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Abstract. An efficient algorithm for calculating the chromatic polynomial of large
graphs relative to the tree basis is presented. As an application of this algorithm, the
degree thirty-two chromatic polynomial of the dual of the truncated icosahedron is cal-
culated. Before this algorithm, only the by-hand calculations of Hall, Siry, and Vander-
slice completed in 1965 had produced this chromatic polynomial.

In 1965 Hall, Siry, and Vanderslice [2] announced the result of an extensive
manual calculation to determine the chromatic polynomial of the dual of the pla-
nar map of the truncated icosahedron (T°I). They completed this computation over
aperiod of several years. The work depended on the reduction of the original prob-
lem to the determination of the chromatic polynomial of each of a set of thirty-five
graphs with twenty-six or fewer vertices [7]. The calculation involved the deter-
mination of a monic polynomial of degree thirty-two with maximum coefficient
having magnitude of order 10'°. The whole computation stands as an amazing
record of a successful, complex, manual computation. No algorithm of more than
theoretical value had been developed to calculate such a large chromatic polyno-
mial until the work described herein was completed. However, on a smaller scale,
Read [5] developed an algorithm for calculating chromatic polynomials that he
used in calculating the chromatic polynomial of all graphs with fewer than eleven
vertices. '

The starting point for the algorithm developed is the algorithm for computing
chromatic polynomials given in [4]. This algorithm uses the delete-contract pro-
cedure repeatedly to reduce the graphs considered until each branch of the com-
putation tree is reduced to the problem of computing the chromatic polynomial
of a tree. Without substantial improvements, this algorithm is unable to deal ef-
fectively with graphs the size of the T'I. Two major improvements to this algo-
rithm are presented. The first introduces a new termination condition that relies
on recognizing the graph being processed before it becomes a tree. The second
generalizes classical reduction results to delete vertices of small degree.

Chromatic Polynomials

Let G = (V,E) be a graph with |[V| = n where n > 0. As usual, denote
the number of ways to color the vertices of G with A colors as P(G, A) where
A =0,1,2,.... The well known properties of chromatic polynomials that will
be used are found in [3] and [6].
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Definition 1 (Delete-contract graphs): Let U C E. The deletion graph G — U is
defined as the graph with vertex set V and edge set E — U. If U is a single edge
e, this graph is denoted as G — e. For v € V, the graph G — v will denote the
graph with vertex set V — {v} and edge set consisting of all the edges of G that
are not incident to v. Let W C V. The contraction graph G/W is defined (o be
the graph generated from G by identifying the vertices in W as a single vertex. If
W = {v,w} and e = (v,w) € E, the contraction, denoted as G/e denotes the
graph (G — {(v,w)})/{v, w} that first deletes e and then contracts the vertices
that were its ends.

Much of the current literature only considers the operations G — e and G/e. For
the work here, the more general notions of deletion and contraction are necessary.

It will be enough to consider only connected graphs in this paper. The problem
of calculating the chromatic polynomial of any graph only requires the multipli-
cation of chromatic polynomials for the connected components of a graph. The
algorithms presented here for computing chromatic polynomials do require and
preserve the property that the graph is connected.

The next two well known results about chromatic polynomials are needed later.

Proposition 1. If two graphs G\ and G intersect in a complete graph on k
vertices where k > 1, then

P(G1,))-P(G2,)\)

P(G1UG2,)) = MO—1) - (h—k+ 1)

Proposition 2. Let T be any tree with k vertices where k > 1, then the chro-
matic polynomial of T is

P(T,)\) = A() = 1)* 1,

A Basic Algorithm

The algorithm described in [4] for calculating chromatic polynomials is a starting
point. A version of that algorithm is given in Table 1.

In this algorithm the edge to be deleted is not in the spanning tree. Delcting such
an edge insures that the graph will remain connected and progress will be made
towards transforming G into a tree. When forming H,, the edges designated as a
spanning tree in H; become a subgraph of H, with one cycle. To form a spanning
tree in H,, designate one of the edges in that cycle as not in the spanning tree.
When the algorithm terminates, the chromatic polynomial of G is given by

[vi-1

P(G,)) = Y (=1)'CTLi+ 1M = 1)}
i=0
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Algorithm 1

INPUT: Connected graph G = (V, E) with |[V| > 0.
RESULT: Coefficients of the chromatic polynomial of G
relative the tree basis.

Data Structures: Array CT'[1..]V|] initialized to have all its
entries zero. CT'[1] will contain the number of trees with
1 vertices that terminated branches of the computation for
1 <1 < |V]. A stack S (last-in-first-out list) to hold graphs
generated by the contract operation.

find a spanning tree T in G
stop-condition:=false
do
if G is a tree on 1 vertices then
increment CT'[1] by 1
if S # 0 then
G =POP(S)
else
stop-condition:=true
else
Hi=G-—ewheree ¢ T
H; = G/ e
form a spanning tree in H,
PUSH( H3)
G=H
until (stop-condition = true)

Table I

when |V| is odd and

[V]-1
P(G,)\) = E(—l)‘”CT[H MO = 1)F

i=0

when |V is even. The computation time for calculating a chromatic polynomial
using Algorithm 1 will be proportional to the sum of the entries in CT since this
sum represents the number of trees that terminate branches of the computation

The terms

LA =D A0 =D2,. a0 = DIviH
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are called the tree basis for the chromatic polynomial. The improvements to Al-
gorithm 1 speed the computation of the coefficients for a chromatic polynomial
relative the tree basis.

Small graphs

Rather than wait for G to become a tree to terminate a branch of the computation,
it is possible to make a contribution to the final answer when a “small” graph
is recognized. It is not necessary that every graph with = vertices that is used to
terminate a branch of the computation have the same chromatic polynomial. What
is necessary, however, is that every graph that causes termination of a branch of the
computation tree be easy to recognize and to have a known chromatic polynomial.
One problem that stands in the way of the implementation of such a termination
condition is the generation of tree-like subgraphs as a result of deleting edges.
For example, a graph of the form shown in Fig. 1 could easily result from the

delete-contract process.

Tree-like subgraphs
Figure 1

Clearly the “core” graph in Fig. 1 is the graph without the “trees attached.” The
“core” graph, however, will not be recognized because of the tree-like subgraphs
attached to it. The key to the solution of this problem is found in Theorem 1.

Theorem 1. Let G = (V,E) be a graph. Let e = (v,w) € E such that
deg (v) = 1. The chromatic polynomial of G is

P(G,)) =(A=1DP(G—v,)).

Proof: The result follows from Proposition 1 with k = 1. 1

It is instructive to interpret Theorem 1 in terms of the tree basis. Letv € V
such that deg(v) = 1. Let CTi[1..]V] — 1] be the coefficients of the chromatic
polynomial of G — v relative the tree basis. Let CT[1..|V|] be the coefficients of
the chromatic polynomial of G relative the tree basis. The entries in CTi and CT
are related as indicated below.

. 0
CT0 = { CTili-1] i=2,3,...,|V]

i=1
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Thus, a vertex of degree one can have its contribution to a chromatic polynomial
incorporated into the tree basis representation by means of a simple shift operation.
The number of times this simple shift operation needs to be applied to remove the
tree-like subgraphs of a graph will be the number of edges that must be removed
to leave a graph with minimum degree two.

By checking at each step of the computation for the presence of vertices of
degree one, vertices of degree one can be eliminated as they are generated. The
algorithm must make sure to pass the number of degree one vertices deleted to
all the nodes that are descendants of a given node. When the contribution of a
graph to the chromatic polynomial of the original graph is made, the total number
of degree one vertices deleted in processing that graph will determine the number
of shifting operations needed. By removing the tree-like subgraphs and forming a
graph with minimum degree two, the termination of a branch of the computation
becomes the problem of trying to identify what graph remains. Using the table
in Harary [3], a procedure is developed that causes the algorithm to terminate as
soon as any one of the seventy-six, connected graphs with six or fewer vertices
and minimum degree two is encountered. In Table II, Algorithm 1 is modified to
incorporate this new termination condition.

Vertex reduction

The classical results about the calculation of chromatic polynomials [1] use reduc-
tion theorems to eliminate regions with a small number of bounding edges (small
degree in the planar dual for planar graphs). Since chromatic polynomials can
be calculated for both planar and non-planar graphs, there is no need to restrict
reductions to planar graphs. The more general reduction theorems are given for
certain vertices of degree two, three, four, five, and six. For these theorems the
graph need not be connected.

Theorem 2. Let G = (V, E) be agraph. Let v € V such that deg(v) = 2 and
the neighbors of v are adjacent. The chromatic polynomial of G is

P(G,)N)=(A=2)P(G—v,)).

Proof: Use Proposition 1 with k = 2. |

To incorporate this result into Algorithm 2, the actual contribution to P(G, X\)
is made using a two step process. The procedure first represents the computation
as:

A=-2)P(G-v,2)=(0—-—DP(G—-v,)) — P(G—v,)).

Since P(G — v, )\) is represented relative the tree basis, the first calculation rep-
resents a shifting right one position of each element in CT'[x]. The second cal-
culation is accomplished by adding P(G — v, ) to the polynomial that results
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Algorithm 2

INPUT: Connected graph G = (V,E) with |V|] > 0.
RESULT: Coefficients of the chromatic polynomial of G
relative the tree basis.

Data Structures: Array CT[1..|V|] initialized to have all its
entries zero. CT'[4] will contain the coefficients of A\() — 1)~}
in the chromatic polynomial for G for 1 < ¢ < |V|. A
stack S (last-in-first-out list) to hold graphs generated by
the contract operation.

find a spanning tree T in G
stop-condition:=false
do
if G is atree on 1 vertices or |[V| < 6 then
contribute to CT'{ ]
if S # @ then
G =POP(S)
else
stop-condition:=true
else
Hy=G—ewheree¢T
Hy =Gle
form a spanning tree in H,
PUSH( H2)
G=H;
until (stop-condition = true)

TableII

from the shifting operation. The signs are actually unnecessary during the com-
putation because all the contributions to a particular final coefficient will have the
same sign. The actual plus and minus signs can be attached to the final polynomial
when itis output. An example of this shift and add computation is shown in Fig. 2,

The reductions for vertices of degree greater than two are a bit more complex
because they not only reduce the graph but also, in some cases, generate additional
graph(s) that must be put on the stack so that the(ir) chromatic polynomial(s) can
be calculated later.
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P(G,\) =(\ =2)P(G —v,))
=(A = 1)P(G-v,\) — P(G—=v,))
=A=DOAO=1)=22A=-D2+2(0-D?)

OG- =220 =12+ 20 -1
== AA=D+3AA-D2 =320 =D+ 20 =-1*

A — 2 computation
Figure 2

Theorem 3. Let G = (V,E) be a graph. Let v,un,w,,ws € V such that
deg(v) = 3 and the neighbors of v are wy,w;, and ws. Suppose that the
neighbors of v are contained on a path of length two, w, , e, w2, ez, ws where
e;,e; € E. Then

P(G,)) = (A=3)P(G—v,)) + P((G —v) [{w1,w3 }, ).
Corollary. If (w,,ws;) € E, then
P(G,)\) =(A=3)P(G —v,)).

When incorporating the reduction of Theorem 3 into the algorithm, the graph
(G —v) /{w1, ws } is put on the stack for later use and the graph G — v is used in
the next step of the computation. The factor (A — 3) is incorporated into the final
value of P(@G, )) as follows:

A=3)P(G—v,))=(A=1)P(G—v,)) — P(G—v,\) — P(G—v,)).

This representation of (A — 3) P(G — v, )) indicates that the computation consists
of a shift operation followed by two add operations.

The reduction of a vertex of degree four generates up to three additional graphs
to be put on the stack. In general, the number of graphs to be put on the stack
depends on the structure of the subgraph induced by the neighbors of the vertex
that is being deleted.

Theorem 4. Let G = (V, E) be a connected graph. Let v, w;, wy, w3, ws €V
such that deg (v) = 4 and the neighbors of v are w,w, , w3, and w,s . Suppose
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that the neighbors of v are contained on a path of length three, wy, e1, w, €2,
w3, €3, w4, where ey, e;,e3 € E. Then
P(G,)\) =(A=dHP(G—v,)) + P((G—v)/{wr, w3}, })
+ P((G — v)/{w1,wa},)) + P((G — v} [{wz,wa},}).
Again, the result can be simplified if the subgraph induced by {w1, w2, w3, wa}

contains any of the edges (wi,w3), (w1, ws),and (w2, wq).
Reductions can also be formulated for vertices of degree five.

Theorem 5. Let G = (V, E) be a graph. Let v, w,, w2, w3, ws,ws € V such
that deg(v) = 5 and the neighbors of v are w, w2, ws,ws, and ws. Suppose
that the neighbors of v are contained on a path of length four,
w, €, w2, e2,ws,e3,Ws, €4, Ws,
where ey, ez2,e3,e4 € E. Then
P(G,)) =(A =5)P(G —v,)) + P((G—v) [{w1,w3 }, )

+ P((G = v) [{w1,wa },}) + P((G - v) [{wr,ws },))

+ P((G — v) [{w2,wa},)) + P((G —v) [{wz,ws},))

+ P((G = v)[{ws,ws},X) — P((G — v) /{wy, w3, ws},}).

The reduction for a vertex of degree six is presented because it is useful in
making a reduction to the task of finding the chromatic polynomial of the T'I. In ~
general, the reduction of a vertex of degree six causes the stacking of so many
graphs of about the same size as the original graph that it may take longer to
calculate a chromatic polynomial using the reduction than without using it. Even
the reduction for a vertex of degree five may not always be a useful reduction.

Theorem 6. Let G = (V, E) be a graph. Let v, wy,wy, w3, wa,ws,ws € V
such that deg (v) = 6 and the neighbors of v are wy, wy, w3, w4, ws, and we.
Suppose that the neighbors of v are contained on a path of length five,
wi,e1,wz,€2,ws,e3,wq,64,wWs,€5,Ws,
where e;,ez2,e3,es,es € E. Then
P(G,)\) =(A = 6)P(G —v,)\) + P((G = v)/{wr, w3 },})
+ P((G = v) /[{wr,wa} + P((G — v} /{wr,ws},})
+ P((G—=v)/{wi,ws}, ) + P((G — v) /{w2,wa}, )
+ P((G — v)/{wz2,ws },\) + P((G — v) /[{wz,we}, )
+ P((G - v)/{wg,ws},A) + P((G —v)/{ws, we}, )
+ P((G — v)/{wa,we},)) — P((G — v) /[{w1, w3, ws },))
- P((G —v)/{w1,ws,we},X) — P((G — v)/{w1,was, we},))
—P((G—v)/{wz,w.;,ws},)‘)
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The condition that the neighbors of the vertex to be deleted must be on a path
makes it easy to prove that the graph resulting from the deletion will be connected.
It is a well known result of graph theory that the removal of an edge of a connected
graph disconnects the graph if and only if the edge is not contained in a circuit.
A problem of ongoing interest is how to generate other efficient reductions in the
size of the problem while maintaining the property of connectedness. The path
condition imposed clearly resulted in an efficient reduction process.

Overflow

Each vertex reduction results in the determination of a factor of the chromatic
polynomial of the form A — k where & is the degree of the vertex removed. To
“multiply” the chromatic polynomial of the resulting graph by these factors re-
quires shifting and adding operations applied to CT'[+]. The shift and add op-
erations must be monitored carefully so that no overflow results. For the T/ this
is a particularly important consideration because the coefficients of its chromatic
polynomial relative the tree basis vary in size up to 1017,

Truncated Icosahedron

Incorporating the reduction of vertices of small degree into Algorithm 2 gives rise
to Algorithm 3 shown in Table III. Figure 3 shows the planar map of the truncated
icosahedron.

The truncated icosahedron
Figure 3

The “contribute to CT” step involves the shift and add process with arbitrary pre-
cision for each of the reductions applied.

Figure 4 gives the chromatic polynomial of the truncated icosahedron relative
the tree basis as well as relative the standard basis.
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Algorithm 3

INPUT: Connected graph G = (V,E) with |[V] > 0.
RESULT: Coefficients of the chromatic polynomial of G
relative the tree basis.

Data Structures: Array CT'[1..|V|] initialized to have all its
entries zero. CT'[4] will contain the coefficient of A\()\ — 1)1
in the chromatic polynomial for G for 1 < i < |V|. A
stack S (last-in-first-out list) to hold graphs generated by
the contract operation.

find a spanning tre¢ T in G
stop-condition:=false
do
remove vertices of small degree from G
if G is a tree on ¢ vertices or |[V| < 6 then
contribute to CT'[ *]
(include contributions from deleted vertices)
if S # 0 then
G =POP(S)
else
stop-condition:=true
else
Hi =G—ewheree¢ T
Hy, =Gle
form a spanning tree in H>
PUSH( H3)
G=H
until (stop-condition = true)

Table III

A shortcut to the 77/

Substantial reduction in run time for a direct calculation of the chromatic poly-
nomial of the T'I can be achieved by applying a reduction process to the vertex
of degree six that represents the “outside” region of the planar map representing
the truncated icosahedron. The reduction of this degree six vertex yields the chro-
matic polynomial of the T'I in terms of twelve graphs with fewer vertices than
the T'I. The reduction of the set of fifteen graphs that result from the reduction of
a vertex of degree six to just twelve graphs result from the presence of the edge
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P(TI1,)\) = P(TI,)\) =

+1 A2
+1 MO =13 -90 A3
-59 A =1)3%F +3945 )30
+1710 AMA=1% —112200 2z
—32450 MO =1 +2327268 A\
+453403 2O =¥ —37516324 z
—4973197 MA=1%* +489095520 \%
+44583400 MA=1Z —5298021900 2
—335797000 AMA=1% +48618908986 It
+2167755011 AMHA=-13 —383467527324 A3
—12175221281 MHA=-12 +2628112750438 a2
+60183865818 AMH =12 —15783975098870 a2
—264193106900 Mr=12 +83613089708150 A0
+1037166520075 MA=1"P —392625990680270 Az
—3661052024851 MA—1)18 +1640349520092620 A8
+11665962055746 MO =117 —6113181533318121 \7
—33646105485699 MA=1)16 +20353936625560620 a6
+87942380056419 AMA=1P —60579703683784392 A3
—208269347521537 MO =D +161106440132538877 A4
+446095183473635 MA=D1"8 —382247148887646201 AB
—861047769728938  A() — 1)12 +806916662571437272 Az
+1489229660477423  M\()\ — ! —1509208695276387615  \!
—2289676883015802  A(X — 1)10 +2486158497706802584  \!10
+3096554498357805  A(\ —1)° —3577950146822172066 )\’
—3633794047947863  A(\ —1)8 +4449317065382987055 A8
+3636161286009548  A\()\ —1)7 ~4710499040596052917 )\’
—3033198826142253  A(XA —1)¢ +4160720925588200156 . )6
+2046265622980682  A()\ — 1)° —2980545888313780582 )5
—1069414679790850  A() — 1)* +1661171405749474098  )\*
+405031279488050 AA=13 —674454446771952908 )3
—98611241495930 AMh=1)2 +176998670388733410 a2
+11551226205884 Ar=1) —22463193324569220 by

(a) Tree basis (b) Standard basis

Chromatic polynomial of the truncated icosahedron
Figure 4

(w1, ws) where wy and wg are the ends of the path of length five that joins the
vertices adjacent to the vertex being removed. It can be shown that only seven
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of these graphs are isomorphically distinct. Consequently, the computation can
be reduced to the calculation of the chromatic polynomials of these seven graphs
followed by the necessary linear combination of their chromatic polynomials to
determine the chromatic polynomial of the truncated icosahedron(T'I).

Open questions

An investigation of how to eliminate putting the same graph on the stack more than
once is needed, but probably very hard. A related problem involves finding a way
to identify subgraphs, not necessarily “small” subgraphs, for which the chromatic
polyromial has been calculated so that the graph need not be put on the stack.
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