Existence of Indecomposable B[4,6;v] without Repeated Blocks

Shen Hao1

Department of Applied Mathematics, Shanghai Jiao Tong University Shanghai 200030, The People's Republic of China

Abstract. It is proved in this paper that there exists a simple B[4,6;v] for every $v \ge 6$. It is also proved that there exists an indecomposable simple B[4,6;v] for every $v \ge 6$, $v \notin \{12,13,16,17,20\}$.

1. Introduction

A balanced incomplete block design $B[k, \lambda; v]$ is a pair (V, B) where V is a v-set and B is a collection of k-subsets (called blocks) of V such that each 2-subset of V is contained in exactly λ blocks. A $B[k, \lambda; v]$ is called simple and denoted $NB[k, \lambda; v]$ if it contains no repeated blocks.

Let (V, B) be a $B[k, \lambda; v]$; if there is a subcollection A of B; such that (V, A) is a $B[k, \lambda'; v]$ for some λ' , $1 \le \lambda' < \lambda$, then (V, B) is called *decomposable*. Otherwise it is called *indecomposable*.

It is not difficult to verify that the following conditions are necessary for the existence of an $NB[k, \lambda; v]$ or an indecomposable $NB[k, \lambda; v]$:

$$\lambda(v-1) \equiv 0 \pmod{(k-1)};$$

$$\lambda v(v-1) \equiv 0 \pmod{k(k-1)};$$

$$\lambda \leq \binom{v-2}{k-2}.$$
(1)

For given k and λ , any positive integer v satisfying (1) is called admissible.

A $B[3,\lambda;v]$ is also known as a λ -fold triple system. The existence of simple triple systems and indecomposable simple triple systems has been studied by several authors. The existence of simple triple systems for arbitrary λ was completely determined by Dehon [2]: There exists an $NB[3,\lambda;v]$ for every admissible v. Much less is known concerning the existence of indecomposable $NB[3,\lambda;v]$. Kramer [5] showed that there exists an indecomposable NB[3,2;v] if and only if $v \equiv 0,1 \pmod{3}$, v > 3 and $v \neq 7$, and there exists an indecomposable NB[3,3;v] if and only if $v \equiv 1 \pmod{2}$, $v \geq 5$. The case of $\lambda = 4$ was solved by Colbourn and Rosa [1] who showed that an indecomposable NB[3,4;v] exists if and only if $v \equiv 0,1 \pmod{3}$ and $v \geq 10$. For $\lambda = 6$, it was proved independently by Dinitz [3], Milici [7] and Shen [9] that there exists an indecomposable NB[3,6;v] for every $v \geq 8$, $v \neq 9$ with the possible exceptions v = 10, 11, 12, 13, 15 and 16.

¹This research was supported in part by the Vermont Summer Workshop on Combinatorics and Graph Theory with funds provided by Vt. EPSCOR.

For k=4, it was proved by Guo [4] and Phelps and Rosa [8] that there exists an indecomposable NB[4,2;v] if and only if $v\equiv 1\pmod 3$ and $v\geq 7$. Guo [4] also proved that there exists an indecomposable NB[4,3;v] if and only if $v\equiv 0,1\pmod 4$, $v\geq 5$. For $\lambda=4,5$, the present author [10] proved that there exists an $NB[4,\lambda;v]$ for every admissible v, and there exists an indecomposable $NB[4,\lambda;v]$ for every admissible v, with a few possible exceptions.

The purpose of this paper is to study the existence of NB[4,6;v] and indecomposable NB[4,6;v], and prove the following theorems:

Theorem 1. There exists an NB[4,6; v] for every v > 6.

Theorem 2. There exists an indecomposable NB[4,6;v] for every $v \ge 6$, $v \notin \{12,13,16,17,20\}$.

2. Existence of NB[4, 6; v]

If there exists an NB[4,6;v], then obviously $v \ge 6$. We shall prove in this section that there exists an NB[4,6;v] for every v > 6.

Let $V = Z_v$ and (Z_v, B) be a $B[k, \lambda; v]$. If for any $B \in B$, $B = \{a_1, a_2, \ldots, a_k\}$, we have $\{a_1 + 1, a_2 + 1, \ldots, a_k + 1\} \in B$, then (Z_v, B) is called a cyclic design.

Let $B = \{a_1, a_2, \dots, a_k\}$ be any subset of Z_v . For $t \in Z_v$, (t, v) = 1, let tB denote the subset $\{ta_1, ta_2, \dots, ta_k\}$.

Lemma 1. If v = p is a prime and $p \ge 7$, then there exists a cyclic NB[4,6;v].

Proof: Let $B = \{0, 1, 2, 3\}$ and $tB = \{0, t, 2t, 3t\}t = 1, 2, ..., (p-1)/2$. Then it can be easily checked that with $V = Z_p$ as point set and $B, 2B, ..., (p-1)/2 \cdot B$ as base blocks, we obtain a cyclic NB[4, 6; v].

Let (V, \mathcal{B}) be a $\mathcal{B}[k, \lambda; v]$ and (W, \mathcal{A}) be a $\mathcal{B}[k, \lambda; w]$. If $W \subset V$ and \mathcal{A} is a subcollection of \mathcal{B} , then (W, \mathcal{A}) is called a *subdesign* of (V, \mathcal{B}) or (W, \mathcal{A}) is said to be *embedded* in (V, \mathcal{B}) .

Lemma 2. If p is a prime and there exists an NB[4,6;v], $2v+1 \le p$, then any NB[4,6;v] can be embedded in an NB[4,6;p+v].

Proof: Let $V = \{\infty_1, \infty_2, ..., \infty_v\}$ and (V, A) be an NB[4, 6; v]. By Lemma 1, there exists a cyclic NB[4, 6; p] on Z_p with $B_t = tB = \{0, t, 2t, 3t\}, t = 1, 2, ..., (p-1)/2$ as base blocks. As $2v + 1 \le p$, we have $v \le (p-1)/2$. Now for each t = 1, 2, ..., v, substitute for the base block B_t the following two base blocks

$$B_{t'} = \{\infty_t, 0, t, 2t\}, \qquad B_{t''} = \{\infty_t, 0, t, 3t\}.$$

Let \mathcal{B} denote the set of blocks obtained by developing the base blocks $B_{1'}$, $B_{1''}$, $B_{2'}$, $B_{2''}$..., $B_{v'}$, $B_{v''}$, $B_{v''}$, B_{v+1} , ..., $B_{(p-1)/2}$. Let $X = V \cup Z_p$, then $(X, A \cup B)$ is an NB[4, 6; p+v] containing (V, A) as a subdesign.

Lemma 3. There exists an NB[4, 6; v] for v = 6,9,10,15 and 16.

Proof: We prove the lemma by direct constructions.

```
v = 6 Taking all the 4-subsets of Z_6 as blocks gives an NB[4,6;6].
```

v = 9 $V = Z_9$, Base blocks

$$\{0,1,2,4\},\{0,1,3,5\},\{0,1,2,6\},\{0,1,3,6\}$$

v = 10 $V = \mathbb{Z}_9 \cup \{\infty\}$. Base blocks

$$\{0,1,2,4\},\{0,1,3,5\},\{0,1,3,6\},\{\infty,0,1,3\},\{\infty,0,1,5\}.$$

v = 15 $V = Z_{15}$. Base blocks

$$v = 16$$
 $V = Z_{15} \cup \{\infty\}$. Base blocks

$$\{0,1,3,10\},\{0,1,3,11\},\{0,1,4,6\},\{0,1,4,9\},$$

$$\{0,1,5,7\},\{0,2,8,12\},\{\infty,0,1,4\},\{\infty,0,2,8\}.$$

Lemma 4. There exists an NB[4,6;21] containing an NB[4,6;6] and there exists an NB[4,6;22] containing an NB[4,6;7].

Proof: Let $V_1 = \{\infty_1, \infty_2, \dots, \infty_6\}$ and (V_1, A_1) be an NB[4, 6; 6]. Let $X_1 = V_1 \cup Z_{15}, B_1 = A_1 \cup B_1'$ where B_1' is obtained by developing the following base blocks

$$\{0,1,3,7\}, \{\infty,0,2,5\}, \{\infty_1,0,1,7\}, \{\infty_2,0,1,4\}, \{\infty_2,0,2,7\}, \{\infty_3,0,1,3\}, \{\infty_3,0,4,10\}, \{\infty_4,0,1,6\}, \{\infty_4,0,3,7\}, \{\infty_5,0,1,5\}, \{\infty_5,0,2,9\}, \{\infty_6,0,2,6\}, \{\infty_6,0,3,8\}.$$

Then it can be checked that (X_1, \mathcal{B}_1) is an NB[4, 6; 21] containing (V_1, \mathcal{A}_1) . Let $V_2 = \{\infty_1, \infty_2, \ldots, \infty_7\}$ and (V_2, \mathcal{A}_2) be an NB[4, 6; 7]. Let $X_2 = V_2 \cup Z_{15}, \mathcal{B}_2 = \mathcal{A}_2 \cup \mathcal{B}'_2$ where \mathcal{B}'_2 is obtained by developing the following base blocks

```
\{\infty_1,0,1,4\},\{\infty_1,0,2,9\},\{\infty_2,0,2,5\},\{\infty_2,0,1,7\},\\ \{\infty_3,0,3,4\},\{\infty_3,0,2,7\},\{\infty_4,0,1,3\},\{\infty_4,0,4,10\},\\ \{\infty_5,0,1,6\},\{\infty_5,0,3,7\},\{\infty_6,0,1,5\},\{\infty_6,0,2,8\},\\ \{\infty_7,0,2,6\},\{\infty_7,0,3,10\}.
```

Then (X_2, \mathcal{B}_2) is an NB[4, 6; 22] containing (V_2, \mathcal{A}_2) as a subdesign.

Lemma 5. For each $6 \le v \le 72$, there exists an NB[4,6;v]. Further, for every v such that $19 \le v \le 72$, $v \ne 20$, there exists an NB[4,6;v] containing an NB[4,6;w] where w = 6,7,8,9,10 or 11.

Proof: For $v \in \{7, 11, 13, 17, 19\}$, the existence of an NB[4, 6; v] follows from Lemma 1. For $v \in \{8, 12, 14, 18, 20\}$, the existence of an NB[4, 6; v] follows by the method of Lemma 2. For $v \in \{6, 9, 10, 15, 16\}$, the existence of an NB[4, 6; v] follows from Lemma 3. By Lemma 4, there exists an NB[4, 6; 21]

containing an NB[4,6;6] and there exists an NB[4,6;22] containing an NB[4,6;7]. If v=19 or $23 \le v \le 72$, then there exists a prime p and an integer $w, w \in \{6,7,8,9,10,11\}$ and $p \ge 2w+1$, such that v=p+w. Thus by Lemma 2, for every $19 \le v \le 72$, $v \ne 20$, there exists an NB[4,6;v] containing an NB[4,6;w] where w=6,7,8,9,10 or 11. This completes the proof.

Let v be a positive integer and K be a set of positive integers, A pairwise balanced design B[K, 1; v] is an ordered pair (V, B) where V is a v-set and B is a set of subsets (called blocks) of V such that $|B| \in K$ for every $B \in B$, and each pair of distinct elements of V is contained in a unique block of B.

Let K be a given set of positive integers and

$$B(K) = \{v/\text{there exists a} B[K, 1; v]\}$$

K is called a PBD-closed set if B(K) = K.

For given positive integers k and λ , let

$$NB(k, \lambda) = \{v/\text{there exists an } NB(k, \lambda; v)\}$$

The following lemma can be easily proved.

Lemma 6. $NB[k, \lambda]$ is a PBD-closed set.

A transversal design TD[k, n] is an ordered triple $(V, \mathcal{G}, \mathcal{A})$ where V is a v-set, v = kn, \mathcal{G} is a set of n-subsets (called groups) of V, \mathcal{G} partitions V, and \mathcal{A} is a set of k-subsets (called blocks) of V such that any block intersects each group in a unique element, and each pair of elements from distinct groups is contained in a unique block. It is well known that the existence of a TD[k, n] is equivalent to the existence of k-2 mutually orthogonal Latin squares of order n.

Now we are in a position to prove our fundamental lemma:

Lemma 7. For every $v \ge 72$, there exists an NB[4,6; v] containing an NB[4,6;6].

Proof: Let $k, n \ge 7$ and $(X, \mathcal{G}, \mathcal{A})$ be a TD[k, n], where $\mathcal{G} = \{G_1, G_2, \ldots, G_k\}$. Let $1 \le s_i \le n-6$ for $i=7,8,\ldots,k$. Deleting s_i points from $G_i, 7 \le i \le k$, we obtain a B[K,1;v] with $v=kn-\sum_{i=7}^k s_i$, block sizes ≥ 6 and at least one block of size 6. Let k=8, n=11 and then let k=9, n=9,11 13,16,19,25,31 and 43, we obtain such a B[K,1;v] for every v 72 $\le v \le 384$. As there is a TD[7,n] for every $n \ge 63[5]$, there exists a B[K,1;v] with block sizes ≥ 6 and at least one block of size 6, for every $v \ge 384$. Thus, by Lemma 5 and Lemma 6, we have proved that there exists an NB[4,6;v] containing an NB[4,6;6], by induction.

As a consequence of Lemma 5 and Lemma 7, we have proved the following theorem:

Theorem 1. There exists an NB[4,6;v] for every $v \ge 6$.

3. Indecomposability

In this section, we give an almost complete solution to the existence of indecomposable NB[4,6;v].

The following lemma is useful in the construction of indecomposable designs and the proof is obvious:

Lemma 8. If an $NB[k, \lambda; v]$ contains an indecomposable subdesign $NB[k, \lambda; v']$ for some v' < v, then it is also indecomposable.

Lemma 9. There exists an indecomposable NB[4,6;v] for every $v \equiv 2,3,6,11$ (mod 12), v > 6.

Proof: The existence of an NB[4,6;v] for every $v \ge 6$ is proved in Theorem 1. The necessary conditions for the existence of a $B[4,\lambda;v]$ are

$$\lambda(v-1) \equiv 0 \pmod{3},$$

 $\lambda v(v-1) \equiv 0 \pmod{12}.$

It is easy to see that for $v \equiv 2,3,6$ or 11 (mod 12), there does not exist any $B[4,\lambda;v]$ with $\lambda < 6$, Thus, for $v \equiv 2,3,6$ or 11 (mod 12), every NB[4,6;v] must be indecomposable.

Lemma 10. There exists an indecomposable NB[4,6;v] for $v \in \{7,8,9,10\}$.

Proof: It can be checked that the NB[4,6;9] and NB[4,6;10] constructed in Lemma 3 are in fact indecomposable. Now we construct an indecomposable NB[4,6;7] and an indecomposable NB[4,6;8] as follows:

$$v = 7$$
 $V = Z_7$. Base blocks $\{0,1,2,3\}, \{0,1,3,4\}, \{0,1,3,5\}.$ $v = 8$ $V = Z_7 \cup \{\infty\}$. Base blocks $\{0,1,3,4\}, \{0,1,3,5\}, \{0,1,2,\infty\}, \{0,1,3,\infty\}.$

With the above preparation, we can prove the following theorem:

Theorem 2. There exists an indecomposable NB[4,6;v] for every $v \ge 6$, $v \notin \{12,13,16,17,20\}$.

Proof: For v=6,11,14,15 and 18, the existence of an indecomposable NB[4,6;v] follows from Lemma 9. For v=7,8,9 and 10, the existence of an indecomposable NB[4,6;v] follows from Lemma 10. By Lemma 5, for every $19 \le v \le 72, v \ne 20$, there exists an NB[4,6;v] containing an indecomposable NB[4,6;w] where $w \in \{7,8,9,10,11\}$, and by Lemma 7, for every $v \ge 72$, there exists an NB[4,6;v] containing an indecomposable NB[4,6;6]. Thus, by Lemma 8, for every $v \ge 19, v \ne 20$, there exists an indecomposable NB[4,6;v]. This completes the proof.

References

- 1 C.J. Colbourn and A. Rosa, *Indecomposable triple systems with* $\lambda = 4$, Studia Scientarium Mathematicarium Hungarica 20 (1985), 139–144.
- 2 M. Dehon, On the existence of 2-design $S_{\lambda}(2,3,v)$ without repeated blocks, Discrete Math. 43 (1983), 155–171.
- 3 J.H. Dinitz, *Indecomposable triple systems with* $\lambda = 6$, J. Combin. Math. Combin. Comput. 5 (1989), 139–142.
- 4 H. Guo, On the existence of indecomposable simple $B[4, \lambda; v]$ with $\lambda = 2$ and 3, M. Sc. Thesis, Shanghai Jiao Tong University (1988).
- 5 H. Hanani, On the number of orthogonal Latin squares, J. Comb. Theory 8 (1970), 247–271.
- 6 E.S. Kramer, Indecomposable triple systems, Discrete Math. 8 (1974), 173-180.
- 7 S. Milici, *Indecomposable* $S_6(2,3,v)$'s, (preprint).
- 8 K.T. Phelps and A. Rosa, Recursive constructions and some properties of twofold designs with block size four, J. Austral Math. Soc. (Series A) 44 (1988), 64-70.
- 9 H. Shen, On the existence of indecomposable triple systems B[3,6;v] without repeated blocks, (to appear).
- 10 H. Shen, Existence of indecomposable simple block designs with block size 4, (preprint).