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If £ < nby a k x nlatin rectangle is meant a k x = array in which each row
is a permutation of the set {1,2,...,n} and no two elements are repeated in any
column. Such a rectangle is said to be reduced if the first row and column are in
standard order. If L(k,n) and R(k,n) denote the total number and number of
reduced k x = latin rectangles, then we clearly have

(1) L(kn) =n(n—1)...(n—k+ 1)R(k,n),

so that for purposes of enumeration, it suffices to enumerate the reduced latin
rectangles. Thus when k = n we obtain the usual concepts from the theory of
latin squares.

The literature [1-3,5,6,9,11,13-16] concerning latin square enumeration points
out that a number of errors have been made in attempts to enumerate latin squares
of various orders. For n = 7 Sade [14] found missing squares in Norton’s count
[11]. For n = 8 Wells reported the value of R(8,8) in [15] but as pointed out
in Kolesova, Lam, and Thiel [9], this number disagrees with calculations made in
Brown [3] and Arlazarov, Baraev, Golfand, and Faradzhev [1]. Bammel and Roth-
stein (2] reported the value for B(9,9) and in passing, verified the R(8, 8) value
of Wells. Finally in Kolesova, Lam, and Thiel [9], the value for R(8, 8) of Wells
was again independently verified. As stated in [9] this “points out the difficulty
of performing an accurate enumeration. With the increasing use of computers
in mathematics, the correctness of such “proofs” is very difficult to obtain. We
should borrow an idea from the physical sciences, where a new result is accepted
only after it has been independently verified.”

With this in mind, for his master’s paper the second author attempted to enu-
merate latin squares using a modified version of Sade’s algorithm [13], see also
Dénes and Keedwell [5, pp. 142-144]. He set out with the following goals in
mind:

(1) To independently verify again that Well’s value for R(8,8) is correct.

(2) To independently verify that Bammel and Rothstein’s value for R(9,9) is
correct.

(3) Iflady luck is smiling, to obtain R(10,10), which is currently unknown.
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As a result (1) and (2) were accomplished and while in spite of considerable
effort we were unable to obtain R( 10, 10) for lack of sufficient computer memory,
we have obtained several previously unreported values for R(k,n) fork < n <
8. Consequently we felt it worthwhile to report these values in Table 1 as well as
to verify both the result of Wells and that of Bammel and Rothstein.

Considerable efforts have been put forth to enumerate latin rectangles of various
sizes, and as most results have been stated in terms of normalized (row one in
standard order) rectangles, we will for the moment also adopt this convention. If
N(k,n) denotes the number of normalized k& x = latin rectangles, then clearly
from (1),

) N(k,n) =(n—1)...(n— k+ DR(k,n).

For each n > 3, N(2,7) is the number of derangements of {1,2,...,n} and

N(3,n) can be calculated in terms of derangements and ménage numbers, see
(5, Sect. 4.4]. Light [10] gave the values of N(4,7) for n < 8 and an explicit,

though complicated, formula for L(4 ,n) and thus for N (4 ,m) is given in Prane-

sachar [12]. As indicated in Brualdi and Ryser [4, p. 285), several authors have
obtained formulas for L(k,n) in terms of the Mébius function for partitions of
a set. For k > 4 however these formulas are difficult to evaluate. We refer the
reader to [12] for additional references, to [7] for asymptotic results and [8] for
tables for small values of n.

2. Sade’s algorithm and reduced latin rectangles

In 1948 Sade [13] enumerated the reduced latin squares of order 7 and gave
16,942,080 as the value of R(7,7). His counting algorithm made use of an equiv-
alence relation which we will denote by ~. If 1 < k < nand X and Y’ are two
k x nlatin rectangles, then X ~ Y’ if there exists some combination of permutation
of rows, permutation of columns, and permutation of symbols which transforms
X into Y. It is not too hard to prove the very useful fact that if X ~ Y, then the
two latin rectangles can be extended or completed to n x = latin squares in the
same number of ways. Thus when calculating R(n, n) one need only keep track
of the inequivalent reduced latin rectangles and the number of rectangles which
they represent. We give the essence of Sade’s algorithm, which basically says for
agiven k, to generate all (k+ 1) x nlatin rectangles formed from the inequivalent
k x nrectangles.

As indicated earlier using our own variation of Sade’s algorithm, we confirmed
that the values of R(8,8) and R(9,9) reported in [15] and [2] are indeed correct.
As we were unable to obtain the value of R(10,10), i.e. the number of reduced
latin squares of order 10, we will not describe our algorithm in detail except to say
that it is another variation on Sade’s method. It differs essentially from the previ-
ous computer adaptations in that we attempted to use “standard forms”, somewhat
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Let L(k,n) denote the set of all reduced k x n latin rectangles

1. Begin with £(1,n) = (1,2,...,m). Here k = 1 and |L(1,n)|
= |f»(1“,n)/ ~|=1,

2. Form L(k + 1,n), which we define to be the set of all RLR’s formed by
extending the representatives of all equivalence classes of £ x n RLR's to
all possible (k+ 1) x nRLR’s.

3. Form £(k + 1,m)/ ~, and for each equivalence class formed record the
size (the number of rectangles in the equivalence class), and a representative
(say, the first) rectangle of each class. All other rectangles are discarded.

4. Repeatsteps 2and 3 untilk=n— 1.

Figure 1: Sade’s Algorithm

analogous to Jordan canonical forms, for the incidence matrices of Wells associ-
ated to a latin rectangle. One difficulty with this approach is that computation of
the inequivalent standard forms was very space and memory intensive.

As Sade’s algorithm enumerates the total number of reduced latin squares of
order n, it is easy to assume that it also in the process, enumerates the k x nreduced
latin rectangles for each k < n. Itis important to point out that Sade’s algorithm as
well as the adaptations of the algorithm used by Wells [15], [16] and Bammel and
Rothstein [2] appear to enumerate £( k,n) only fork = 1,2,n— 1, n, (this has
been confirmed by machine for all n < 7). Thus for n < 4, £(k, n) = L(k,n)
but £(k,n) GL(k,m) when'S < n < 7 and2 < k < n— 1. For example, by
following Sade’s algorithm we can see from Wells [16,p. 205] that |[C(3,5)| = 44
but from [8] we know that [£(3, 5)| = 46. It seems likely that for n > 5, Sade’s
algorithm gives the correct value for R(k,n) only fork = 1,2,n— 1,n, (of
course R(n— 1,n) = R(n,n)). As illustrated by the above example, the counts
from Sade’s method appear to only provide a lower bound for R(k, n).

In order to enumerate the reduced latin rectangles for n < 8, we devised yet
another variation of Sade’s method which can be used to count the total number of
k x nreduced latin rectangles. Itis essentially the same as that shown in Figure 1,
except that at the beginning, the symbols 1 through k are filled in for the entire first
column. The idea now is that if X' and Y are two j x nreduced latin rectangles
(7 < k) with symbols 1,..., k in the first column and X' ~ Y, then the number
of ways that X' and Y’ can be extended to k x n reduced latin rectangles is the
same.

In Table 1 we list the values of R(k,n) for2 < k<n—1landn< 8.
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R(k,n)

3

4

11

46

56

53

1,064

6,552

9,408

300

35,792
1,293,216
11,270,400
16,942,080
2,119
1,673,792
420,909, 504
27,206,658, 048
335,390,189, 568
535,281,401, 856
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Table 1: Number of Reduced Latin Rectangles
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