (1,...,1) as 3¢/ = 0 is the only relation
among the coefficients since [Q({): Q] =p—-1.

Proof of Theorem 3.1: Compare (3.7) with those appearing in the Lemma 3.3,

An alias of type i) has at most one nonzero term in the expansion of ¢, d and
this term equals p. This fitsonlyif e= 1 and p = 3.

An alias of type v) has one zero coefficent and half of the remaining coefficients
+a and half 5. Since a and b have opposite parity, this doesn’t fit.

An alias of type ii) has {c,d} of the form {ab(¢* + ), a%¢* + 2T}, soall
but two of the terms m; must be equal (= +e¢). Exactly one of a, b is odd, call
ita. If k # O then IT is associated with a term of the form a2¢* + b2C* and
a = 1, by (3.7.2). Now the other m; # +e has absolute value < 3 and the form
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+¢ -+ b? where b is even. This occurs only if e = 1,p = 5 and the multiset of m;’s
is+{1,1,1,2,-3}. If k = O only the term of (3.7.2) survives. Since it differs
from the rest by at most 3, this occurs only if e = 1, p = 5 and the multiset of
my’sis+{1,1,1,-2, 1}. Ineach of these cases, (3.7.0) implies that A "= H and
A N w22 H have a difference of 2. This is incompatible with each of the possible
{1 -aliases of § listed in Lemma 3.3.

An alias of type iv) has one zero term and all of the rest of the same parity half
each equalling say +a (a may in principle be odd or even at this point).

In case € = 1, the m; value of +1 occurs at least 1 + (p — 1) /2 times by
Lemma 3.6 (disjoint union) and (3.7.1). It follows that the multiset of m;’s is
{+1,...,4£1,0,+1,...,41} with half of the terms positive and half negative.
By (3.7.0), ¢1(8) has an alias of type (3.3i) and there are integers n; and z €

G — 1T such that ]
ST EMg) = Y hi¢t = £pM(2)
g€eT

where T is the support of (1 — z2) on G — I1. This means that
4p=L[|zkerANA|—|zz2kerA NA|) —1t

where ¢ arises from the relation } ¢/ = O and the intersections of A with the
other lines parallel to ker ) as in (3.7). By equation (3.5), T is the set of points off
the disjoint union of a line parallel to £ and a line in the parallel class determined
by the ideal point of Q. The lines parallel to ker X intersect T in sets of odd
cardinality, namely p — 2 or p and it follows that both ¢t and |T' N zker)| =
|zkerh N A+ |zz2ker) N A| are odd. Now the last displayed equation implies
that p is even, which is a contradiction.

Incase e = 0, a is forced to equal 1 and the multiset of m;'sis +{0,...,0,1,2,
...,2}. This forces Q entirely into one of the H-cosets associated with IT and
therefore (3.7.0) provides complete information about A N wH and A N nz?H.
The difference of the cardinalities of these intersections is p and so each of the
sets A NwH and A N w22 H contains the exterior points of Q but one of them
also containing the points of . This implies that p; () has an alias of type i) in
Lemma 3.3 and therefore each of the H-cosets in G — IT contains p(p — 1) /2
elements of A.

Now turn t0 p,,, where ker ps is in the parallel class labelled by the ideal point
of Q. Since all elements of Q are in the same coset and each line in this parallel
class has exactly one point in Q, the associated entry of p,(6) is + Y ¢k =0.
This implies that p,( §) has an alias of type i) in Lemma 3.3 and the term in p,,(8)
associated with (G — IT) has the form +p{* = 3 n;¢/ where each n; has the
form |A N gker)\| — |A N 22 gker)| for some g. By equation (3.5), the support
of A on (G — I) is the complement of a line in the parallel class of ), so one of
the n; = 0 and the others are all odd. It follows that the other coefficients »; are

155



constant (= +p), since [Q[{]): Q] = p— 1. This shows that A N (G — 1) isa
union of cosets of keru. Now the entries of py(8) associated with (G — IT) are
zero, contrary to case iv). |
The proof of Theorem (3.1) has been reduced to the
Proof of 3.3: Since g, (8) is an integer of absolute value p and p2(2) = —1, i)
holds in this case. In case p equals p; or p3 () isa Gaussian integer of modulus
p and so i) or ii) holds.
a b

The matrix v, (§) has the form ) (8) = (3 a) where

a= Y M&h) + D M8h2h), b= M(Bheh) + Y MBuah) € ZIK).

heH heH heH heH

Compare the (1,2) entries in the difference set equation p(86¢1) = p2I to see
that 2eb = 0. Suppose b = 0 and recall [15, p 15] that = = (1 — ) is a prime
ideal in Z [¢] that is invariant under conjugation and (p) = wP~!. The equation
@ = p? now implies that (a) = #*~! = (p), and so a/p is a unit of modulus
1in Z[¢]. If p is twisted by 0 € AutzZ[(], then the above argument leads to
a(a/p) is also a unit of modulus 1. A theorem of Kronecker [14, p 151-1] (that an
algebraic integer all of whose algebraic conjugates have modulus 1 must be a root
of unity) implies that a/p = +¢* for some k. Thus either case i) or iii) occurs.
d

All that remains are the representations p,. Since py(§) = ( % —E ) where

o= MEuh) =) M&nah),d=y N)énh) =Y Ménoh) €ZIC],
heH heH heH heh

we study the ring of matrices R of the form m(: z,y) = ; —Ey) where
T,y € Z[{]. It is convenient to identify Z[(] with the subring {m(z,0)} of
‘R. Observe that each nontrivial element of R has positive determinant and so
D = R®z¢) Q[(] is adivision ring. Note also that the cyclic group AutzZ (]
acts naturally on R and and that o(pA(8)) = po(x)(8) for each o € AutzZ[(].
Finally, the map 7: R — R defined by 7(m(z,y)) = m(T, —y) takes a matrix
to its conjugate transpose and induces an anti-automorphism of R that commutes
with Autz Z[{].

The ring R has an additional remarkable property of which we make repeated
use.

If m in R has determinant 1, then m = p,(g) forsome g € G. (3.8)

Indeed, m(z,y) has determinant (2% + y%) = 1 and has entries that are al-
gebraic integers. For any automorphism o of Q [¢1, o(y)a(7) = o(y)a(y) is
a non-negative real number, so every algebraic conjugate of = has modulus less
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than or equal to 1. If even one of these conjugates has modulus strictly less than
one, then the norm of z is (equal to the product of all algebraic conjugates of z and
equal to the constant term in the minimal polynomial of x) an integer of absolute
value less than 1; that is  has norm zero. It follows that either z or y equals zero
and all algebraic conjugates of the other have modulus 1. The above mentioned
theorem of Kronecker implies that the nonzero term, say z is, root of unity, say
p, p" = 1. Since 2 > [Q[u,¢): QI¢N] = p(n/ged(n,p)), [10, 13.2) (here ¢
denotes the Euler p-function), it follows that z has order dividing 2p. The result
now follows by inspection.
Letw= (1 —-¢)R. Thenxis an ldeal in R that is r-invariant, since

(1 - Om(z,y) = m(z,—¢y)(1 - ), (T =" ={(1-¢).

The ideal = is also Autz Z [¢]-invariant and 7P~ = (p), since (1 — ¢) has these
properties in Z[¢]. Consequently, R/(p?) has (Jacobson) radical containing .
The ring R/ is the finite ring Z /(p) [] where 2 = —1 and 7 induces complex
conjugation. Since R/ is of dimension 2 over GF(p), any proper nontrivial
ideal Z/m in R/« has dimension 1 over GF(p). If 0 # m(=x,y)n/n € T/,
then m(z,y) hasrank 1 (mod p) and

det(m(z,y)) =z +y> =0 (mod p).

Thus, if p = 3 (mod 4), then Z /(p) (4] is the Galois field GF(p?) and = is
prime. If p=1 (mod 4), thenZ /(p)[i] & GF(p) ® GF(p) and 7 = mm,
where

m = (1 -¢,m(e,b), 7 = (1 -, m(e,—b)) =1(m),

and a, b are integers such that a® + b?> = p. In general, the radical of R/(p?) is
7/( %). Such an R-module is called uniserial [14,p.42]. Whenp =1 (mod 4),
the R/(p 2)-ideals form a poset that is the product of two totally ordered chains
and each ideal has the form =iwj/(p?), because R/w is R-isomorphic to
wiw /$*1x)*" andso has only two proper nontrivial submodules. Thus Autz Z [()
acts trivially on the set of R/(p?)-ideals.

Let d = py(8) and take o to be a generator of AutzZ[(]. By the difference
set equation d7(d) = p?, the ideal (d) contains (p?). The preceding paragraph
implies (d) = (a(d)). Thus, there exist m,n € R such that a(d) = m d n
If possible, take n, m so that detm = 1 = detn. Observe that nr(n) = detn €
Z (D), since it is a scalar matrix. The difference set equation for o(d) and d gives:

p* = o(d)1o(d) = (mdn)r(mdn) = mdlnr(n)]r(m d)
= m[n7(n)]1{d 7(d)17(m) = m nT(n)p*1(m) = p?(m n)T(m 7).
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This shows that 1 = detmn and so both detml, = m7(m) and detnl; =
nr(n) are units in Z(D). Thus, in fact, detm = 1 = detn is a possible choice
and (3.8) implies

a(pr(8)) = pa(g'8g"), for some g’,g" € G.

If p = 3 (mod 4), then R/p? is uniserial so each of its ideals is 7 invariant
too. It follows from the difference set equation that py(8) € #*~! = (p) and so
pr(8) = p m where 1 = o*(m) 10’/ (m) for all j. By (3.8), m = py(g) for some
g € G and i) holds in this case.

Suppose thatp = 1 (mod 4) and write

g =2'h,g" = h"2", for2,2" € (z) and b',h" € H/ker p;.

Define o as an automorphism of H/ker py by pa(h°) = o(pa(h)), and note
that as such o commutes with (conjugation by) 2/, 2”. Also, 2’ induces an au-
tomorphism of H of order at most 2 and o generates AutzZ [{] and so it has
orderp — 1. Since p > 3,02’ # 1 # 2"c in Aut(H/kerp,). Replace § with
hl(l-uz’)-lahll(l—z'a)—l . Then

a(px(8)) = K=o 0yl gp I p1 ="
= Zlh’(l-uz’)-‘°:’+l6’1”(1-‘"’)-"7‘"‘”z"

= zlhl(l—az’)" 5hu(l—z"a)" R

Since 22 is in the center of G, we have

o(c) o(-d)\ _ L (0 =1\°[c —-da\ [0 -1\°
(a(Z) ) )“’("*(5))‘*<1 o) (2 E)(l o)
where e,e’ € {0,1}. Now m(c,d) satisfies the difference set equation if and

only if m(c,—d), m(c,d) and m(d, c) do too, so there are really only four cases
that need be considered:

gc—cd—d
g.c— —c,d— —d
gic—=t—ocd——d—d

gc—d—o—c——-d—oc

The set {¢°’|j = 0,...p— 2} is a basis for Z [¢] over Z. Write

c= E»,,-(”’,d: Es,-c" for unique ;,8; €Z;j €Z/(p—1).
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In the first case, ¢,d € Z, and ii) holds since R N Z = Z[1], the Gaussian
integers.
In case g: ¢ — —c, Yj+1 = —; and so:

c=70 Y (D¢ = —p0/F,

by a theorem of Gauss [10, p 75]. Consequently, the second case leads to iv).
Incase g:c — ¢ — c;d — —d — d, observe that € = E'y,-("’", where
g = (p—1)/2 and conclude that yj+1 = 7jsq; 8541 = —8j4+4. Therefore

c=0 3¢ = —70,d =80 3 _(~1)¢” = S04/, 10,8 € Z;

The only solution of the difference set equation of this type has § = 0, and

appears in i).
The final case g:.c — d = —¢c — —d — cleads to v; = §;,2 = —b;43. Then

2c+id) = c+ io(c) — 0%(e) —io>(c) = 3 (v + -1 — Y2 — 7j-3)¢” -

Because the (7 + 1)-st term in this sum is obtained from the j-th by multiplication
by 4, so:

2c+id) = (1 + ima — M —iv0) Zil’c"’ =2 +im) Y ii¢%.
The sum a + i = Ei”("’ a generalized Gauss sum, and has modulus /p [10,

Ch8). Sincep=1 (mod 4),—1isasquareinZ/(p),andsoa,f € RNQI[(].
Therefore

c=ya—mp,d=ma+wBeERNQI(].
By the difference set equation,
p? = &+ di=(c+id)(c+ di) = (0 + im) (0 + iM)P.
Thus «yo + ¢, is a Gaussian integer of modulus p. This is case v) of the Lemma.
References
1. E. Bannai and T. Ito, “Algebraic Combinatorics I: Association schemes”,
Benjamin/Cummings, 1984.
2.R.C. Bose and D.M. Mesner, On linear associative algebras correspond-

ing to association schemes of partially balanced designs, Ann Math Stat 30
(1959), 21-38.

159



3. W. de Launey, Generalized Hadamard matrices whose rows and columns
Jorm a group, in “Combinatorial Mathematics X", Lecture notes in Mathe-
matics 1036, Springer, New York, 1983, pp. 154-176.

4.P. Delsarte, Hahn Polynomials, Discrete Harmonics and t-designs, SIAM
Appl. Math. 34 (1978), 157-166.

5. P. Diaconis, Group Representation Theory in Probability and Statistics, Inst
of Math Statisitics, Howard California (1988).

6. I.A. Faradzev, A.A. Ivanov and M.H. Klim, Galois correspondence between
permutation groups and cellular rings (association schemes), Graphs and
Combinatorics 6 (1990), 303-332.

7. D. Ghinelli and S. Loewe, On multipliers of partial addition sets, Geometria
Dedicata 40 (1991), 55-58.

8. D.G. Higman, Invariant theory, coherent configurations and generalized poly-
gons, Math. Cent Tract 57 (1974), 27-43.

9. J. liams. (to appear).

10. K.Ireland and M. Rosen, “A Classical Introduction to Modern Number The-
ory”, Springer, New York, 1990.

11. R.E. Kibler, A summary of noncyclic difference sets, k < 20, J. Comb. The-
ory A 25 (1978), 62-67.

12. R.A. Lieblerand K.W. Smith, On difference sets in certain 2-groups, in “Cod-
ing Theory, Design Theory and Graph Theory”, Wiley, 1992, pp. 191-206.

13. G. Lusztig, Leading coefficients of character values of Hecke algebras in
Proceedings of Symposia in Pure Math, American Math. Soc. 47 (1987),
235-262.

14. R.L. McFarland, Difference sets in abelian groups of order 4 p*, Mitt. Math.
Sem. Giessen 192 (1989), 1-70.

15. H. Nagao and Y. Tsushima, “Representations of Finite Groups”, Academic
Press, 1991.

16. B. Segre, Curvi Rationali Normali e K -archi negli spazi finite, Ann Mat.
Pura. Appl. 39 (1955), 357-379.

17. B. Segre, Ovals in a finite projective plane, Can. J. Math. 7 (1955), 414-416.

18. 1. Schur, Zur Theorie der einfach transitiven permutations Gruppen, Gesam-
melte Abhandlung III, Springer (1973), 266-298.

19. Webster’s ninth new collegiate dictionary (1983), Merriam-Webster, Spring-
field, Mass.

20. B.J. Weisfeiler and A.A. Lehman, The reduction of a graph to its canonical
form and the arising algebra, NTI ser 2 9 (1968), 12-16.

160



