Some Results on Generalized Connectivity With Applications
to Topological Design of Fault-Tolerant Multicomputers .

A. Duksu Oh
Department of Mathematics
St. Mary’s College of Maryland
St. Mary’s City, MD 20686

Hyeong-Ah Choi
Department of Electrical Engineering & Computer Science
George Washington University
Washington, DC 20052

Abdol-Hossein Esfahanian
Department of Computer Science
Michigan State University
East Lansing, MI 48824

Abstract. The connectivity of a graph G(V, E) is the least cardinality |S| of a vertex
set S such that G — S is either disconnected or trivial. This notion of connectivity has
been generalized in two ways: one by imposing some graphical property on the set S,
and the other by imposing some graphical property on the components of the graph
G — §. In this paper, we study some instances of each of the above generalizations.

First, we prove that the problem of finding the least cardinality |§| such that the
graph G — § is disconnected and one of the following properties (i) - (iii) is satisfied,
is NP-had: (i) given a set of forbidden pairs of vertices, the set § does not contain a
forbidden pair of vertices; (i) the set § does not contain the neighborhood of any vertex
in G; (iii) no component of G — § is trivial. We then show that the problem satisfying
propenty (ii) or (iii) has a polynomial-time solution if G is a k-tree. Applications of
the above generalizations and the implications of our results to the topolodcal design
of fault-tolerant networks are discussed.

1. Introduction

Designing fault-tolerant topologies for multicomputer systems (whose underlying
interconnection can be modeled by a graph) has increasingly become the concern
of many researchers due to the need for high performance and reliable systems
[Haye76, LoFu87]. Fault-tolerance at the topological level implies that the types
of faults to be tolerated are processor and/or link failures, and a multicomputer
(MC) is said to be fault-tolerant if it can remain functional in presence of failures.

One functionality criterion that has received much attention considers a MC
functional as long as there is a nonfaulty communication path between each pair of
nonfaulty processors [KuRe80, Boes86, PrRe82]. In other words, the underlying
topology of the MC should remain connected in the presence of certain failures.
A major consideration in the study of this model has been the choice of the fault

JCMCC 13 (1993), pp. 39-56



patterns, that is, the ways that processors and/or links are perceived to fail. Given
the nature of failures, measures have been proposed to quantify the extent of fault-
tolerance of topologies for MCs [Boes86, ZaEI88].

Researchers have mostly used graph theoretic concepts to develop determinis-
tic measures of fault-tolerance. The edge- and vertex-connectivity have been the
prime candidates for deterministic measures of fault-tolerance [Tane81, PrRe82,
DuHw88). The vertex-connectivity, s(G), of graph G is defined as the least car-
dinality |S| of a set S C V such that G — S is either disconnected or trivial (i.e.,
a single-vertex graph). The edge-connectivity, \(G), is defined similarly with S
being a set of edges. Connectivities are among the most extensively studied graph
invariants, partly due to their many applications. A recent study of connectivities
can be found in [Oell86].

Using connectivities as measures of fault-tolerance implies that if graph G is
the underlying topology of a MC, then that MC can tolerate x(G) — 1 processor
failures or A(G) — 1 link failures. These parameters, however, have some defi-
ciencies, two of which are examined here. First, the parameters do not differenti-
ate between the different types of disconnected graphs that result from removing
x(G) disconnecting vertices or \(G) disconnecting edges. This implies that the
severity of the damage 10 the system caused by processor or link failures is unac-
counted for in these parameters which, consequently, renders them inaccurate for
some applications [Boes86). To compensate for this shortcoming, one can make
use of several generalized measures of connectedness that have appeared in the
graph theory literature [Watk70, Chva73, Boes86, BaES87]. These measures in-
clude the atomic number, the toughness, the mean connectivity, and the integrity of
a graph. For many applications, these parameters, in conjunction with connectiv-
ities, can provide improved measures of fault-tolerance for MCs. Computational
aspects of some of these parameters have also been studied (CIEF87].

To see the second deficiency in using connectivities in the above context, we
note that in using these parameters it is tacitly assumed that any subset of proces-
sors (or links) can potentially fail. To compute x(G), for example, one finds the
minimum cardinality |S| of a set S of vertices (processors) such that G — S is
disconnected; the likelihood of the corresponding processors failing at the same
time is not accounted for in this computation, The parameter A(G) is computed
similarly. Therefore, these measurements are inaccurate for MCs in which some
subsets of system components (processors or links) do not fail simultaneously.
Such sets are called forbidden faulty-sets. The notion of forbidden faulty-sets can
arise in many contexts. Let graph G(V, E) be the underlying topology of a MC.
Also, let § C V be any subset of V' such that |S| = x(G), and there are (V)
distinct such subsets. By definition, there exists a set S such that G — § is discon-
nected (to avoid trivial cases, it is assumed that G is not a complete graph), and
we will refer to such a set as a minimum cut. Now, if the number of minimum cuts
in G is very small compared to (!"!), one may look “beyond” vertex-connectivity

40



and let each minimum cut be a forbidden faulty-set, and then ask for the minimum
number of vertices whose removal will disconnect G. An example of such graphs
is the n-cube, Q.,, which is the underlying topology of hypercube multicomputers.
Each minimum cut in Q,, is of size n, and among the (*") passible n-subsets, ex-

actly 2™ are minimum cuts, which is a small percentage especially when n is large
[Esfa88]. Some work has been done in designing graphs with as few minimum
cuts as possible [HaAm73].

The above discussion was the motivation behind the connectivity generalization
introduced by Esfahanian and Hakimi [EsHa88]. They generalized the notion
of connectivity by imposing some graphical property on the set being removed.
Formally, the r-connectivity (read as restricted connectivity) is defined as follows.
Let G(V, E) be a graph (or a directed graph) and p be a given graphical property.
Then the r-connectivity is the cardinality |S| such that:

(a) the set S has property p,
(b) the graph G — § is disconnected,
(c) noset S satisfying (a) and (b) above has fewer elements than set S.

In general, the set S can contain both vertices and edges. However, when §
is a subset of V(G), the comresponding r-connectivity will be referred to as -
vertex-connectivity. Similarly, the term r-edge-connectivity will be used when S
is a subset of E(G).

In this paper, some instances of r-connectivity are studied. In particular, the
r-vertex-connectivities are studied for certain graphical properties p.

2, Problem Formulation

In this section, we formulate a list of r-connectivity related problems.
Problem 1: ‘
Instance: A connecied graph G(V, E) andset M = {X;,X3,...,Xm} where

each X; is a subset of V(@G), and an integer a.
Question: Is there aset S C V(G) such that:
(@) for each 1, we have |S N X;| < | X,
(b) the graph G — S is disconnected,
© I1S|=a?
Problem 2:
Instance: A connected graph G(V, E) and set M = {A(v)| for each vertex
v € V(@Q), the set A(v) consists of all the vertices which are adjacent tov in G},
and an integer a.
Question: Is there aset S C V(G) such that:

(a) foreachv € V(G), we have |S N A(v)] < |A(v)],
(b) the graph G — S is disconnected,
© IS|=a?

41



Problem 3:

Instance: A connected graph G(V, E) andset M = {X C V|foranyve V,
if A(v) is a subset of X then v is a member of X }, and an integer a.

Question: Is there a set S C V(@) such that:

(a) theset S is an element of M,
(b) the graph G — S is disconnected,
© IS|=a?

3. NP-Completeness Results

In this section, we discuss the complexities of Problems 1 - 3. We begin with
Problem 1. We observe that problem 1 can be answered in polynomial-time when
each | X;| = 1. However, in proving Theorem 1, we show that it is NP-complete
to determine whether there exists a subset S of V(G) that satisfies only condi-
tions (a) and (b) if |X;| > 1. This makes the existence of any polynomial-time
approximation algorithm unlikely unless P = NP.

Theorem 1. Problem 1 is NP-complete, even if G is a bipartite series-parallel
graph with the maximum degree 3 and each | X;| < 2.

Proof: Since it is easy to see that the above problem is in NP, our proof will focus
on showing a polynomial transformation from the following NP-complete prob-
lem.

X3C Problem:

Instance: Set Y with [Y'| = 3¢ and a collection C of 3-element subsets of Y’
such that no element of Y occurs in more than three subsets.

Question: Is there a cover forY’, that is, does C contain a subcollectionC’ C C
such that every element of Y occurs in exactly one member of C'?

LetY = {y,y2,...,y3,} and C = {1, c2,...,c1} be an instance of the X3C
problem. We set D; = {d!|y; occurs in ¢;} for 1 < i < 3¢, and D = U3, D;.
Observe that [D;| < 3 for eachd, 1 < i < 3¢, andso set D; = {d}'||D;] =
1}U {d},d?| |Di| = 2} u{d},d?,d?||D;] = 3}, where i} < iy < 43. Set
W = U ({w} D] = 2} U {w},w?||Di] = 1}), and choose an integer p such
that 27! < 3¢ < 2P. Let H and F denote full binary trees with leaf node sets
{h1,h2,...,h2s} and {f1, f2,..., f2o} and the root nodes s and ¢, respectively.
We now define a graph G(V, E) as follows. The vertex set of G is

V(G)=V(HYUDUWUY UV(F)

42



and the edge set of G is
E(G) = E(H) U{(hi, &)1 <i<3q}
U (Uigsgae({Cd' ), (df, d2) (&, )| IDi] = 3}
U {(d,d?), (d, ), (wi, 9| IDil = 2}
U {(d, w}),(w],w}), (w},w)| |Dil = 1}))
U{(w, f)I1 <1< 3¢}V E(F).

Note that the graph G is a bipartite series-parallel graph with the maximum
degree 3. As an example, letY = {y1,¥2,¥3,94,y5,y6} and C = {c1,c2,c3},
where ¢y = {y1,¥2,13}, ¢2 = {y1,¥2,%4}, &3 = {ya,¥s,ys}. Figure 1 shows
the graph G(V, E) for this example.

Figure 1.  Construction of G(V, E) fromc1 = {y1,%2,13},c2 = {y1,12,¥4}
andcs = {ya,ys,ys }-

The construction of our instance is complete by setting
M = {{s}lv € V() V(R uw u YU (3% {{d, i #7'})
U{{ 5 ;’ d)d{:GD,i#i',)’#]"andeanl7‘50} .

43



In Fxgure LM = {{8}, {hl}s {hZ}v ceey {h14}) {t}i {fl}: {fz}: see v{fl4})
{wll}g {w%}’ {w},}, {wg}t {wc{}» {w}}, {wg}: {wé}o {w%}, {n},-...{vs}

{d{’ d%}’ {d{ !d%}'{d%’ d}}’ {d%’ d'.l‘}’ {d%’ dz}’{d%’dg}’ {d%’ d%},{(t‘z,d%},
{4, d3}. {43, &2}, {d, a3}, {d3, e}, {d3, &2}, {d, &}, {d}, &3}}.

We next proceed to prove that there exists an exact cover C' for Y if and only
if there exists a vertex cut S which satisfies the conditions (a) and (b).

Suppose there exists an exact cover C' for Y. Then, |C’| = ¢ and each element
of Y occurs in exactly one member of C'. Further, ot?sewe thatif y; and yy (s # 1')
occur in ¢; € C' and ¢; € C', respectively, then {d/, d} } ¢ M. This implies that
8 = {d|y; occurs in ¢; € C'} is the desired vertex cut. Conversely, suppose that
there exists a set S that satisfies the conditions (a) and (b). Then, § C D. Note
that forall i, 1 < i < 3¢, there is a path from s to ¢ going through vertices in
D;. This gives for 1 < 1 < 3¢ alower bound for |S N Dy, thatis, [SN D;| > 1.
On the other hand, for any pair of vertices d{ and d,’-" in D; with ;7 # j', we
have {d!, d;f'} € M and thus [SN D;| < 1. Hence, |[SN D;| = 1 forall ¢,
1 < i < 3g. Consequently, if &/,d; € Sand j # ', then since {d,d}} ¢ M,
we have ¢; Ncj = @. This establishes the existence of an exact cover C' for Y. In
particular, C' = {c; € C|d! € S}. This completes the proof of Theorem 1. |

In order to show the NP-completeness of the other two problems, we next de-
scribe the following known NP-complete problem, which will be used in both
transformations.

One-In-Three 3SAT Problem

Instance: Set U of variables, collection C of clauses over U such that each
clause c € C has [c| = 3.

Question: Is there a truth assignment for U such that each clause in C has
exactly one true literal?

Since both Problems 2 and 3 belong to NP, again our proofs will focus on the
polynomial time transformations.

Theorem 2. Problem 2 is NP-complete.

Proof: Let Up = {u1,u2,...,u, } and Cp = {cj,¢€2,...,cm, } be an instance
of the One-In-Three 3SAT problem. We first construct an instance of the One-In-
Three 3SAT problem U and C from Uy and Cy such that for each u; € U, literal
u; appears in at least one clause of C and literal &; also appears in at least one
clause of C.

We initially set 7 = Up and C = Cy. Suppose there exists uxy € Up such that
only one of the literals u;, €, appears in some clause of Cp. We then add to C four
new clauses di = {ux,%,a}, d2 = {@,q,b},ds = {b,E,a},and ds = {c,b,a}.
In the mean time, new variables a, b, and c are added to U. It is now observed
that assigning the false value to a and b and the true value to ¢ makes that each
of the clauses d; — dy has exactly one true literal. Therefore, there exists a truth



assignment for Up such that each clause in Cp has exactly one true literal if and
only if there exists a truth assignment for U such that each clause in C has exactly
one true literal. By repeating the above process, we obtain U = {u},u2,..., s}
and C = {c1,¢2,...,cm} such that for each u; € U, literal u; appears in at least
one clause of C and literal @; also appears in at least one clause of C. Define an
order“<"onU U {Blu € U} byu; <% < 4z < T2 < --- < 1y < Uy SO that
three literals of each clause of C are ordered.

We next construct a graph G(V, E) from U and C as follows. The vertex set
of GisV(@)=XUYUDUZUAUBUA,where

X ={d,&,dl1 <i<m},
Y = {di;,d}s,dy 11 < i < m},
D= {u;,5|1 £i<n},
Z={2£IIS"S"},
A={ai1 i< m},
B={b|1 <i<n}, and
A={88,81<i<m}
Theedge setof Gis E(G) = HUFUWUTUQUwURUL, where

H= {C‘l.cz) ("1 63) (d,c), (diz,dl), (diz, &), (ds,6), (dis,d),
(d4,4), (d§, D1 <i<m},

= {(cjegdM1<i<m-1,1<5,k<3),

= {(u;,%), (45, 2), (G, 21 <3< n},

= {(up“#l) (%, uie1), (44, Tie1) (uu"wl)ll <ign— l}

= {(c],u;)| the ath literal of clause ¢; is u;, for 1 < j < m,1 <6 < 3,

1 < i< n}uU{(d,u;)| the ath literal of clause ¢; is @, for1 < j < m,
1<a<3,1 gi_(_'n}

m= {(8,)1 <i<m1<a<3U{E w1 <i<m1<Lag3,
(C;nw) € Q}

R= {(u;,a;)|literal u; appears in clause ¢; for1 < i < nand1 < j < m}uU
{(w;, ;)| literal %; appears in clause ¢; for 1 < i < mand1 < j < m},
and

L= {(b,cl)|j is the smallest integer such that the ath literal of clause ¢; is u;,
1<i<nju {(b,-,cf,'.) |7/ is the smallest integer such that the a'th literal of
clause ¢p ist;, 1 < i< n}.

As an example, consider U = {u;,u2,u3}and C = {c1,c2,¢3}, where ¢; =
{u1,u2,u3}, c2 = {@1,%2,%W}, &3 = {%,u2,%3}. The graph G constructed
from U and C is shown in Figure 2.

We next prove that there exists a truth assignment for U such that exactly one
literal of each clause is true if and only if there exists a subset § C V(G) such
that conditions (a) - (c) are satisfied, where a = m + n.

45



Figure 2.  Construction of G(V, E) from ¢; = {u1,u2,u3},c2 = {@1,%2,u3}
andc3 = {#,u2,%3}. B(G) consists of the edges shown, and edges {(c}, i}) |1 <
J,kS 3}U{((‘)},c%),(6%,1;2),(Q‘,uz),(Sf,c%),(612,51),(cf,ﬁl),(8§,o_‘,),
(5.3,,1‘3)’(0}.1‘3):(5%,%)»(8%,52):(%,52)’(5?,C%),(sf,il),(cg,-ﬁl)s(8§.¢'/§),
(53,33),(%#3),(53,%):(531"2):(%.ﬂz)a(ag,é),(ag,m)’(é.'i:i)}-

Suppose there exists such a truth assignment. Let S = {ci| the ath literal of
clause ¢; is true, 1 < 1 < m}U{%;]| variable u; is true, 1 < i < n}U{u;| variable
u; is false, 1 < ¢ < n}. Clearly, G — S is disconnected, there exists no vertex in
G whose neighbors are all in S, and |S| = m + n. Thus, S is a desired subset. In
Figure 2, S = {c},c},c, W, uz,u3} when u, is true and u, u; are false.

Conversely, assume that there exists a subset § C V(G) such that|S|=m+n
and conditions (a) and (b) are satisfied. We then make the following observations:
(i) at most one vertex in {c},c},c}} for 1 < i < m belongs to S; (ii) at most one
vertex in {u;, %;} for 1 < i < nbelongs to S, since otherwise vertex z; has all its
neighbors in S.

The observation (i) together with the existence of edge set F' implies that all the
vertices in X — S belong to one component of G — S. Similarly, the observation
(ii) together with the existence of edge set T implies that all the vertices in D— S
belong to one component of G — S. We thus conclude that vertices in X — S and
vertices in D — S belong to different components of G — S and that for each edge
(4,v) € Q,eitheru € Sorv € S,but {u,v} ¢ S because of the existence of the
edge set w. Therefore, if {c],c;,c;} N S = 0 for some 7, then the three vertices
in D corresponding to literals ¢], c,, and ¢ must be a subset of S. However,
those vertices are neighbors of a;, a contradiction. Hence, we must have that

46



Hd,d,d}nS|=1foralll <j < m.

Now, assume that neither u; nor @; is in S for some 1. Then, all the vertices in
X which are adjacent to u; or T; must be in S. However, the existence of vertex
b; prohibits it since the neighbors of b; cannot be all in S. Thus, we have that
{u;, %} N S| = 1forall 1 < i < n Consequently, the existence of a desired
truth assignment for U is established. In particular, u; is true if and only if u; € S.
This completes the proof of Theorem 2. |

The formulation of Problem 2 was motivated by the question that if a graph G
is the underlying topology of a MC, then what is the least number of processor
failures required to render the system unfunctional (i.e., disconnected) provided
that for each processor p in the system all its neighboring processors do not fail at
the same time? It should also be stated that the r-edge-connectivity version of the
above problem can be solved in polynomial time [EsHa88].

Theorem 3. Problem 3 is NP-complete.

Proof: The transformation is again from the One-In-Three 3SAT problem. The
construction of a graph G'(V, E) from the given instance U and C is very similar
tothat of G(V, E) inthe proof of Theorem 2. Thus, we only describe the necessary
modifications as follows. The vertex set of G’ is V(G') = V(G) U (U} (Y; U
Z;UA;UB;jUA)), wheret=m+n—2 and

12:‘43 l%’ll(t(m},
Z,—{Z‘jll Sisn}s
= {alll i< m},
Bj= {bi[1 <i< n}, and
= {67,87,6J[1 <igm}.

The edge set of G' is E(G') = E(G) U Ey U Ez U EqU Eg U Ea, where
t=m+n-—2and

By = UD {(d%, u),(d5,v), (d5;, w)|(diz, v), (dis,v), (i, w) € B(G),
1<j<t},

Bz = UL {(2],v)|(z,v) € B(G),1<j <t}

Ea=U%{(a},v)|(a;,v) € E(G),1 <] <1},

Eg = UL {(¥},v)|(b;,v) € E(®),1 <j<t}, and

Ea = U2 {(8 1), (8 ,v), (87, w)|(8),u),(85,v), (8, w) € E(Q),
1<j<t},

41



Figure 3.  Construction of G'(V, E) from ¢; = {u1,u2,u3},c2 = {th,%2,u3}
and c3 = {%1, u2,%3 }. The vertex setof G’ is V(G') = V(G)UY, where V(G)
is the vertex set of G shown in Figure 2and ¥ = {d%,,d%, &\, 2, o}, b}, 87,87,
&1 < i< 3,1<j<4). Inthe figure, dy] represents four vertices di} , d?,

13 d14 each of which has neighboring vertices ¢}, c}. Similarly, each vertex in

VY- {d;{ } represents four vertices which have the same neighboring vertices. The
edge set E(G) shown in Figure 2 is the remaining edges in E(G").

Figure 3 shows the graph G'(V, E) constructed from the same example of U
and C in Figure 2 by following the above modifications. We set againa = m+ n.

In order to prove the correctness of the transformation, we first note that the
necessary part is same as before, and to complete the proof we make the following
observations. If both u; and %; belong to S for some ¢, then all the ¢ + 1 vertices
zi,2},22,..., 2 must belong to S. Since |S| = m + n, this cannot happen. In
fact, exactly one of u; and &; must be in S from the same reasoning as before.
Similarly, exactly one of ¢], c, and ¢ mustbein S forall 1 < j < m. Now, the

48



rest of the proof follows. |

4. Polynomial-Time Special Cases

In this section, we show that Problems 2 and 3 can be solved in polynomial-time if
graph G is a k-tree. Further, we give efficient algorithms that find the correspond-
ing disconnecting sets S. We proceed with some definitions and terminology.

A complete graph on k vertices is called a k-clique. For a vertex v in a graph
G(V, E), the degree of v in G will be denoted by deg ¢(v). The set of all vertices
that are adjacent to v in G will be denoted by Ag(v). The graph induced by a set
X C V will be denoted by [ X]. A vertex v is a k-leaf of G if deg g(v) = k and
[ Ag(v)] is a k-clique. The set of all k-leaves of G will be denoted by L(G).

A set 8 C V is called a vertex-cut {(or simply a cut) if G — S is disconnected
(note that by this definition, a complete graph has no cut). A cut S is a minimum-
cut if for any other cut X we have |S| < |X|. A cut S is called a restricted-cut
if for no vertex v in G we have A(v) C S. A restricted-cut S is a minimum
restricted-cut if for any other restricted-cut X we have |S| < |X|. Acut Sis
called a conditional-cut if either S is a restricted-cut, or S also contains every
vertex v for which Ag(v) is a subset of S. That is, for any conditional cut S of
G, there exists no isolated vertex in G — S. A conditional-cut S is a minimum
conditional-cut if for any other conditional-cut X we have |S| < |X|. Acut S
having a property p (e.g., restricted, conditional) is minimal if thereisno X C S
with property p.

A k-tree is defined recursively as follows. A graph G(V, E) is a k-tree if G is
either a k-clique, or G contains a k-leaf v such that G— {v} is a k-tree. Note that if
G(V, E) is a k-tree then deg g(v) > k forevery vertexv € V,anddego(v) = &
only ifv € L(G).

Lemma 1. Let G(V,E) be a k-tree with |V| > k+ 1. Then |L(G)| > 2.
Further, no two vertices belonging to L(QG) are adjacent in G.

Proof: Suppose that two k-leaves v; and v, of G are adjacent. Then, degg(v2) =
k implies that degg_(,,3(v2) = k — 1. But, G — {n } is a k-tree, and so
deg g—(w}(v2) 2> k. Hence, no two k-leaves of G are adjacent.

Next, we show by induction on |V/(G)| that G contains at least two k-leaves.
This is clear when |V(G)| = k + 2, and assume it is true for |[V(G)| = &k + 4.
Let [V(GQ)| = k+ 1+ 1 and let v be a k-leaf of G. Let B be the set of k-leaves
of G — {v}. Since |B| > 2 by the inductive hypothesis, and [ A¢(v)] must form
a k-clique, we have that B ¢ Ag(v). Thus, |B — Ag(v)| > 1. Note that each
w € B — Ag(v) is a k-leaf of G. Hence, G has at least two k-leaves. ]

Theorem 4. Let G(V, E) be a k-tree with |V(G)| > k + 1. Then for any cut
S in G there exists acut X with |X|= k suchthat X C S.

49



Proof: Let S be a cut of G. We use induction on |V (G)| to prove the theorem. If
[V(G)| = k + 2, the result is trivial. Suppose [V (G)| > k + 2. We may assume
that SN L(G) = 9, since if w € SN L(G) then S — {w} is acut of G. Choose a
vertex v € L(G) and let C be the component of G — S containing v. If |C| = 1
then Ag(v) C S, and so Ag(v) is a desired cut of G. Next, let |C| > 1. Note
that S is acut of G — {v} and C — {v} is acomponent of (G — {v}) — S. By the
inductive hypothesis, S contains a cut Sy of G — {v} with size k. It follows that
So is a desired cut of G.

Corollary 1. Let G(V, E) bea k-tree with [V(G)| > k+ 1. Then x(G) = k

Theorem 5. Let G be a k-tree with |[V(G)| > k + 1, and let S be a minimum
cut of G. Then [ 8] is a k-clique. Further, each component of G — S contains at
least one k-leaf of G.

Proof: Let v be a k-leaf of G, and observe that v & S. Let C be the component
of G — 8 containing v. Suppose |C| = 1. Then, since |S| = k and deg g(v) = k
we see that Ag(v) = S and thus [S] is a k-clique. Now, assume that |C| > 1.
We then reduce G to a k-tree H C G where a k-leaf of H is isolated in H — S by
successively deleting a k-leaf from the reduced graph. We thus conclude that [ S]
is a k-clique.

We will use induction on [V(G)| to show the second part of the theorem. If
[V(G)| = k + 2 then it clearly holds. Assume it is true for [V(G)| = k + i. Let
[V(G)| = k+ i+ 1,and let C1,Cs,...,C; be all components of G — S. Note
that if there exists 1, 1 < i < ¢, such that [C;] = 1(C; = {v;}), then we see that v;
isa k-leaf of G.
Case 1.t > 3: Letv bea k-leaf of G, and we may assume that v € C;. Then, each
Ci(i > 2) is acomponent of (G — {v}) — S and so, by the inductive hypothesis,
each C; contains a k-leaf w; of G — {v}. Since w; ¢ Ag(v) by Lemma 1, we
conclude that w; is a k-leaf of G.
Case 2. t = 2: We may assume that |C;| > 1 and C; contains a k-leaf v of G,
since G has at least 2 k-leaves by Lemma 1. By the same arguments as in Case 1,
we conclude that C, also contains a k-leaf of G.

This completes the proof of Theorem 5. [ |

4.1 Restricted-Cuts of k-trees

Theorem 6. Let G be a k-tree. If there exists a restricted cut T of G, then T
contgins a restricted cut S of G such that [ S) is a k-clique, and for any such S,
ICN{veV(G)|S C Ac(v)}| = 1 for each component C of G — S.

Proof: Let T be a restricted cut of G. Let S be a restricted cut of G such that
S C T and |S| is minimum. Note that |S| > k, since any restricted cut is a cut

50



and x(G) = k by Corollary 1, If Ag(z)NC = @, foranz € Sand acomponentC
of G— S, then S— {z} is also a restricted cut of G. Thus, we have Ag(z)NC # §
for each z € S and each component C of G — S. In particular, S does not contain
a k-leaf of G.

Now, we show that |S| = &, it will follow then from Theorem 5 that [S] is a
k-clique. For a k-leaf v of G, we denote by C, the component of G — S containing
v.

Case 1: |C,| = 2 for each k-leaf v of G: Take two k-leaves v and w of G, and let
C. = {v,a},and C, = {w, 8}. Note that (v,«) € E(G), and forany z € S,
if (v,z) € B(G) then (a,z) € E(G), since [Ag(v)] is a k-clique. Thus,
each vertex in S is adjacent to « and similarly, to 8. Note that « and g are not
adjacent in G. Now, suppose |S| > k. Then, G can be reduced to S U {«, 8}
by successively removing |V (G)| — (|S| + 2) vertices of degree k in the reduced
graphs, respectively. Further, S contains a k-leaf of the k-tree S U {«, 8}, which
implies that « and 8 are adjacent, a contradiction. Hence, |S] = k.

Case 2: |C,| > 2 for a k-leaf v of G: Observe that S is a restricted cut of k-tree
G — {v}, where C, — {v} is a component of (G — {v}) — S. We claim that §
does not properly contain a restricted cut of G — {v}. Let So C S be arestricted
cut of G — {v}. Then, it follows from the fact that v is a k-leaf of G that Sy is
also a restricted cut of G. The choice of S thus yields So = § as desired. Thus,
we can reduce G 1o a k-tree G1 C G such that (i) S is a restricted cut of G, (ii)
each component of G; — S consists of exactly two vertices, and (iii) S does not
properly contain a restricted cut of Gy. Now, G with a restricted cut S satisfies
the conditions for Case 1, hence |S| = k.

Next, we show |C N {v € V(G)|S C Ag(v)}| = 1 for each component C of
G - S. Let C be acomponent of G — S. Note that C contains an z of degree k by
Theorem 5 and C — {z} is a component of (G — {z}) — S. So, C can be reduced
to a single vertex vo by successively removing (|C| — 1) vertices of degree k
from C. Since S C Ag(wo), we have [C N {v € V(G)|S C Ag(v)}| > 1.
Now, suppose that C contains two vertices v and w such that S C Ag(v) and
S C Ag(w). Then, we reduce C to {v, w} by successively removing (|C| — 2)
vertices of degree k from C, and let G* be the resulting k-tree. Since {v, w} isa
component of G* — S, Theorem 5 yields that degg.(v) = k or degg-(w) = k.
This is a contradiction since v is adjacent to w, and hence the above inequality is
actually equality. This completes the proof of Theorem 6. [ |

Remark: Theorem 6 implies that for any k-tree G, either there exists a re-
stricted cut of G with size k or no restricted cut of G exists.

The following algorithm determines whether or not a restricted-cut of a given

51



k-tree G exists, and finds one whose cardinality is k if a restricted-cut of G exists.

Algorithm  Restricted-Cut(G)

Input: a k-tree G(V, E)

Output: a restricted cut S of G with size k if G has a restricted cut,
or S = @ otherwise

begin
1. Compute L = {v € V(G)|degs(v) = k}
2. LetGi=G; F=§
3.  while(L #0and |V(G1)| > k+2) do
4. Select an arbitrary vertex v € L and let L « L — {v}
5. F — FU{Aq,(v)}
6. G — G —{v}
7. LetT = {w € V(G1)|w & L, deg g, (w) = k,and Ag, (w) € F}
8. L«LUT
9, endwhile
10.  if[V(G)|2k+2
11. then begin
12. Select an arbitrary vertex z € V(G1)
such thatdegg, (2) = k;
13. S — Ag,(2)
14, end
15. else S « 0 endif
16. return(S)
end.
Theorem 7.

Algorithm Restricted-Cu(G) is correct and runs in O(|V(G)|log |[V(G)])
time.

Proof: We first prove that a restricted cut of G is produced by the algorithm if
and only if there exists a restricted cut of G. Assume that a restricted cut S of
G is produced by the algorithm. Let G; be the resulting graph in line 10 of the
algorithm. So, S = Ag, (z) for a k-leaf 2 of G;. We show that S is arestricted cut
of G. From the algorithm, we see that Ag(v) ¢ S foreachv € V(G) - V(G1).
Each isolated vertex w in G; — S satisfies deg ¢, (w) = k and degg(w) > k, so
w is not isolated in G — S and thus Ag(w) ¢ S. We conclude that Ag(v) ¢ S
for each v € V(G). Now, we need only show that S is acut of G. Since G isa
k-tree with [V(G1)| > k + 2, G1 — S has at least two components C and D. It
follows from the algorithm that for each = € C and each y € D, there exists no
path from z to y in G. Hence, G — S has at least two components and thus S is a
cutof G.

Conversely, assume that there exists a restricted cut of G. Then it contains a
restricted cut 7" such that [T'] is a k-clique by Theorem 6. Let C;, for 1 < i< ¢,

52



be the components of G—T. Then, by Theorem 6, there exists exactly one v; € C;
such that T" C Ag(v;), foreach 1 < i < ¢. Let G' be the subgraph of G induced
by TU{y|1 < i < t}. Clearly, G’ isa k-tree and [V(G")| = k+¢ > k+2. Now,
let Gy be the resulting graph in line 10 of the algorithm. Then, G' C G, since any
vertex in V(G') remains undeleted by the algorithm. Hence, a restricted cut of G
with size k is produced by the algorithm.

To show the time complexity of the algorithm, it is observed that the while loop
inlines 3 - 9 is executed O(|V(G)|) times and the bottleneck on each iteration is
to check whether Ag, (w) € F in line 7. Line 7 can be done in O(log |V(G) )]
time using a data structure for UNION-FIND operations. This would imply the
desired result. |

4.2 Conditional-Cuts of k-trees

It is observed that given a graph G, if S is a restricted cut of G, then S is a
conditional cut of G. However, the converse does not always hold. Therefore, this
observation together with Theorem 6 implies that given a k-tree G, there exists
a restricted cut of G if and only if there exists a conditional cut S of G such that
|S] = k.

Theorem 8. Let G be a k-tree. Then, there exists a oo}zditional cutof G ifand
only if [V(G) — L(G)| > k+ 2.

Proof: Assume a conditional cut S of G. Then, since no two k-leaves of G are
adjacent, each component of G — S contains at least one non-leaf vertex. On the
other hand, S — L(G) is a cut of the k-tree G — L(G) andso |S — L(G)| > k
by Theorem 4. We conclude that G contains at least k + 2 non-leaf vertices.
Conversely, assume |V(G) — L(G)| > k+2,and let G’ = G- L(G). Choose
a k-leaf z of the k-tree G’ and let §' = Ag(z). Since [V(G)| > k+2,G' -8’
has at least two components, say C' and D', and let C and D be two components
of G- suchthat C' C Cand D' C D. Note that |C| > 1, |D| > 1, and
CnD=4. Since z € V(G) isisolated in G — &' if and only if z € L(G) and
Ag(z) = 8', weconclude that S'U{z € L(G)|A¢(z) = S'} forms a conditional
cut of G. This completes the proof. [ |

Lemma2. Let G bea k-tree with |[V(G)—L(G)| > k+2. LetG* C G-L(G)
be a k-tree with |V(G*)| > k + 2 obtained from G — L(G) by successively
removing zero or more vertices of degree k. Let v € L(G*) and W = {z €
L(G)|Ag(z) = Ag-(v)}. Then

(@) Ag(v) isacutof G.

(b) Any conditional cut of G containing Ag-(v) also contains W.

(©) Ag(v) UW isaminimal conditional cut of G.

(d) Ag-(v) is arestricted cut of G if and only if W = §.

53



Proof: (a) is immediate from the construction of G* and the choice of v. For any
conditional cut S of G containing Ag(v), if z € W — S then G — S isolates
z, and thus W C S and (b) is proved. Since w € W if and only if w is isolated
in G — Ag-(v), we see that Ag.(v) U W is a conditional cut of G. To show the
minimality of Ag.(v) U W, let So C Ag-(v) UW be a conditional cut of G.
Since Sy — L(G) is a cut of the k-tree G — L(G), |So — L(G)| > k by Theorem
4 and s0 Sy — L(G) = Ag-(v). Now, it follows from (b) that Sp = Ag-(v) UW.
The proof of (c) is now complete, and (d) follows from (c) since |Ag-(v)| = k.
|

Lemma 3. Let S be a cut of a k-tree of G. Then, G can be reduced to a k-
tree G* by successively removing zero or more vertices of degree k such that
|[V(G*)| > k + 2 and Ag.(v) C S for some v € L(G*).

Proof: We proceed by induction on [V(G)|. If [V(G)| = k + 2, the result is
trivial. Suppose |[V(G)| > k + 2. We may assume that S is a minimal cut of
G, so that SN L(G) = @. Now, let w € L(G) and denote by C the component
of G — S containing w. If |C| = 1, then we are done. If |C| > 1, we apply the
inductive hypothesis to the cut S of the k-tree G — {w}, and the result follows
sincew € L(G). |

Suppose now that S is a conditional cut of a k-tree G. Then since § — L(G)
is a cut of the k-tree G — L(G), Lemma 3 applied to the cut S — L(G) of G —
L(G) implies that G — L(G) can be reduced to a k-tree G* C G — L(G) by the
successively removing process, where |V (G*)| > k+2 and Ag-(v) C S—-L(G)
for some v € L(G*).

Next, suppose that S is a minimal conditional cut of G. Then, by Lemma 2
(), Ag-(vV) UW C S where W = {z € L(G)|Ag(z) = Ag-(v)}. Now,
Lemma 2 (c) and the minimality of S yield that Ag.(v) UW = S, hence we have
S — L(G) = Ag(v) and SN L(G) = W. Note that Ag.(v) is now uniquely
determined by S; we will denote the Ag.(v) by K(S). Finally, note that if S is
also a restricted cut of G then W = §; the converse also holds by Lemma 2(d).
The above observations establish Lemma 4.

Lemma 4. Let G be a k-tree with [V(G) — L(G)| > k+ 2, and let S be a
minimal conditional cut of G. Then,

@ SNL(G) = {z € L(Q)|Ac(z) = K(S)},
(b) S—L(G) = K(S), and
(¢) S isarestricted cut of G if and only if S N L(G) = @.

We obtain from Lemmas 2 - 4 the following theorem.

Theorem 9. Let G be a k-tree with norestricted cuts. Suppose |V(G)—L(G)| >
k+2,andlet S C V(G). Then, S is a minimal conditional cut of G if and only
if 8 = Ag(v) U{z € L(G)|Ag(z) = Ag(v)} for some v € L(G) such that

54



Acq(v) isacutof G — L(G). (Note that v itself is included in S since v can be
z.)

Proof: The necessity is immediate by Lemma 4. The sufficiency is proven by
applying Lemma 3 to the cut Ag(v) of G — L(G) and then by Lemma 2 (c). §

Now, we obtain the following algorithm that determines whether or nota condi-
tional cut of a given k-tree G exists, and finds one whose cardinality is minimum
if a conditional cut of G exists.

Algorithm Conditional-Cut(@)

Input: ak-tree G(V, E)

Output: a conditional cut T" of G whose cardinality is minimum
if a conditional cut of G exists, or T" = @ otherwise

begin

1, Compute L = {v € V(G)|dege(v) = k}

2. if [V(G) — L] < k+ 2 then T « §; goto 16 endif

3. Call Restricted-Cut(G)

4, if the output S of the Restricted-Cut(G) is not empty

5. then T" — S goto 16 endif _

6. M — {ve L|Ag(v) isacutof G- L}

7. T—V(@

8. while M # @ do

9. Letv be a vertex in M

10. D « Ag(v) and W « {z € M|A¢(z) = D}

11. Q—~Duw

12 if [W| = 1 then T « Q; goto 16 endif

13. if |Q] < |T'| then T « Q endif

14, M—~M-W

15.. endwhile
16. return(T)
end.

Theorem 10. Algorithm Conditional-Cut(G) is correct and runs inO(|[V(G)|?)
time.

Proof: The correctness of the algorithm is immediate by Theorem 9. To analyze
the time complexity, note that line 3 can be done in O(|V(G)|log |V(G)|) time
by Theorem 7. It is also observed that |L| = O(|V(@G)|), and for each vertex
v € L, checking whether ornot Ag(v) isacutof G—L canbedone in O(|V(G)|)
time. Thus, line 6 can be done in O(|V(G)|?) time. The while loop in lines 8
-15 is executed at most |V (G)| times, and on each iteration, line 10 can be done
in O(|V(G)|) time. This would imply the desired result. ]

55



References

[Boes86) F.T. Boesch, Synthesis of reliable networks - A survey, IEEE Trans.
on Reliability R-35, No. 3, 240-246. August (1986).

[DuHw88] D.Z. Du and EK. Hwang, Generalized de Bruijn Digraphs, NET-
WORKS 18 (1988), 27-38.

(Esfa88] A.-H. Esfahanian, Generalized Measures of Fault-Tolerance with Ap-
plication to n-Cube Networks, IEEE Transactions on Computers 38, 1586-1591.

November (1989).

[EsHa88] A.-H. Esfahanian and S.L. Hakimi, On Computing a Conditional
Edge-connectivity of a Graph, Journal of Information Processing Letters 27,
195-199. April (1988).

[Haye76) J.P. Hayes, A Graph Model for Fault-Tolerant Computing Systems,
IEEE Trans. on Comput. 25, No. 9, 875-884. September (1976).

[KuRe80] J.G. Kuhl and S.M. Reddy, Distributed Fault-Tolerance for Large
Multiprocessor Systems, Proc. 7th Annu. Symp. Comput. Architecture, 23-30.
May (1980).

[LoFu87] M.B. Lowrie and W.K. Fuchs, Reconfigurable Tree Architectures us-
ing Subtree Oriented Fault Tolerance, IEEE Trans. on Comput. 36, 1172-1183.
October (1987).

[Oeli86] O.R. Ocllermann, Generalized Connectivity in Graphs, PhD. Disserta-
tion. Dept. of Mathematics, Western chlugan University, Kalamazoo, MI,
August (1986).

[PrRe82] D.K. Pradhan and S.M. Reddy, A Fault-Tolerant Communication Ar-
chitecture, for Distributed Systems, IEEE Trans. on Comput. C-31, No. 9,
863-869. September (1982).

[Tane81] A.S. Tanenbaum, “Computer Networks”, Prentice Hall, 1981.

[ZaE188] M. Zaki and M.M. Elboraey, Analysis of Reliability Models for Inter-
connection of MIMD Systems, The Cormputer Journal 31 (1988), 304-312.

56



