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Abstract. A graph is said to be well-covered if all maximal independent sets of vertices
inthe graph have the same cardinality. Determining whether a graph is well-covered has
recently been shown (independently by Chvital and Slater and by Sankaranarayana and
Stewart) tobe a co-NP-complete problem. In this paper we characterise all well-covered
cubic (3-regular) graphs. Our characterisation yields a polynomial time algorithm for
recognising well-covered cubic graphs.

1. Introduction

All graphs in this paper are finite, with no loops or multiple edges. If two vertices

u and v are adjacent in a graph, we shall write u ~ v; otherwise we shall write
u 7 v. An independent set in a graph is a set of mutually nonadjacent vertices.
The cardinality of a maximum independent set in G will be denoted a(G). A
vertex cover in a graph is a set of vertices such that every edge is incident with at
least one vertex in the set.

In 1970 Plummer [12] introduced the idea of a well-covered graph, a graph in
which all maximal (with respect to inclusion) independent sets are maximum. A
graph is well-covered if and only if all maximal independent sets have the same
cardinality. Algorithmically a graph is well-covered if and only if the greedy algo-
rithm for constructing independent sets is always guaranteed to find a maximum
independent set. Well-covered graphs can also be described as graphs in which
every minimal vertex cover is minimum.

Plummer [12] investigated the relationship between well-covered graphs and
some other covering concepts for graphs. Berge (1] studied the relationship be-
tween well-covered graphs and various other properties related to independent
sets. Lewin [11] investigated graphs which have the edge analogue of well-covered-
ness: every maximal matching is maximum. Qther authors have studied various
subclasses of well-covered graphs [6,13,15,16]. Of particular interest to us will be

JCMCC 13 (1993), pp. 193-212



the result of Finbow, Hartnell and Nowakowski [7], who characterised the well-
covered graphs of girth at least 5; their result is stated in Section 3. The same
authors have also investigated well-covered graphs with no 4- or 5-cycles [8].
Campbell [3] characterised the well-covered cubic graphs of connectivity 1 or 2,
and Campbell and Plummer [3,4] found all 3-connected planar cubic graphs; their
results will be stated in Section 2. The aim of the present paper is to characterise
all cubic well-covered graphs; we do not make use of the main results of [3,4]
except as a check on our final characterisation.

While the maximum independent set problem is NP-complete in general, as
shown by Karp [10], a maximum independent set in a well-covered graph can
be found very easily. This is counterbalanced by the recent result, due indepen-
dently to Chvital and Slater [5] and Sankaranarayana and Stewart [14], that the
recognition problem for well-covered graphs is co-NP-complete. It is therefore
interesting that while the independent set problem is NP-complete for cubic (or
even cubic planar) graphs, as shown by Garey, Johnson and Stockmeyer [9], our
results here imply that the recognition problem for cubic well-covered graphs can
be solved in polynomial time.

2. Some well-covered cubic graphs

In this section we describe an infinite family of well-covered cubic graphs, and
six exceptional well-covered cubic graphs which do not belong to this family.
The main result of this paper will be that all connected well-covered cubic graphs
belong to this family or these six exceptions.

We denote the vertex and edge sets of a graph G by VG and EG respectively.
We shall say that a vertex v in a graph covers a vertex u if eitherv = u or v is
adjacent to u. A set of vertices S is said to cover u if some v in S covers u. An
independent set is maximal precisely if it covers all vertices of the graph.

Lemma 2.1. Suppose that the graph A of Figure 2.1 is a subgraph of a cubic
graph G. Let ad', bl , ee’ and f f' denote the edges not in A incident with a, b,
eand f. If o'’ € EG and €'f' € EG then every maximal independent set in G
uses exactly two vertices of A.

a e
A E c d j
b - f

Figure 2.1

Proof: Let I be a maximal independent set in G. By maximality of I, I covers
every vertex of G. Let I4 = I N V. A. Obviously I can use at most one element
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of {a, b, c} and at most one element of {d, e, £}, 50 |I4] < 2. For I to cover ¢ (or
d), we must have |I4] > 1.

Suppose that |I4| = 1. Then I, must be either {c} or {d}, because otherwise
one of ¢ or d is not covered by I. Without loss of generality we may suppose that
Ip = {c}. Since I must covere,and d, e, f ¢ I, we must have ¢’ € I. Similarly,
we must have f' € I. But this is a contradiction because e’ and f' are adjacent
and [ is supposed to be an independent set.

Therefore, we conclude that |[4] = 2. ]

Note that in Lemma 2.1 we do not require that o/, b, ¢’ and f’ be distinct from
each other, or from the vertices of A itself.

Lemma 2.2. Suppose that the graph B of Figure 2.2 is a subgraph of a cubic
graph G. Let ad', b, gg' and hh' denote the edges not in B incident witha, b, g
andh. Ifa'V € EG and g'h' € EG then every maximal independent set in G
uses exactly three vertices of B.

a c e g
B

b d f h

Figure 2.2

Proof: Let I be a maximal independent set in G. By maximality of I, I covers
every vertex of G. Let Iy = I NV B. The set I is independent in B, although it
may not be a maximal independent set in B.

Suppose that |Ig] > 4. Considering the 8-cycle aceghfdba we see that | Ig| =
4, and moreover that Ip is either {a,e,h,d} or {b,c,g, f}. However, each of
these sets contains adjacent vertices (e and d or c and f), a contradiction.

Now suppose that |Ig| < 2. Divide up the vertices of B into the following
complementary sets: left {a,b, c,d} and right {e, f, g, h}, and inner {c,d, e, f}
and outer {a,b,g,h}.

The fact that o'V’ is an edge of G means that at most one of a and b is covered
by a vertex of I outside B. To cover the other one, Ig must contain a left vertex.
Similarly, Iy must contain a right vertex. Thus, I contains exactly one left vertex
and one right vertex.

Notice that the four inner vertices of B must be covered by vertices of Ig. Thus,
Ip cannot contain two outer vertices, because each outer vertex covers only one
inner vertex. Also, Iz cannot contain two inner vertices, because the two pairs
of nonadjacent inner vertices, {c,d} and {e, f}, do not contain one left and one
right vertex. Thus, I'g contains an outer vertex and an inner vertex. Without loss
of generality, suppose the outer vertex is a. Since the only inner vertex covered
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by a is c, the inner vertex of Ig must cover all of d, e and f; therefore the inner
vertex of Iz must be d. But now I contains two left vertices, a contradiction.
Since we cannot have |Ig| > 4 or |Ig| < 2, we conclude that |Ig| = 3. |

Again, in Lemma 2.2 we do not require that o', b', g’ and h’ be distinct from
each other, or from the vertices of B itself.

Lemma 2.3. Suppose that the graph C of Figure 2.3 is a subgraph of a cubic
graph G. Let aa' and bb' denote the edges not in C incident with a and b. If
o't € EG then every maximal independent set in G uses exactly two vertices of
C.

a c e

© [ X
b d f
Figure 2.3

Proof: Let I be a maximal independent set in G. By maximality of I, I must
cover every vertex of C. Let Ic = I N VC. Since a’'d’ € EG, the vertices of
I outside of C cover at most one veriex of C (a or b), so I covers at least five
vertices of C. Therefore, |Ic| > 2, because a single vertex of C covers at most
four vertices of C.

Suppose that |I¢| > 3. Considering the 6-cycle ace fdba, we see that |I¢| = 3,
and moreover that I is either {a, e,d} or {b,c, f}. However, both of these sets
contain adjacent vertices (e and d or ¢ and f), so this is impossible.

Therefore, we conclude that |Ic| = 2. ]

Lemmas 2.1, 2.2 and 2.3 give us the following procedure for constructing an
infinite family of well-covered cubic graphs. Define a terminal pair to be a pair
of adjacent degree two vertices.

Theorem 2.4. Let W denote the class of cubic graphs constructed as follows.
Given a collection of copies of A, B and C, join every terminal pair by two edges
to a terminal pair in another (possibly the same) graph, so that the result is cubic.
Then every graph in W is well-covered.

Proof: Let G € W. Each individual copy of A, B or C from which G was
constructed satisfies the conditions of Lemma 2.1, 2.2 or 2.3, as appropriate. Thus,
the size of any maximal independent set in G depends only on the numbers of A’s,
B’sand C’s. ]

Since each copy of A or B has two terminal pairs, and each copy of C has one,
this construction amounts to stringing together copies of A and B in cycles, or in
paths with a copy of C at each end (so that the number of copies of C must be
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even). Because A and B have automorphisms exchanging the two vertices in one
terminal pair while fixing the vertices in the other terminal pair, the isomorphism
class of the resulting graph is not affected by the exact way we join up each pair
of terminal pairs. Thus, a connected graph in this family can be described by
giving the sequence in which we join up the A’s, B’s and C’s. For example, a
graph we might describe as CAC and a graph we might describe as ~ABA—
(the dashes indicating that the graphs are to be joined in a cycle) are shown in
Figure 2.4. Descriptions of this type are unique up to reversal and (in the cyclic
case) rotation.

Notice that when forming “cyclic” elements of W we can use just a single A
or B. We can form —A—, which turns out to be C; x K, and we can form
—B—,which turns out to be the Mobius ladder with eight vertices.

X TPl

X
X1

—ABA—
Figure 2.4

There also exist well-covered cubic graphs which do not belong to W. Fig-
ure 2.5 shows six such graphs. Proof that these graphs are well-covered requires
checking all maximal independent sets to verify that they have the same cardinal-
ity. We omit the details.

The names of K3 ; and Q** come from the fact that K3 ; can be obtained by
replacing one vertex of K3 3 by a triangle, and Q** can be obtained by replacing
two opposite vertices of the cube Q by triangles.

As mentioned in Section 1, Campbell [3] characterised all well-covered cu-
bic graphs of connectivity 2. His characterisation can be shown to be equiva-
lent to the statement that all such graphs are elements of the family W described
above. Campbell and Plummer [3,4] also characterised the well-covered cubic
planar graphs of connectivity 3. There are only four such graphs, namely K,
Cs x K3 = —A—, Cs x K, and Q**. One of these graphs belongs to W, and the
other three are among the graphs shown in Figure 2.5.
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Cs x K, Q™ Py,
Figure 2.5

3. General results

In this section we give some general results which will be useful later. The proofs
of our first three results are trivial and we omit them.
Let S be an independent set of vertices in a graph G. Let G's be the subgraph of
G obtained by deleting all vertices either in S or adjacent to a vertex of S. If some
component of G'g is isomorphic to a graph F, then we shall say that S produces a
copy of F.

Lemma 3.1. G is well-covered if and only if every component of G is well-

covered., [ |
Lemma 3.2. (Campbell (3, Corollary 1.5]). If G is well-covered and S is a set
of independent vertices in G, then G's is well-covered. [ ]

Corollary 3.3. Ifthere exists an independent set S of vertices ina graph G which
produces a copy of a non-well-covered graph, then G is not well-covered. 1

We shall use Corollary 3.3 very often, without explicit reference. Figure 3.1
shows some small non-well-covered cubic graphs which occur frequently in ap-
plying this result.

The following lemma will also be useful for eliminating possibilities in later
sections.

Lemma 3.4. Let G be a cubic well-covered graph. Then G contains no induced
subgraph isomorphic to Je, the graph oblained by deleting an edge from K3 3.
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Figure 3.2 Figure 3.3

Proof: Suppose to the contrary that G does contain an induced copy of J¢. Label
Jg as shown in Figure 3.2. Let a be a neighbour of b, where e # ¢, e. Let y and
z be the neighbours of a other than b. At most one of y or z is adjacent to g, so
we may assume that 2 o g (possibly z = g). Then the independent set {z, g}
produces a copy of P; as shown in Figure 3.3 (where elements of S are shown
with squares around them, vertices covered by S are shown as open circles, and
vertices of G'g are shown as dark circles). This is a contradiction, and therefore G
contains no induced copies of Jg. [}

The following theorem will allow us to restrict our inquiry to cubic graphs of
girth 3 or 4.

Theorem 3.5. (Finbow, Hartnell and Nowakowski [1]). Let G be a connected
graph of girth at least 5. Then G is well-covered if and only if G is one of six
exceptional graphs or G is constructed in the following manner: take a collection
of vertex-disjoint 5-cycles and edges, and join them up so that at least one vertex
in each original edge still has degree one, and each of the original 5-cycles has no
two adjacent vertices of degree three or more. [ |

Of the six exceptional graphs, the only one which is cubic is the graph P4
shown in Figure 2.5.

Corollary 3.6. The only well-covered connected cubic graph of girth 5 or more
is the graph P\4 shown in Figure 2.5, ]
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4. Structure of well-covered cubic graphs

In this section we show that, with a small number of exceptions, every connected
cubic well-covered graph of girth 3 or 4 contains an induced subgraph isomorphic
to Aor B.

The theorems in this section and the next form the heart of our argument. Un-
fortunately, most of their proofs consist of tedious case-by-case analyses. We shall
illustrate the techniques used by examining one or two cases, but we shall replace
most cases with summaries of our findings. Full details of all of these proofs are
available upon request from one of the authors (Ellingham).

We first consider cubic graphs of girth 3. By a neighbour of a subgraph in
a graph we mean a vertex not in the subgraph, but adjacent to a vertex of the
subgraph. Let dmax denote the maximum number of neighbours of any triangle,
and for the triangles with dax neighbours, let nmax denote the maximum number
of edges induced by the neighbours.

Theorem 4.1. Suppose G is a connected well-covered cubic graph with girth 3.
Then one of the following is true.

(i) Gisoncof Ka, K35 0orQ**;
(ii) GisCs xKy=—A—orCC,sothat Ge W;or
(iii) G contans an induced subgraph isomorphic to A or B.

Proof: The proof consists of a case-by-case analysis.

(1) Suppose that dp.x = 3 and nyex > 1. We shall show that either G is
C; x K3 = —A—, or G contains an induced subgraph isomorphic to A.

Since dmax = 3, there is a triangle T = abca with three neighbours which

induce nm.x edges. Thus, G contains edges ad, be and cf, where d, e and

f are distinct from each other and from a, b and c. This situation is shown

in Figure 4.1,
d
a
b c
e f
Figure 4.1

(1.1) Now suppose that nmax = 1, so that {d, e, f} induces one edge, which
we may assume without loss of generality to be de. Since f is adjacent to
neither d nor e, f has two neighbours g and h distinct from a, b, ¢, d and
e. If gh € EG then G has an induced subgraph A. So, we suppose that
gh ¢ EG. We consider some subcases.
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(1.1.1) -Suppose there is at least one edge from {d, e} to {g, h}. Without loss
of generality we may assume that d ~ g. Now h must have at least one
neighbour k where k # e, f. The independent set S = {d, k} produces
a copy of P, as shown in Figure 4.2, a contradiction.

Therefore, we may now assume that neither d nor e is adjacent to g or

Figure 4.2

(1.1.2) Suppose g and h have a common neighbour k, where k # f. Then k
is not adjacent to at least one of d and e; without loss of generality we
may assume that k o d. Now, the independent set {d, k} produces a
copy of P; as shown in Figure 4.3, a contradiction.

d a g
e b h
Figure 4.3

(1.1.3) Therefore, we may now suppose that G contains edges gk, gl, hm and
hnwhere k, l, m and n are distinct from each other and from a, ..., Ah.
By Lemma 3.4, we cannot have both & and [ adjacent to both m and n.
Without loss of generality we may assume that k £ m.
(1.1.3.1) If both of d and e have a neighbour in {k, m} then {k, m} produces a
copy of L4 as shown in Figure 4.4,

Figure 4.4

(1.1.3.2) Now suppose that one of d and e does not have a neighbour in {k, m}.
Without loss of generality we may assume that d is adjacent to neither
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(1.2)

(1.3)

2

Figure 4.5

k nor m. Then the independent set {d, k, m} produces a copy of P; as

shown in Figure 4.5, a contradiction.
Now suppose that ny,; = 2, so that there are two edges induced by d, e
and f. Without loss of generality we may assume thatd ~ e and e ~ f.
Suppose that g ~ d where g # a, e. Since at most one neighbour of g is
adjacent to f, g has a neighbour h with h # dand h o f (possibly h = f).
Now the independent set {h, f} produces a copy of P3 as shown in Figure
4.6. a e

R o o
d q b
b
e
c f
Figure 4.6

Now suppose that . = 3. Inthis case d, e and f are all mutually adjacent,
and G is the graph C; x K3 = —A— shown in Figure 4.7.

a d

Figure 4.7

Suppose that dmax = 3 and ngex = 0. Since dmx = 3, G contains a triangle
abca with three neighbours d, e and f: we may assume thatd ~ a,e ~ b
and ¢ ~ f . Also, Since nm.x = 0, we know that {d, e, f} is an independent
set of vertices in G.

There are six further edges from {d, e, f}, so there can be from two to
six vertices adjacent to {d, e, f}. Suppose that the neighbours of {d, e, f}
(other than a, b or c) form the set X = {z, 2, ...,z } and that each vertex
x; is joined 1o d; of the vertices in {d, e, f}. Then D = {d;,d3,...,ds} is
a partition of 6. We divide the cases according to these partitions; there are
seven cases. We summarise the results in each case.

(21) If D= {3,3} thenG is K3 5.
(2.2) If D = {2,2,2} then either G contains an induced copy of A, or G is
Q“-
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(2.3) - The situation D = {3, 2, 1} is impossible.
(2.4) The situation D = {3, 1,1, 1} is impossible.
(2.5) If D = {2,2,1, 1} there are two inequivalent ways for the vertices of
X to be joined to {d, e, f}. One way is impossible, and for the other
way G contains an induced copy of A.
(2.6) The situation D = {2,1,1,1, 1} is impossible.
(2.7 If D= {1,1,1,1,1, 1} then G contains an induced copy of A.
(3) If dmax = 2 then we can show that G must either be the graph CC, or else
contain an induced copy of B. We omit all details.
(4) Ifdmex = 1thenGis Ka.

This concludes the proof of the theorem. ]

Now we consider well-covered cubic graphs of girth 4. We shall use the graph
parameters dmin and nmax (Which now means something different from what it
meant in Theorem 4.1). Here dy,;, refers to the minimum number of neighbours
of any 4-cycle, and ny,,, refers to the maximum number of edges induced by the
neighbours of a 4-cycle with dmin neighbours. Since we will be discussing cubic
graphs of girth 4, we know that 2 < dmin < 4.

Theorem 4.2. Suppose that G is a connected well-covered cubic graph of girth
4. Then one of the following is true.

(i) Gisoneof K33 or Cs x Ka;
(ii) Gis—B—,sothatG e W;or
(ili) @G contains an induced subgraph isomorphic to B.

Proof: We shall divide the proof into cases and subcases according to the values
of dmin and npax. In all cases, we shall let Q = cde fc denote a 4-cycle with duin
neighbours which induce nmax edges. We omit details, and merely summarise
most of the cases here.

(1) Ifdmn=2thenGis K33.

(2) The case dpin = 3 is impossible.

(3) Suppose that dmn = 4. Divide into subcases according to the value of nmax .

(3.1) Ifnmax = 4 then there are only two possible girth 4 cubic graphs, namely the
cube and the eight-vertex Mobius ladder. The cube is not well-covered, and
the eight-vertex Mobius ladder is actually the graph — B—, so the conclusion

- of the theorem is satisfied.

(3.2) The case nmax = 3 is impossible.

(3.3) If nmax = 2 then the neighbours of Q cannot induce a subgraph isomorphic
to P; U K. There are two inequivalent ways in which they can induce a
copy of 2 K, ; for one of these ways G is Cs x K3, and for the other way
G contains an induced copy of B.

(3.4) The case nmx = 1 is impossible.
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(3.5) The case nm,x = 0 contains arguments which are slightly more interesting
than the cases above, so we examine it in full. If ny,, = 0 then X =
{a, b, g,h} induces no edges. Thus, G has the induced subgraph shown in
Figure 4.8.

Figure 4.8

(3.5.1) Suppose there exists a vertex z adjacent to three vertices of X. Without
loss of generality we may assume that z is adjacent to a, g and b. Then
{z, h} produces a copy of P; as shown in Figure 4.9.

Figure 4.9

(3.5.2) Suppose there exists a vertex z which is adjacent to both ¢ and g, or
both b and h. Without loss of generality we may assume that z is ad-

jacentto a and g.
(3.5.2.1) Suppose that there exists a vertex 1 which is either (i) adjacent to A,
and not adjacent to b or x; or (ii) adjacent to b, and not adjacent to A
or . These two situations are equivalent, so we shall assume that (i)
occurs. Then {b, 1, z} produces a copy of P3 as shown in Figure 4.10.

a ¢ d b
—o0—8
= X
g ¢ f h 3

Figure 4.10

(3.5.2.2) Now we know that case (3.5.2.1) does not happen, so every new neigh-
bour of b and A is either a neighbour of both of them, or is adjacent to
z. Let i and j be the new neighbours of b. If i £ h, then h has a new
neighbour k, k # f, 7. Both { and k must be adjacent to z, giving z
a degree greater than 3, which cannot happen. Therefore, i ~ h, and
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Figure 4.11

similarly 7 ~ h. Possibly i ~ z or j ~ z. Now {b,z} produces a
copy of K 3 as shown in Figure 4.11, so this is impossible.

(3.5.3) Suppose that there exists a vertex adjacent to a and b or a vertex adja-
cent to g and h. Without loss of generality we may assume that there
exists y for which y ~ a and y ~ b. From (3.5.1) above we know that
y 7 g and y £ h. We claim that there exists a new vertex 1 such that
either (i~ g, it higtyor(ii~h,igtg, ity
Suppose that no new neighbours of g or h satisfy (i) or (ii). Then this
must mean that g and h have two new common neighbours. If not, then
g must have some neighbour ; not adjacent to 4, and A must have some
neighbour k not adjacent to g; since j does not satisfy (i) and k does
not satisfy (ii) we must have both j and & adjacent to y, making the
degree of y greater than 3, which is impossible. So, g and A have two
common neighbours j and k. Then gjhkg is a 4-cycle with either less
than 4 neighbours (if 7 and & have a common new neighbour) or with
more than 0 edges induced by its neighbours (since e f is induced by the
neighbours of this 4-cycle). This contradicts dmin = 4 and ngex = 0.
We conclude that there must be a vertex satisfying (i) or (ii).

Now, (i) and (ii) are equivalent, so without loss of generality we may
assume that (i) occurs. Then {h, i, y} produces a copy of P; as shown
in Figure 4.12,

Y

Figure 4.12

(3.5.4) Now suppose that no pair of vertices in X = {a, b, g, h} has acommon
neighbour. For each z in X let the two new neighbours of z be z, and
z3. LetY = {a1,a2,b1,b2,91,92, h1, h2 }. Let F be the subgraph of
G induced by Y, and let H = F U {a1a2, b1 b2, 9192, h1h2}. Notice
that the new edges added to F to form H were not present in G, for if
z1z2 € EG then G would have a triangle ) z2 x.
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Now the degree of any vertex in F must be at most 2, and therefore the
degree of any vertex in H must be at most 3.

(3.5.4.1) Suppose H contains a complete subgraph of order 4. This subgraph
must consist of four vertices z;, z2, y1 and y, for some z and y in
X. Consider the subgraph of G induced by {z, z1,z2,y,¥1,y2}. As
shown in Figure 4.13, it is isomorphic to the graph J¢ obtained by
deleting an edge from K3 3. But this is impossible by Lemma 3.4.

Z1 U

E in H
2 Y2
T Y1
2 y in G
T2 Y2
Figure 4.13

(3.5.4.2) Now suppose that H contains no complete subgraphs of order 4. Then
H is a graph on 8 vertices, with maximum degree 3 or less, and with
no complete subgraph of order 4. Therefore, it follows from Turin’s
Theorem [17,2 Theorem 7.9] applied to H that H contains an inde-
pendent set S of size 3. S must have the form {z;,y;, 2x} where z,
y and z are distinct vertices of X. Without any loss of generality we
may suppose that S = {a1,b1,91}. Then S U {h} produces a copy of
P; in @G as shown in Figure 4.14.

a) a c f h
(e, 0 O (o]

@ l

o . O o]
by b d e g @
Figure 4.14
This completes the proof of the theorem. 1

5. Embeddings of induced subgraphs A or B

In this section we show that any copies of A or B in a well-covered cubic graph
must be embedded in such a way that they satisfy Lemma 2.1 or Lemma 2.2.
Theorems 5.1 and 5.2 below will enable us to use an inductive argument to prove
our main result in the next section.
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Theorem 5.1.. Suppose G is a well-covered cubic graph, with an induced sub-
graph A as shown in Figure 5.1. Then G has a subgraph A', as shown in Figure
3.1, which contains A.

Figure 5.1

Proof: A long case-by-case analysis. We omit the details. |

Theorem 5.2. Suppose G is a well-covered cubic graph with an induced sub-
graph B as shown in Figure 5.2. Then G has a subgraph B', as shown in Figure
5.2, which contains B.

(X=X T

Figure 5.2

Proof: Label the vertices of B as shown in Figure 5.3. Notice that B has an
automorphism (ef)(gh) which fixes a and b and swaps g and h: this will be used
to assume certain situations occur without losing generality.

a c e g
b d Ff h
Figure 5.3

We divide the proof into three cases, according to the existence of common
neighbours of a, b, g and h.

a c e g
b d f h
Figure 5.4
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(1) Suppose that a and b have a common neighbour, or that g and h have a
common neighbour. Without loss of generality we may assume that a and
b have a common neighbour z. Then z is not adjacent to at least one of g or
h; without loss of generality we may assume that z 2 g. However, {z, g}
then produces a copy of Ps, as shown in Figure 54.

(2) Suppose that at least one of e and b has a neighbour in common with one
of g and h. Without loss of generality we may assume that a and g have a
common neighbour z. Since case (1) does not occur, z is adjacent to neither
b nor h. Suppose that u ~ z, where u # a, g.

(2.1) Suppose that u is adjacent to one or both of b or h. Without loss of
generality we may assume that u ~ b. Then {b, f} produces a copy of
B;, as shown in Figure 5.5.

Figure 5.5

(2.2) Now suppose that u is adjacent to neither b nor h. Then u has at least
one neighbour different from z which is not adjacent to b. Call such a
neighbour v. Then {v, b, f} induces a copy of P3 as shown in Figure
5.6.

Figure 5.6

(3) Finally, after climinating cases (1) and (2) we may suppose that a, b, g and
h have no common neighbours. Therefore G contains edges ay, bz, gm, hn
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where y, z, m, n are vertices distinct from each other and from all vertices
of B.

Now if G contains both edges yz and mn, then we have the required
subgraph B’. Assume that G does not contain both of these edges. Without
loss of generality we may assume that yz ¢ EG. But now {g,y,2} is an
independent set which produces a copy of P;, as shown in Figure 5.7. This
is impossible.

Figure 5.7
Thus, we conclude that yz, mn € EG, giving the subgraph B' shown in
Figure 5.8.
Yy a c e g m
z b d :f h n
Figure 5.8
This concludes the proof of the theorem. [ |

6. Main theorem

In this section we state and prove our main result, a characterisation of all cubic
well-covered graphs.

Theorem 6.1. Let G be a connected cubic graph. Then G is well-covered if and
only if one of the following is true.

i) GeW;or

(ii) Gisoneof K4,K33, K33, Cs x K3, Q** or P4 (as shown in Figure 2.5).

Proof: The ‘if” part of this theorem was dealt with in section 2. For the ‘only if’
part, let i( F, G) denote the number of induced subgraphs of a graph G which are
isomorphic to a graph F'. The proof will be by the inductionon i(G) = i(A, &) +
i(B,G).

First suppose that i(G) = 0. By Corollary 3.6 and Theorems 4.1 and 4.2 this
means that G is one of — A—, — B—, CC or the six graphs mentioned in (ii) above.
Thus, the theorem is satisfied.
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Now suppose that i(G) > 0, and that any connected cubic well-covered graph
H with i( H) < i(QG) satisfies (i) or (ii) above.

Ifi(A,G) > 0, take an induced copy of A in G. By Theorem 5.1, this copy of
A is contained in a subgraph A’ as shown in Figure 5.1. Replace the copy of A by
two copies C; and C» of C, as shown in Figure 6.1, to obtain a new graph G'.

a ¢ m o a ¢ e g 1 k m
Yy oz o 7
et — T iXe]
b d n p b d f R j £ =n

Figure 6.1

Now G' is well-covered. To prove this, let I’ be an arbitrary maximal inde-
pendent set in G'. Now I' — {e, f,9,h,i,j,k,l} is an independent set in G,
which can be extended to a maximal independent set I of G. Clearly ] — VA =
I' = (VC,UVG,). Also, by Lemma 2.1 we have [NV A] = 2, and by Lemma
2.3 we have |[I'N(VCy UV C,)| = 4. Therefore,

[I'}= 'n(VCLUVC)|+ [I' = (VCLUVE)|
=44+ |I-VA|
=2+ |INVA|+|I-VA|
=2+ |I|=2+ a(G)

where |I| = a(G) because G is well-covered and I is a maximal independent set
in G. Therefore, all maximal independent sets in G' have the same size, and G’ is
well-covered.

Thus, &' is a well-covered cubic graph containing (at least) two induced copies
of C. Moreover, i(G') < i( Q) because we have destroyed one induced copy of
A and we have not created any new copies of A or B in constructing G' from G.
Also, G' has either one or two components.

Suppose G' has only one component, or, in other words, suppose that G’ is
connected. By the induction hypothesis G’ satisfies either (i) or (ii); but since
none of the graphs in (ii) contain an induced copy of C, G’ must satisfy (i), or in
other words G' € W. Thus G’ = CX1X> ... XyC, where each X; is either A or
B,and k > 0. The only induced copies of C in G' are the two C’s at the ends,
and so we can recreate G from G’ by removing these two C’s and replacing them
by an A; in other words, G = —AX X3 ... X~ and G € W, as required.

If G’ has two components G} and G, then both satisfy i((G}) < #(G), and
both contain an induced copy of C. Therefore, from the induction hypothesis
both are elements of W, where we may suppose that Gy = CX; X3 ... X;C and
G, = C"hY2...YiC, each X; or Y; being A or B, and k, l > 0. Without loss of
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Figure 6.2

n

generality we may assume that C, is the last C of G| and C, is the first C of G5 .
Then we can recreate G from G’ by removing C; and C, and replacing them by an
A; in other words, G = CX1 X3 ... Xz AY1Y2 ... YiC and G € W, as required.
If i(B,G) > 0 we proceed in a similar fashion, replacing an induced copy of
B embedded in a subgraph B’ by two copies of C as shown in Figure 6.2, to form
G'. Once again we can show that G’ is well-covered, that its components belong
to W, and that therefore G € W. ]

We note here that the above characterisation has been confirmed for all cubic
graphs with twenty or fewer vertices by computer testing. Also, it agrees with
the results, obtained by Campbell [3] and Campbell and Plummer [4], which were
mentioned in Section 2.

Theorem 6.1 makes it easy to develop a polynomial time algorithm to recognise
well-covered cubic graphs. The algorithm searches for an induced copy of A, B
or C, and, having found one, tries to follow one of the paths or cycles of subgraphs
isomorphic to A, B and C which make up a graph in W.

Corollary 6.2. The problem of recognising well-covered cubic graphs is solvable
in polynomial time. |

Having characterised well-covered cubic graphs in a polynomial-time fashion,
there are obvious related questions. Can we characterise graphs of maximum de-
gree three or less? Can we recognise well-covered graphs of bounded degree, or
well-covered regular graphs of fixed degree, in polynomial time?
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