A characterization of block graphs that are well-k-dominated
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Abstract. Let k > 1 be an integer and let G be a graph. A set D of vertices of G isa
k-dominating set if every vertex of V(G) — D is within distance k of some vertex of
D. The graph G is called well-k-dominated if every minimal k-dominating set of G is
of the same cardinality. A characterization of block graphs that are well-k-dominated
is presented, where a block graph is a graph in which each of its blocks is complete

Introduction

For graph theory terminology not presented here we follow [1]. Specifically p(G)

and g(G) will denote, respectively, the number of vertices (also called the order)
and number of edges (also called the size) of a graph G with vertex set V(G)
and edge set E(G). If S is a set of vertices of G and v is a vertex of G, then the
distance from v to S, denoted by dg(v, S), is the shortest distance from v to a
vertex of S. )

A set D of vertices of a graph G is a dominating set of G if every vertex of
V(G) — D is adjacent to some vertex of D. Finbow, Hartnell and Nowakowski
[3] introduced the concept of a well-dominated graph. In [3], a graph is defined
to be well-dominated if every minimal dominating set has the same cardinality.

In this paper we extend the definition of well-dominated graphs. Letk > 1 be
an integer and let G be a graph. A set D of vertices of G is a k-dominating set
if every vertex not in D is within distance & from some vertex in D. Thus D is
a 1-dominating set if and only if D is a dominating set. The k-domination num-
ber, denoted by 4 (G), and the upper k-domination number, denoted by 'y (G),
are respectively the minimum and the maximum cardinalities taken over all min-
imal k-dominating sets of G. We say that a graph is well-k-dominated if every
minimal k-dominating set of the graph has the same cardinality. Hence G is well-
k-dominated if and only if 1+(G) = Tk (G). .

We characterize block graphs that are well-k-dominated, where a block graph
is a graph in which each block is complete. A tree is a block graph where each
block is K3, the complete graph on two vertices.
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Known results

A parameter of interest here is the k-packing number defined by Meir and Moon
[4]. A set I of vertices of a graph G is a k-packing of G if dg(z,y) > k for
all pairs of distinct vertices z and y in I. The k-packing number of G, denoted
by Bk(G), is the maximum cardinality of a k-packing set in G. A major result
relating 8,(G) and x(G) where G is a connected block graph is the following
theorem due to Domke, Hedetniemi and Laskar [2).

Theorem 1. For any connected block graph G and k > 1

Boi(@) = w(Q).

The following result is due to Topp and Volkmann [5].

Theorem 2. If T is a tree, then y(T) = Bx(T) = mif and only if one of the
following statements holds:
(1) T is a tree of diameter at most k.
(2) There exists a decomposition of T into n subgraphs T\, Ty, ..., T, insuch
a way that
(@) T; is a tree of diameter k i = 1,2,...,n), and
(b) foreach i € {1,2,...,n}, there exists u; € V(T) — V(To) such
that dp(ui, V(To)) = k, where To is the subgraph of T generated by
the edges which do not belong to any of the trees T, ..., T,.

A characterization of block graphs that are well-k-dominated

Since a graph is well-k-dominated if and only if each of its components is well-k-
dominated, we restrict ourselves to connected graphs. We begin this section with
the following result:

Proposition 1. For any graph G and integer k >1,%(G) L B(G) LT (G).
Proof: The proof follows immediately from the observation that every maximal
k-packing of G is a minimal k-dominating set of G. ]

The following result extends Theorem 2 to connected block graphs. The proof
is along similar lines to that of Theorem 2.

Theorem 3. Let G be a connected block graph. Then the following statements
are equivalent:

D w(G) = B(G) = n

(ii) One of the following statements holds:

(1) @G has diameterat most k andn= 1.
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(2) Tnere exists a decomposition of G into n subgraphs G1,G2,...,Gy in
such a way that

(@) G; is a connected block graph of diameter k 6 =1,2,...,n),

() foreach i € {1,2,...,n}, there exists u; € V(G;) — V(Go) such
that dg(u;, V(Go)) = k, where Gy is the subgraph of G generated
by the edges which do not belong to any of the subgraphs G, G3,
eee, Gy, and

(c) there is at most one edge with one end in V (G;) and the other end in
V(G for1 <i<j<w

(iii) G is well-k-dominated. |

Proof: (i) = (ii): Assume that (i) holds. If n = 1, then the diameter of G is at
most k and G satisfies (1) of (ii). In what follows, we assume n > 2. Let d denote
the diameter of G, and consider a longest path P : vg, vy,...,v2inG. Ifd < 2k,
then {v;} is a k-dominating set of G and 5o 4;(G) = 1, which contradicts our
assumption thatn > 2. Henced > 2k + 1. .

Let H be the block which contains the vertices v, and v,,. Then, since all
blocks are complete, H is isomorphic to the complete graph on m > 2 vertices,
say. Let V(H) = {w;,ws2,...,wn}, where w; = v; and wy, = vge. We
consider the graph G' = G — E(H). Since H is a block, there is no w; — w;-
path in G'(1 < ¢ < j < m). Hence no two vertices w; and w; belong to
the same component of G'. Thus G’ is disconnected with m components. Let
G1,G2,...,Gp-1, Hy, denote the components of G’ that contain the vertices
w), w2,..., Wn_1, Wy repectively. Since G is a block graph, G; is a connected
block graph (¢ = 1,2,...,m — 1) as is Hy,. It follows from our choice of P
that {w;} is a k-dominating set of G; fori = 1,2,...,m — 1. Before proceeding
further, we prove four claims.

Claim 1. Foreach i € {1,2,...,m — 1}, there exists a vertex u; € V(G;)
such that d(u;, w;) = k.

Proof: Since d(vo,v) = k, the claim is true for i = 1. Suppose that, if m > 2,
there is a subgraph G; in which every vertex is within distance k — 1 from w; for
somed € {2,...,m— 1}. Let Gy; =< V(G) UV(G;) > and let I; be any
maximum k-packing set of Gy ;. Since vp is at distance k+ 1 from w;, the diameter
of G is at least k + 1 and so |I;| > 2. Now let I be a maximal k-packing set
of G that properly contains I;. Then |I| < Bi(G) = %(G) = n Also, I isa
minimal k-dominating set of G and so n = (&) < |I|. Thus |I| = n. However,
since w) w; is an edge, it follows that wy (= vi) is within distance k from every
vertex of G;. This, together with the fact that {w, } is a k-dominating set of G,
implies that (I — I;) U {w, } is a k-dominating set of G of cardinality less than
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|I] = m, which produces a contradiction. This completes the proof of the claim.
®

Claim 2. Foreach i € {1,2,...,m — 1},dg(u;, V(G) — V(G))) > k.

Proof: The proof follows immediately from Claim 1 and the observation that ev-
ery path which starts at a vertex of G; and ends at a vertex not in G; must pass
throughw; (i=1,2,...,m—1). .

Claim 3. Foreach i € {1,2,...,m — 1}, the diameter of G; is k.

Proof: By Claim 1, it follows that the diameter of G; is atleastk (i=1,2,..., m—
1). Suppose that the diameter of G; exceeds k for some i € {1,2,...,m—1}.
Let I' be any maximum k-packing set of G;. Necessarily, |I| > 2 and w; ¢ I'.
Further, let I be a maximal k-packing set of G such that I' is a proper subset of
I. Then I is a minimum dominating set of G and |I| = n. On the other hand,
it is seen at once that (I — I') U {w;} is a k-dominating set of G of cardinality
less than |I| = =, which produces a contradiction. Hence the diameter of G is
k(i=1,2,...,m-1). .

Claim 4. v (Hp) = Be(Hpm) =n—m+ 1.

Proof: We show firstly that 4, ( Hp,) > n— m + 1. If this is not the case, then
let D, be a minimum dominating set of Hy, and consider the set D = D; U
{w1,ws,...,wm1}. Necessarily, D is a k-dominating setof G with | D| = | Dy |+
(m—1) <n—m+ 1+ (m—1) = n=4(G), which is impossible. Hence
W (Hyp) > n—m+ 1. Furthermore, Bi( Hy) < n—m+ 1, forif i (Hp) > n—

m+ 1, then for any maximum k-packing J; of Hp,, theset JiU{u1,42,...,4m_1}
is (cf. Claim 2) a k-packing set of G of cardinality at least n+ 1 > Bi(GQ),
which is impossible. Hence Bi( Hm) < n— m + 1. However (cf. Proposition 1)
W(Hm) < Bi(Hm); consequently, Ye( Hm) = Br(Hm) =n—m+ 1. °

We are now in a position to prove, by induction on n, that G has property (2) of
condition (ii). First, assume thatn= 2 (by Claim 4). Then yx( Hy) = Be(Hm) =
3—mwithm > 2 and3—m > 1,sothatm = 2. Since H, contains the v.+1 —vqg
path of length at least k, we have that H has diameter k and dg(va, vk+1) = k.
One sees immediately that the decomposition Gy, G, = Hz of G with uy = vg
satisfies (2).

Assume that every connected block graph with k-domination number less than
n > 3 and equal to the k-packing number satisfies condition (ii) (with n replaced
by the k-domination number). We consider the connected block graph H,,. By
the inductive hypothesis, H,, has diameter at most k or it satisfies (2). If H,, has
diameter at most k, then H,, has diameter k and dg(vq,vk+1) = kandn=m
One sees immediately that the decomposition G, ...,Gn-1,Gn = Hy, of G With
u, = vq satisfies (2).
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Suppose Hy, has diameter greater than k. Then there exists a decomposition
Gy Gms1, ..., Gy into n— m + 1 connected block graphs with property (2). For
convenience, letGy  (Go, resp.) denote the subgraphof H,, (Gresp.) induced
by the edges which do not belong to any of the subgraphs G, Gm+1,---,Gn
(G1,G?a,...,G, resp.). We shall prove that the connected block graphs G, G,
..., Gy form a decomposition of G into n connected block graphs of diameter &
and this decomposition satisfies condition (c) of (2).

In order to prove that the decomposition G, . .., G, satisfies the condition (b)
of (2), we may assume without loss of generality that the vertex vi., belongs
to Gy,. Then, since dg(u;, V(Go)) = de(us,wy) = kfori = 1,...,m—1
and since there exists u; € V(Gi) — V(Gp) such that dg(u;, V(Gp)) = k
fori = m,...,n, it suffices to show that dg(u,, V(Go)) = k for some vertex
Uy € V(Gy) — V(Go) = V(G,) — (V(Gp) U {vk+1}). Suppose to the con-
trary that de(v, V(Go)) < k foreach v € V(G,). Then dg(v, No(V(GL)) —
V(Ga)) < kforeachv € V(G,). By property (c) of (2) and by the way the sub-
graphs G, ...,Gn—1, Hy, are defined, no two vertices of the set No(V(G,)) —
V(Gy) (CV(Go)-V(G,)) belong to the same subgraph G; (i = 1,2,...,n—
1). Hence there exists a superset I of Ng(V(G,)) — V(G,) such that |[I N
V(Gi)| = 1 fori = 1,2,...,n Let 2 denote the unique vertex of I which
belongs to the subgraph G; (¢ = 1,2,...,m). We show that I — {z,} is a k-
dominating set of G. Letv € V(G). If v € V(G,), thendg(v,I — {z,}) =
dg(v, Ng(V(Gy)) — V(Gn)) < k. Ifv € V(G;) for some i € {1,2,...,n—
1}, thendg(v, I — {z:}) € de(v, ) < ksince v, z; € V(G;) and G; has diam-
eter k. Hence I — {2,} is a k-dominating set of G of cardinality n— 1 < 7,(G),
which is impossible. We deduce, therefore, that there is a vertex T, € V(Gy) —
V(Go) such that dg(G,, V(Go)) = k. This proves the implication (i) = (ii).

(ii) = (iii): The implication is obvious if the diameter of G is at most k. If
the diameter of G is greater than k, then assume that we have a decomposition
of G into subgraphs G;,G5, ..., G, satisfying (2). We show that T, (G) = n.
Let D be a2 minimal k-dominating set of G of cardinality I';(G). By property
(b) of the decomposition G, Gx,...,Gy of G, there is a vertex u; in G; such
that dg(u;, V(G) — V(GY)) > k (i = 1,2,...,n). Consequently, at least
one vertex w; of G; belongs to D foreachi (i = 1,2,...,7n). However, by
property (a) of (2) every vertex of G; is within distance k from w;. Hence W =
{w1,w2,...,w,} is a k-dominating set of G. In view of the minimality of D,
it follows that W = D and so T'«(G) = |D| = n = y(G). Hence G is well
k-dominated.

(iii) = (i): If G is well-k-dominated, then 4(G) = I't(G) and so, by Propo- -
sition 1, 7(G) = Bk(G). |
Remark: If G is any connected graph, then the conditions given in (ii) of Theo-
rem 3 are easily seen to be sufficient for G to be well-k-dominated. That the con-
ditions are not necessary for any connected graph G, may be seen by considering
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the graph H constructed as follows. Let T' be a binary tree of height k in which
every leaf is at level k (and so T has order 2%*! — 1). Let T} and T; be two (dis-
joint) copies of T'. Finally, let H} be obtained from T3, T by inserting a 1-factor
between the end-vertices of T and the end-vertices of T . (Figure 1 shows the
graphs H and H;). Thenitis not too difficult to see that H is well-2 k-dominated
with 42:( Hi) = 2, but H; does not satisfy condition (ii) of Theorem 3.

N

Figure 1; The graphs H; and H,

Corollary 1. If G is a connected block graph, then v (G) = ~x(G) ifand only
if G is well-2 k-dominated.

Proof: Suppose that 12.(G) = Y(G). Then, since £2x(G) = %(Q) for any
connected block graph (cf. Theorem 1), we have 42x(G) = B24(G). Hence, by
Theorem 3, G is well-2 k-dominated.

Let G be well-2 k-dominated. Then, by Theorem 3, we have 12 (G) = B2x(G).
But 8,:(G) = 1(Q) for any connected block graph and 50 124(G) = %(G).
|
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