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Abstract. A graph G is distance-hereditary if for every connected induced subgraph
H of G and every pair u, v of vertices of H, we have dg(u,v) = dg(u,v). A fre-
quently occurring communication problem in a multicomputer is to determine the most
efficient way of routing a message from a processor (called the source) to a number
of other processors (called the destinations). When devising a routing from a source
to several destinations it is important that each destination receives the source mes-
sage in a minimum number of time steps and that the total number of messages gen-
erated be minimized. Suppose G is the graph that models a multicomputer and let
M = {s,v1,v2,...,0)} be a subset of V(G) such that s corresponds to the source
node and the nodes vy, v2, ..., vx correspond to the destinations nodes. Then an opti-
mal communication tree (OCT) 7" for M is a tree that satisfies the following conditions:

@ MCV(),
®) d’.l'(sr v) = d0(3l”l') forl <1 k,
(c)  notree TY satisfying (a) and (b) has fewer vertices than T'.

It is known that the problem of finding an OCT is NP-hard for graphs G in general,
and even in the case where G is the n-cube, or a graph whose maximum degree is at
most three. In this article, it is shown that an OCT for a given set M in a distance-
hereditary graph can be found in polynomial time. Moreover, the problem of finding
the minimum number of edges in a distance-hereditary graph H that contains a given
graph G as spanning subgraph is considered, where H is isomorphic to the n-cycle, the
n-cube or the grid.

1. Introduction.

A multicomputer (MC) consists of a collection of processors in which each pro-
cessor has its own local memory. In an MC each processor is connected directly
to a number of other processors called neighboring processors. Neighboring pro-
cessors are also said to be adjacent. Adjacent processors can communicate di-
rectly, whereas nonadjacent processors have to communicate indirectly through
other processors. Much attention has been given to interprocessor communica-
tion since it is an important factor affecting the efficiency of MCs (see [Farl79],
[BhJa83], [Fox83], [ChEs92]).
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A frequently occurring problem in MC communication is that of finding the
most “efficient” way of sending a message from some processor, called the source,
to k > 1 other processors called the destinations. We call this 1-to-k communi-
cation. The main issue here is that of determining which paths should be used
to deliver the source message to its destinations. This path selection process is
commonly referred to as routing. In general there are many paths joining pairs
of processors, but when routing a message we will require that the following two
criteria are met,

(A) Each individual destination must receive the source message in a minimum
number of time steps, that is, for each destination node, the message should
be delivered through a shortest path, from the source to that destination.

(B) The total number of messages generated in the MC should be minimized,
that is, we wish to minimize the number of links used to deliver the source
message to all destinations.

The underlying topology of an MC can be modeled by a graph whose nodes
(vertices) correspond to the processors in the MC and where two nodes are joined
by an edge if the corresponding processors can communicate directly. Graph the-
ory terminology not presented here can be found in [Hara69] or [ChLe86).

Suppose now that a graph G models some MCand that M = {s,v1,v2,... ,v}
is a subset of V(&) where s corresponds to the source node and vy, v2,... , vk
correspond to k destination nodes in a 1-to-k communication. To implement a
routing that satisfies conditions (A) and (B) above, one needs to find a subtree T'
of G called an optimal communication tree (OCT), such that

@ McV(),
®) dr(s,v) =dg(s,v) for1 < i<k,
(c) no tree T' satisfying (a) and (b) has fewer vertices than T".

The problem of finding an OCT in a general graph is NP-hard, and, in fact, it was
shown in [ ChEs92] that the problem of finding an OCT in the n-cube or a graph
with maximum degree at most 3 is NP-hard. This motivates the development
of (i) heuristics that find suboptimal communication trees (sec [ChEs92]), or (ii)
polynomial algorithms for finding OCTS in certain special classes of graphs.

In 1977 Howorka [(Howo77] defined a graph to be distance-hereditary if each
connected induced subgraph F' of G has the property that dp(u,v) = dg(u,v)
for every pair of vertices u, v € V(F'). To be able to state the characterizations of
distance-hereditary graphs given by Howorka, we need the following terminology.
Aninduced path of G is a path that is an induced subgraph of G. Letu, v € V(G).
Then a u — v geodesic is a shortest u — v path. Let C be a cycle of G. A path P
is an essential part of C if P is a subgraph of C and

Lo < 1BP)| < 1B
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An edge that joins two vertices of C that are not adjacent in C is called a diagonal
of C. We say two diagonals e; , e; are skew diagonals if the graph C + e; + e is
homeomorphic with K, .

Theorem 1.1 (Howorka). The following statements are egivalent.
(@) @ is distance-hereditary.
(b) Every induced path in G is a geodesic.
(c) No essential part of a cycle is induced. i
(d) Each cycle of length at least 5 has at least two diagonals and each 5cycle
has a pair of skew diagonals.
(¢) Each cycle of G of Iength at least 5 has a pair of skew diagonals.

Since these characteristics of distance-hereditary graphs were established, a
number of other characterizations of distance-hereditary graphs which lend them-
selves to the development of polynomial algorithms that determine whether a
graph is distance-hereditary, have been obtained (see [BaMu86), [HaMa91], and
[Da0892]). In particular, the characterization of distance-hereditary graphs from
[Da08§92] which is stated in the following theorem will prove to be useful. Be-
fore stating this result we need the following terminology. For a connected graph
G and vertex u of G, let V;(u) be the set of vertices at distance § from u in G. If
v € Vi(u), then V;_;(u,v) is N(v) N Vi_1(u), that is, V;_; (u, v) is the inter-
section of the neighborhood of v with the set of vertices at distance 1 — 1 from
u.

Theorem 1.2, Let G be a connected graph. Then G is not distance-hereditary if
and only if there exists a vertex v such that

(@) forsome i > 2 there exist two vertices x,y € V;(u) such that zy € E(G)
and Vi_1(u,7) # Vima(u,y); or

(b) for some i > 2, there exist two vertices =,y € V;(u) and a vertex z €
Vie1(u) such that xy ¢ E(G) and zz,yz € E(G) but Vi_i(u,z) #
Vl'-l(us y)'

2. Distance-hereditary graphs and O:C'lk{

Distance-hereditary graphs have been shown to have a number of interesting prop-
erties. We will describe one of these properties here because of its close ties with
the OCT problem. Suppose G is a connected graph and S is a nonempty subset
of V(G) . Then the Steiner distance dg(S) of S is the smallest number of edges
in a connected subgraph of G that contains S. Such a subgraph is necessarily a
tree, and is called a Steiner tree for S. The problem of finding a Steiner tree for
a given set S of vertices in a connected graph G is known to be NP-hard (see
[GaJo79]). However, it was shown in [DAMo88] and [Da0S92] that if G is a
distance-hereditary graph, then there is an efficient algorithm for finding de(S),
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and a Steiner tree for S. The algorithm described in [Da0S92] and whose validity
is established in the same article proceeds as follows.

Algorithm 2.1. Let M be a set of m vertices in a connected graph G onp > m
vertices and let V(G) — M = {v1,v2,... ,Yp_m}.

1. Let Go =G.

2. Fori=1,2,...,p—m,if M is contained in a component of G;_y — v;,
then let G; — G;_1 — v;; otherwise let G; — Gi_1.

3. Let Ty be any spanning tree of Gp—r,. Then Ty is a Steiner tree for M,
and dg(M) = |E(TA4)| = |V(Gp—m)| -1

If T is any OCT foraset M = {s,v;,v2,... ,u} of vertices in a graph G on
p vertices and Ty is a Steiner tree for M, then | E(Ty) | < |E(T)|. If in addition
G is distance-hereditary, then it follows, if we apply the above algorithm to G,
that the subgraph Gp—(x+1) = H produced by the algorithm is induced. Thus,
dy(s,v) = dg(s,v;) for all i, If T is any spanning tree in H which is distance-
preserving from s, then dpv( 3, v;) = dg (8, v;) = dg(s,v;) for all i. Moreover,

|B(T)| < |B(T)| < [V(H)| - 1= de(M) = |E(Tu)| < |E(T)|.

Hence, equality must hold throughout this string of inequalities and, therefore, T"
is an OCT for M. This establishes the existence of a polynomial algorithm for
finding an OCT in a connected distance-hereditary graph.

3. Distance-hereditary graphs with the smallest number of edges
that have a given graph as spanning subgraph.

Both the n-cube and the n x m grid (that is, P, x Pp) are popular topologies

for MCs, and are currently receiving a great deal of attention due to their many
applications in parallel processing. As mentioned earlier, an important factor af-
fecting the efficiency of an MC is interprocessor communication. In this article,
we are particularly concerned with the 1-to-k communication. As pointed out in
the introduction, if efficiency is defined by criteria (A) and (B) given in the intro-
duction, then an OCT for aset M = {s,v;,v2,... ,v;} in the graph that models
the MC will provide the basis for routing. Unfortunately, however, no efficient
algorithm is known for finding OCTs in either of these classes of graphs. How-
ever, by adding edges to an n-cube or a grid it is possible to produce a graph that
is distance-hereditary and still has the desirable substructure. For these graphs we
have described a polynomial algorithm for finding an OCT for a given set M of
nodes. Of course, it is desirable that the number of links (that is edges) be mini-
mized in any MC. This leads naturally to the following problem: For a given graph
G, what is the smallest number of edges that need to be added to G to produce a
distance-hereditary graph G’ having G as a spanning subgraph? We will denote
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the quantity |[E(G')| — |E(G)| by DH(G) and call it the distance-hereditary
number of G.

If T is a tree then clearly DH(T) = 0. To ensure reliability of an MC it
is desirable that their topologies have no cut-nodes, that is, nodes whose failure
would disrupt communication between certain pairs of nodes. For this reason the
graphs that model them should be 2-connected. The 2-connected graph on k nodes
with the fewest number of edges is the k-cycle Cg, k > 3. We now establish the
D H number of these cycles.

Theorem 3.1. DH(C3,) = 2An—2) and DH(Cam1) = 2(n— 1) for all
n>2.

Proof: Let C,, be a cycle of length at least 4. Let v be a vertex in Cp, and let V;
denote all the vertices at distance 1 from v for 0 < 1 < |§], say Vi = {u;, v}
foralli, 1 < i < |%]. Further, if p is odd, then Vjg| = {ujg),v ¢}, andif pis
even, then Vig) = {v|¢,}. Clearly Vo = {v}. Foreachi, 1 < i < | %], add the
edges u;_1 v; and v;_) u;. Moreover, if p is odd, then add the edges B g)-1 V(g
and v g1 u|g) as well. Now let H be the resulting graph. Then

2(|8]—-1) ifpisodd

|E(H)| - |B(Cp)| = { 2 (12] - 2) ifpiseven.

We show next, using Theorem 1.2, that H is distance-hereditary. Let u be a
vertex of H. We show that neither (a) nor (b) is satisfied for u. If p is even and
4 iS v, or v g), or if p is odd and u is v, v ) OF u g, then it is easy to see that
neither condition (a) nor (b) holds for v. Suppose now that v = u; or v; for some
i,1 <1< |%]. By symmetry we may assume v = v;, (see Figure 1),
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Figure 1: Graph H
Observe that the set of vertices at distance d from u is

Viea U Viud ifd#2 andi—d>0 and i+d<| %]
ViCu) = VicaUVieqgU{y;} ifd=2

Vi-d ifi—d>0 and s+d> | §|

Vied ifi-d<0 andi+d< |%].

Since V;(u) is an independent set of vertices we only need to check that con-
dition (b) of Theorem 1.2 does not hold; which is seen to be the case. Hence, H
is a distance-hereditary graph. Thus,

2 (12) - 1) ifpisodd

DH(Cy) £ { 2 (12] - 2) ifpiseven.

We now prove by inductionon pthat DH(Cy) > 2 (|_§-j —2)forevenp > 4,
and that DH(Cy) > 2 (2] — 1) foroddp > 5. If p = 4, then G, = C4 which
is a distance-hereditary graph. So DH(Cs) =0=2 (|3} —2). Ifp= 5, then
by Theorem 1.1, DH(Cs) = 2= 2 (|3] — 1). So the results hold in these two
cases. Suppose now thatp > 5 and that DH(Ci) > 2 (|£] — 2) for all even
k,4 < k < p,and that DH(Cy) > 2 (|§] —1) forallodd k, 5 < k < p.
Let H be a distance-hereditary graph with the smallest number of edges that has
Cp as spanning subgraph. By Theorem 1.1, since C, is a cycle in H it must have
two skew diagonals e; and e;. Say e; = uv and e; = zy. Choose e; and e;
in such a way that dg,(u,v) is as small as possible. Then dg,(u,v) = 2 or 3;
otherwise H has a cycle of length at least 5 without skew diagonals. Suppose first
that dg, (4, v) = 2 and let u, w, v be the shortest uv path on C;,. Then it follows
necessarily since e; and ez are skew diagonals that w = z or y, say z. Let P be
the uv path of G, that does not contain w. Then P together with the edge uv is a
cycle C of length p — 1. Moreover, since the subgraph H’ of H induced by the
vertices of C is also distance-hereditary and as it contains C as spanning subgraph,
it follows from the induction hypothesis that

2 ([%’j - 1) if pis even

B - |B(O)| 2 ,
2 (125 - 2) ifpis odd,

Since H contains at least two more edges, namely, e; and e3, that are neither in
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E(H') — B(C) or Gy, it follows in this case if p is even that

\ECH)| — | E(Cp)| 2 2 (LB:_IJ - 1) .2

= (Lp j+1—1)
= (lp+1]-—-l)
=2(12)-1)
>2(12)-2)

and if pis odd

BCH)| - |B(Cp)] > 2 (U’;—‘J —2) 2

-2 (124 -1)
=2(|_2J_1).

Suppose now that dc,(u v) = 3. Let u, w1, w2, v be a shortest uv path on C,.
Then again z or y is wy or wy. Let C be the cycle obtained from C, by deleting
w; and w; and adding the edge uv. Then, as in the previous case, it follows from
the induction hypothesis if H' = (V(C)) that

2 (|22] - 1) ifpisodd
2 (l?zj - 2) if p is even.

So if p is odd, then it follows in this case that

|ECH)| - |E(O)| 2 {

B~ EG1 2 2 (1B5 2] - 1) +2

=2(121-1)

and if p is even

(B - 1B 22 (12521 ~2) +2

=2(L§J—2).
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It now follows that

2 (L8] -1) ifpisodd

2 (13] —2) ifpiseven.

This concludes the proof of the Theorem. 1

DH(G,) > {

Corollary 3.1. Suppose G is a graph on p vertices having a hamiltonian cycle.

Then DHG) > { 2 (18] —1) + p— |E(G)| if p is odd
“L2(8]-2)+p—|B(G)| ifpiseven.
We now turn our attention to the n-cube Q,,.
Theorem 3.2, If n > 2, then

DH(Q) <Y (’:) (,.fl) -2~
1=l

Proof: Let v be any vertex of Q, and let V; be the vertices at distance { from v in
Qn. for 0 < 1 < n. Add an edge between every vertex u € V; and every vertex
w € V;_, if they are not already joined by an edge in Q,,, for 1 < § < n, and let
H be the resulting graph. Using arguments similar to those employed in Theorem
3.1, one can show that H is distance-hereditary. Since there are (}) vertices at
distance 1 from v in Q,, for0 < i < nand as Q. has n2™! edges, the result now
follows. 1

Corollary 3.2. If n > 2, and H is a distance-hereditary graph with diameter n
and a smallest number of edges such that Q,, is a spanning subgraph of H, then
IECH)| =38 () (2
Proof: Since H and Q,, both have diameter », and Q,, is a spanning subgraph of
H, there exist two vertices u and v in Q,, such that dy(u, v) = dg,(u,v). Since
every vertex of Q, — {u, v} lies on a shortest uv path, it follows that dg(u, w) =
dq,(u,w) for all w € V(Q,){u,v}. Hence, if V; is the set of all vertices at
distance 1 from u in Q,, 0 < 1 < =, then V; is also the set of vertices at distance
i from u in H. Since V,, = {v} and since every vertex in V,,_; is adjacent with
v (in Q, and, hence, in H) and as every vertex in V,,_, is adjacent in Q, with
some vertex in V1, it follows that every vertex in V,,_; is adjacent in H with
every vertex in V;,_ . Using the same argument it can be shown that every vertex
in V2 is adjacent in H with every vertex in V,,_3 . Continuing in this fashion it
can be shown that every vertex in V; is adjacent in H with every vertex in V;_;
for1 < i< n Thus, |[E(H)| >3 %, (3) (). However, the proof of Theorem
3.2 shows that |[E(H)| < Y& (3) (;2,). The corollary now follows. [
The next result provides an upper bound on the D H number of the m x n grid
where m < n
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Theorem 3.3. If G isan m x ngrid, 2 < m < n, then

m-1
DH(G) <2 ) i(i+1) + (n—m)m* —2mn+ m+ n
i=1
2
= 2—m(L3-_—l—) +(n—-m)m?>—2mn+ m+n
Proof: Let v be a vertex of G which has maximum eccentricity in G, namely,
m + n— 2. Let V; be the vertices of distance s fromv for0 <i < m+n— 2.
Then |V;]=i+1for0 <i<m—1and|Vj|=mforml <i<n~-1,and
[Vil]=m+m—1—iforn< i< m+n—2.Joinevery vertex in V; with every
vertex in Vi3 for 0 < i < m + n— 2 if the vertices are not already joined by
an edge in G, and let H be the resulting graph. Then it can be shown as in the
proof of Theorem 3.1 that H is distance-hereditary. Since H has2 377" i(i+ 1)
+(n—m)m? edges andasGhasrn(n— 1) + (m — 1)n= 2mn—m — nedges,
the result now follows. |

Corollary 3.3. If n > m > 2 and H is a distance-hereditary graph with diam-
eter n+ m2 and a smallest number c;f edges such that P, x Py, is a spanning
subgraph of H, then |B(H)| = 22°=D 4(n— m)n?.

Proof: Using arguments similar to those employed in the proof of Corollary 3.2,
it can be shown that the Corollary holds. |
We conclude the paper with the following conjecture.

Conjecture. We conjecture that inequalities given in Theorem 3.2 and Theorem
3.3 are equalities.
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