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Abstract

Generalized difference sets are difference sets with prescribed (and pos-
sibly different) multiplicities for every element. In this paper, constructions
will be given for generalized difference sets on the semigroup of positive
integers for almost every possible multiplicity function (sequence of multi-
plicities).

Difference sets appear in various areas of mathematics. The purpose
of this paper is to study a generalization of this notion to an infinite cyclic
semigroup. Every such semigroup is isomorphic to the additive semigroup
of all positive integers. Generalized difference sets on this semigroup are
also related to the notion of an A-ideal introduced in [1]. All the following
results can be proved for the infinite cyclic group as well, which is done at
the end of our paper.

Definition 1 Let S be an abelian semigroup and G be a nonempty subset
of S such that for every s € S there exists an element g € G such that
sg € G. Then G is called an A-ideal of the semigroup S.
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Definition 2 ([2]) Let A be an abelian group of order v. A set D of k
different elements from A is called a (v, k, \)-group difference set if the
following condition hold: For every d € A, different from the unit element,
there are exactly ) orderedpairs (ai,a;), 6i,a; € D, such that a,-a;l =d.
The following examples clarify the difference between these two notions.

Example 1. Let S = Z7, the additive group modulo 7. Then the set
G1 = {1,2,4} forms an A-ideal. Itis at the same time a (7,3,1)-difference
set. ‘
It is easy to show that every difference set on a semigroup is also an A-
ideal of this semigroup. The converse, as we shall see in the next example,
is not true.

Example 2. Take the group S and the set G; from the preceding exam-
ple. Let G2 = G1 U {3} = {1,2,3,4}. Although G is not a difference
set, it is an A-ideal of S. Unlike the set G'1, where we had for a given
s € Z7, s # 0, precisely one solution for every equation s + g1 = g2,
in terms of elements g;, g2 from G, the same task for G2 leads to the
following result:

1 + g1 = g2 has 3 solutions (g1, g2): (1,2),(2,3),(3.4)

2+ g1 = gz has 2 solutions (g1,92): (1,3),(2,4)

etc. for 3,4, 5 and 6, which leads to a multiset of differences of elements
of Go: (13,22,31 41 52 63),

We will call G; the generalized difference set of type (1,1,1,1,1,1),
while G is of type (3,2,1,1,2,3). In contrast, note the fact that while the
group Z¢ contains no difference sets ( except of the trivial one ), it does
contain A-ideals.

Let us now proceed to the notion of a generalized difference set on the
additive semigroup S = {1,2,3,...} of positive integers.

Definition 3 Let S be the additive semigroup of positive integers and let
{}1,22,)3,...} be an infinite sequence of positive integers. We say that
a subset G is a generalized difference set of type {)\1,)2,)3,...} on the
semigroup S if for every element i € S we have precisely \; solutions of
the equation i+ g1 = g2, with g1,92 € G (i. e. every positive integer i can
be expressed exactly X; times as a difference g2 — g1 of elements of G ).

We begin by focusing on a special case, the sequence {1,1,1,...}, which
plays an important role in helping to understand the general problem.
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Given a subset M of the set S of positive integers, let D( M) denote
the multiset of all possible differences of elements from M, i. e. D(M) =
{mi — mj|m;, m; € M, m; > mj}.

Now we can introduce the following recursive definition of an infinite
sequence of subsets of S:

(i) Let mo be an arbitrary element of S and let Ny = {mo, mo + 1}.

(ii) Having the set N; we define the set Nj.1 as follows:
Nis1 = NiU{2(k+ 1),2(k+ 1) + j}

where j is the smallest element of the set S\ D(N;), and k is the
maximal element of N;.

Before stating the theorem proper, let us mention the fact that the sequence
{Ni}, is well defined. For, given any i > 1, the set N; is a union of
two finite sets, and is hence finite. Any Nj;, therefore, contains a maximal
element k. This also forces D(N;) to be finite and thereby S \ D(N;) is
both nonempty and contains a smallest element.

Theorem 1 The set G = |J{N;|i € S} is a generalized difference set of
type {1,1,1,...} on the semigroup S.

Proof. To prove the theorem we have to show that D(G) contains every
positive integer exactly once.

Let us start by showing that D(G) contains every element of S. Sup-
pose the opposite, i. e. suppose that D(G) is a proper subset of S. Then
there exists an element ng which is the smallest element of S \ D(G). It
follows that ny does not belong to Nj; for any ¢ € S. On the other hand, the
finite set {m|m < no} belongs to D(G) and, since { D(N;) }&, is an in-
creasing sequence, there exists a smallest index [ suchthat {m|m < mp} C
D(Np). Thenclearly Ni.1 = NjU{2(k+1),2(k+ 1) +np }, where k is the
maximal element of Nj. Since ng = 2(k+ 1) +np —2(k+ 1) € D(Np1),
we have a contradiction with the way ng was chosen. Hence D(G) con-
tains every element of § at least once.

To prove that D(G) contains no positive integers more than once, no-
tice that if any = appears in D(G) more than once then, for ¢ sufficiently
large, D(N;) ’s contain n more than once. Therefore it suffices to prove
that none of the multisets D( N;) contains any n more than once. Again,
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Since all the possible cases for a repeated appearance of any positive integer
force a contradiction, we can conclude that D(G) contains every positive
integer exactly once. This proves the assertion. O

Example 3. Here are the first few elements of G, when starting with
mo=1:

1,2,6,8,18,21,44,52,106,115,232,243,...

Having solved the special case for the sequence {1,1,1,...}, we can
proceed to the general case for an arbitrary multiplicity sequence {\;}8;.
The following construction works for every sequence {);}$2; of positive
integers greater thanone (i.e. A; > 2 foralli € ).

Let {};}$2, be a sequence with the required property. Define a se-
quence of subsets of S as follows:

(i) My = {mo,mo + 1}, where mo is an arbitrary element of S .
(ii) Having the set M; we define the set M;, by setting
M1 = M;U {2(k+ 1),2(k+ 1) + j}

where k is the maximal element of M; and ; is the smallest positive
integer which appears in D( M;) fewer than ); -times.

The sequence { M;}, is well defined , and we can state:

Theorem 2 Let {;}32, be a sequence of positive integers such that \; >
2 foralli € S. Then G = J{M;|s € S}, the union of all sets M; con-
structed by our recursive definition, is the generalized difference set of type
{\:}32, on the additive semigroup of positive integers.

Proof. The proof of the fact that the multiplicity of every positive integer
nin D(G) is at least \,, proceeds exactly in the same way as the proof of
the appearance of every positive integer in the preceding proof. It remains
only to prove that no positive integer n appears in D(G) more than A,
-times.

Suppose the contrary: let np, M;, be the smallest positive integer ap-
pearing in D(@G) more than )\, -times together with the first set M;, sat-
isfying the condition that D( M;,) contains np more than )\, -times. This
time we have four possibilities to consider. Each of them gives rise to a
contradiction:
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suppose the opposite. Let np be a positive integer appearing at least twice
in D(@G), and let §p be the smallest number for which D( N;,) contains np
at least twice. Then the preceding multiset D( N;,_1) contains np at most
once. We have to deal with three possible cases for np:

e ny is the smallest element of S\ D(Njy-1) (i. e. it is the smallest
element, and must be included )

Then by the recursive definition of N;,, we get i, = N;, 1 U{2(k+
+1),2(k+ 1)+ ng }, where k is the maximal element of Nj,—;. Since
ny does not belong to D( N;,-1) , the only possible appearance of np

in D(N;,) (except as the difference ng = 2(k+ 1) + ng —2(k+ 1)

) must be of the formng = 2(k+ 1) —morn = 2(k+ 1) +

np — m, for some m € Nj,—1. By the definition of D(N;,-1)
it is obvious that | < k for every | € D(N;,-1), and since ng

is the smallest number not contained in D(N;;—1) we must have
ng < k. On the other hand, both of these two possible expressions
for repeated appearances of ng are strictly greater than k ; therefore,
np cannot appear in D( N;,) more than once. This is a contradiction
to the assumption of a multiple appearance of ny in D( Nj,).

e g does not belong to D(Nj,-1), but it is not the smallest number
with this condition ( i. e. it will not be added to Ni,_ ).

For the same reasons as in the preceding case, the only possibilities
for an appearance of np in D( Nj,) are the differences 2(k+1)+j—
my or 2(k + 1) — my, for some m;,m2 € N;,-1. If np appears
in D(N;,) at least twice, then2(k+ 1) + j —my = 2(k+ 1) —
ma = ng, where obviously m; > mg. Since j does not belong to
D(Nj,-1), we get that j # my — mz . Hence, after subtracting our
two expressions for np, we get the contradiction:

0=2(k+D)+j—m1 —2(k+ 1)+ m2=j—(m —m2).

e ny € D(N;,-1)
Once again, the only possible repeated appearance of ng in N;, can
be of the form 2(k + 1) + j — m or 2(k + 1) — my, for some
mi,m2 € Nj,—1. Again, in exactly the same manner as the first
case, we can show that np must simultaneously be strictly greater
than k and smaller than k, which gives a contradiction.
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e np is the smallest positive integer not contained in D( M;,_1) ex-
actly \n, -times (i. e. it will be included )

By the definition of our sets, M;, = Mj,—1 U{2(k+ 1),2(k+ 1) +
np }. Using the same arguments as in the first case of the preced-
ing proof we can show that D( Mj,) contains np exactly once more
than D( M;,—1). As D(M;,—1) contains ng fewer than )\, -times,
D( M;,) contains np at most Ay, -times, which is a contradiction.

e ngy appears in D(M;,_1), but it does so fewer than \,, -times and
ng is not the smallest element with this property (i. e. we will not
include it in the next step)

Repeating the procedure from the second case of the preceding proof,
we can show that the multiplicity of np in D( Mj,) increases by at
most one, and hence is not greater than ),,, , which is a contradiction.

e ng does not appear in D( M;,—1), but it is greater than the smallest
number not expressed sufficiently many times in D( M;,—1)

This is the only truly different case. The set M;, is by definition
equal to M,y U {2(k + 1),2(k + 1) + j}. As np does not be-
long to D( M;,—1), the only possible differences which can create
np are of the form 2(k + 1) — m; or2(k + 1) + j — m2, for some
m1, m2 € M;,—1. This time we cannot exclude either of these two
possibilities, but as the multiplicity of np in D(M;,—_1) was zero,
the multiplicity of np in the set D( M;,) increases by at most two,
which is not greater than \,,, by our assumptions about the sequence
{M}E2-

e mg appears in D(M;,_1) exactly Ay, -times.

For this case we can show, as in the third part of the proof of Theorem 1,
that there are no additional appearances of ng in the set D( M;,) ac-
cording to the multiplicity in the preceding multiset, and get the same
contradiction.

By exhausting all possible cases we have proved that there are no positive
integers, which appear in D(G) more than ); -times. This completes the
proof. O -

Example 4. Here are the first elements of the generalized difference set
G of type {2,2,2,2,...} when starting withmg =1 :
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1,2,6,7,16,18,38,40,82,85,172,175,350,354,710,716 ...

As the reader may have realized, the condition X\; > 1, forallt € S,
was crucial for our proof. The following exampie shows that, in some
sense, this condition cannot be "weakened".

Example 5. Let {\;}%, be asequence {1,1,...,1,3,1,1,...} which
posseses exactly one "3" on the ¢ -th place (i. e. A; = 3 ), and is equal to
"1" otherwise ( A; = 1, for j # 1 ). Then there is no generalized difference
set of this type on the additive semigroup of positive integers. The proof of
this claim is based on the fact that the three different expressions for i force
the existence of another positive integer different from ¢ with multiplicity
at least 2. It is an easy combinatorial exercise to show this, and we leave it
to the reader.

Theorem 2 can be extended to the more general

Theorem 3 Let {);}2, be asequence of positive integers such that x; = 1
Jor only finitely many 1 from S. Then there exists a generalized difference
set of the additive semigroup of positive integers of type {)\¢}2;.

Proof. We can construct the set G using our second recursive definition
by making the "starting" mo greater than the largest index of an element
equal to 1. Choosing myg in this way, we cannot "accidentally" create two
differences when we need only one. The details are left to the reader. O

All the results achieved for the infinite cyclic semigroup can be shown
to be true for the infinite cyclic group as well.

Definition 4 Let S be the additive group of integers, andlet = {...,\_3,
A_2,2-1,21,)2,23,...} be a doubly infinite sequence of positive inte-
gers. We say that a subset G is a generalized difference set of type ) on the
group S if for every element i € S,1 ¥ 0, we have precisely \; solutions
of the equation i + g1 = g2, with g1,92 € G ( i. e. every integer i can be
expressed exactly \; -times as a difference g, — g1 of elements of G ).

Obviously, A; = A_;, for all 4, is a necessary condition for the existence of
a generalized difference set of the type A. Hence, ) is completely deter-
mined by the sequence {\1, A2, \1,...}. Eachof the above three theorems,
therefore, remains true after replacing the infinite cyclic semigroup by the
infinite cyclic group.
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Remark. The generalized difference set G constructed in Theorem 1 is
also a minimal A-ideal of the infinite cyclic semigroup. It is different from
both of the known examples of such an A-ideal, which are presented in [1]
and [3].
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