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Abstract. Using multisets, a short proof of Polya's theorem is given.

0. Introduction

Polya’s Theorem is an important theorem of combinatorics. Among other things,
it allows one to compute the number of ways of coloring a set of objects when
certain configurations of these objects are considered equivalent.

A key part of the proof of Polya’s Theorem is a result generally known as Bum-
side’s Lemma. The usual proof of Burnside’s Lemma involves determining the
relationship between the stabilizer and the size of an orbit of an element of a set
acted on by a group. Using multisets, Bogart [B], gave an elegant proof of a special
version of Burnside’s lemma. This allows one to prove a special case of Polya’s
Theorem, namely the weight one case. -

We generalize the argument to give an elegant proof of Polya’s Theorem. As
an illustration of Polya’s Theorem, we show how to compute the number of non-
isomorphic graphs with a fixed number of vertices.

1. Colorings and the cycle index

A coloring x is a function x: D — R from a finite set D called the set of objects to
afinite set R called the set of colors. Let X = X (D, R) be the set of all colorings.
For a simple example, let D = {1,2,3,4} be the four squares of a 2 by 2 board
labelled counterclockwise from the upper right and let R = {w,b}. There are
sixteen elements in X.

Let G be a subgroup of the group of permutations on D. Each element of G
has a cycle structure which can be conveniently recorded in a polynomial called
the cycle index

1
PG(zl"" 'zIGI) = @Zzgl ...x:’g}
9€G
where b; is the number of cycles of g of length . In the example, consider the
subgroup @ generated by rotations of the board by multiples of w/2. The rotation
by /2 is represented by permutation (1234), which is a single cycle of length
4. Now G = {(1D(2)(3)(4),(1234),(13)(24),(1432)} where the elements
represent, respectively, counterclockwise rotations by 0, /2, w and 37/2. A
term of the cycle index is obtained by replacing each cycle of length [ by an x;
and multiplying these together. Thus Pg(z1, 22, T3,Z4) = ( z‘,‘ + 234 + z%) /4.
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2. Patterns

The group G induces an action on X, that is, for each coloring x and group
element g we obtain a coloring gy = x o g~'. We wish to treat this coloring to be
equivalent to the coloring y, calling all such colorings a pattern. More formally, B
is a pattern (or multiorbit) if B = Gx = {gx|g € G}, where G is considered as
a multiset. In a multiset, elements are listed with repetitions allowed; the number
of times an element x appears is called the multiplicity mult(x) of the element.
Thus B has |G| elements. This is the main advantage of using multisets since if
sets had been used instead of multisets, the number of elements in B would not
necessarily be |G| and, in general, would vary with B.
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Figure 1.

The patterns for the example are listed in Figure 1. The multiplicity of the first,
second and third coloring of the figure is 4, 1 and 2, respectively.

Lemma. Two patierns are cither disjoint or identical (as multisets). The mulfi-
plicity of x in a pattern containing x is the number of g € G with gx = x.

Proof: If u € G then for some h in G, s = hy. Multiplying by g or gh~! shows
Gy and G are equal as sets. Further the multiplicity of yx is the same in both
multisets, since each g with gx = x corresponds to k = gh~! with kg = x. This
suffices to establish the lemma. ]
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For each color » € R let 7 denote the weightof the color r. Technically, weights
are arbitrarily assigned elements of some algebra over the integers or of some com-
mutative ring with unit. It is often convenient to assign integer weights, weights
of 1 to some colors and O to the rest. Define the weight of a coloring x to be the
the product of the weights of the colors of x,

x= ]I x(@.

Since the weights of all the colorings in a patern B = G are the same, define
B=X.
Let B denote the set of all patterns for colorings X under group G. The pattern
inventory for B with given weights is, by definition,
>
BeB
In the example, the pattern inventory is

T+ D5+ 2T0 +Th + 5.
It turns out that this pattern inventory is, in fact,
Po(@+b, @+, 0 +5,5° +5).
In the example, this is the content of Polya’s Theorem. Note that by considering
specific terms of the pattern inventory, one can see how many patterns there are
with specific numbers of each colors. Taking all weights to be 1 gives the total
number of patterns.

3. Polya’s Theorem
We are now ready to state and prove Polya’s Theorem.

Polya’s Theorem. Let X be the set of all colorings x: D — R and let G be
a subgroup of the group of permutations on D. Let B be the set of all patterns.
Suppose weights are assigned (o all colors of R. Then the pattern inventory is the
cycle index evaluated at == ¥, . p 7, that is,

S B =P R, TR,
BeB réR tER r€R
The proof of Polya’s Theorem proceeds by showing that both sides of the equal-

ity above are equal to the sum
1 -
] PIPIS S )
9€G xeX
gx=X
In fact, the equality with the pattern inventory is a version of Burnside’s lemma,
for the case when weights are not necessarily all 1. We state and prove this result
first.
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Burnside’s Lemma. Under the same assumptions as in Polya’s Theorem,

DRI DD
BeB gEG XX
X=X
Proof: Throughouttake x € X,9 € Gand B € B.
Interchange summation signs:

ST L T
|G|E"‘E

x=x
X'X

=+ ) ¥mul .
Gl ? X mult(x)
By the Lemma of the previous section, the patterns form a partition of X thus:

= ICI?_IZ E B mult(x)

B xeB
assct

Proof of Polya’s Theorem: By Burnside’s Lemma, it remains to show that sum ( x)

is the evaluated cycle index. Write g in (disjoint) cycle form, and let (d; ...
be a typical cycle of g, say the k-th one. Then since gx = x, eachof dy, ...,
must be colored the same. Thus the sum () becomes

G X

9€G (... 7x€ER,.. )
Using the distributive law givcs

1G] E( (Z?l) )
9€eG réR
which is the cycle index evaluated at z; = 3, o 7.



4. Counting Non-Isomorphic Graphs

As a non-trivial application of Polya’s Theorem we count the number of non-
isomorphic graphs with = vertices and a fixed number of edges.

A graph H on n vertices is a subgraph of the complete graph K, with n ver-
tices. Thus H can be thought of as a coloring of the edges of K, with the two
colors “e” and “r” signifying whether to “accept” or “reject” each given edge. An
isomorphism between two graphs amounts to a permutation of vertices that pre-
serves the edge colorings. Let S,, be the group of all permutations of the n vertices
of K, and let G be the induced group of permutations of the edges. Clearly, the
isomorphism classes are the patterns generated by the group G.

By Polya’s Theorem, we must first compute the cycle index. Each partition of
n corresponds to a cycle structure of an element of S,,. The partitionn= Y ., b
corresponds to elements of S, with b; cycles of length I. There are

at/ (bt 1)
I=1 .

such elements in S,,. This formula is called Cauchy’s formula, and can be easily
seen by writing down a permutation of n numbers as a sequence and breaking this
into cycles of the required types in a fixed way; the divisor comes about because
without changing the final permutation, the cycles of length [ can be permuted
amongst themselves and each cycle of length [ can be written with I different
starting values.

Now each cycle of length  on vertices mduces cycles on edges between these
vertices. If { is even, then {/2 — 1 cycles of length [ and one cycle of length 1/2
are generated. If [ is odd, then (1 — 1) /2 cycles of length [ are generated. Also
each pair of cycles of length [ and k on vertices induces cycles on edges from one
pair to the other. In fact, there are ged(l, m) cycles of length lem({, m) where
ged and Icm represent the greatest common divisor and least common multiple
functions, respectively.

With these observations it is possible, although tedious, to compute the cycle
index. For the case of n = 7, for instance, we obtain Table 1, with b; = 0 unless
otherwise indicated.

Thus the cycle index is

Pe(m,...,315) = 1/720 (21> +152] 25 + 602325 + 402323 +
120:1:12:2:1:31:5 + 40x§ + 180:1:1:52::3 +
144 72 + 120 z322).

Taking weights @ = a and T = 1 gives, by Polya’s Thcorem, the following
expression for the pattern inventory:

a® +a" +2a + 50" + 90" + 1500 + 2107 + 2403+
2407 +21a% + 15a° +9a* + 50 + 222 + a + 1.
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number of elements vertex cycles edge cycles

1 h=6 h=15

15 h=4,=1 bh=7h=4
45 b = =2 b1=3,b2=6
15 by =3 by=3,b0=6
40 h=3k=1 b=3,=4
120 bi=bh=b=1 bi=b=1b=20bk=1
40 b3=2 b3=5

90 b =2,b =1 by=by=1,b4=3
90 h=b=1 b=br=1bi=3
144 bi=bs=1 bs=3

120 b =1 by=1,bg=2
720

Table 1: Cycles for 7 vertex graphs

So there are, for instance, 24 non-isomorphic graphs with 7 edges and 6 vertices.
By summing the coefficients (set @ = 1) or by setting z; = 2 in the cycle index,
we see there are 156 non-isomorphic graphs with 6 vertices.

For 10 vertex graphs, there are 245 = 35,184,372 ,088,832 possible graphs.
The 10! = 3,628,800 permutations of vertices have 42 different cycle decompo-
sitions. There are 12,005,168 non-isomorphic graphs and the pattern inventory
turns out to be: 1+ a+ 2e2 + 5a° + 11a* + 264> + 66a% + 165a” + 428a® +
1103a? + 27696!° + 67594 + 157722 + 34663 0" +713180'* + 136433a'® +
24157746 + 395166 a7 + 596191 a'® + 828728 2!% + 1061159 a2 + 1251389 02! +
1358852 6% + 1358852 a2 + 1251389 0%*+1061159 0> +828728 026459619107+
39516662 + 2415770% + 1364330 + 7131843 + 3466342 + 157720 +
67590 + 276903 + 1103a% + 42840%" + 1650 + 660 + 260 + 11a%! +
5a* + 2a% + a* + o%. These computations where carried out by writing a
short program to compute the cycle structures. The output of the program was an
expression for the cycle index, which was simplified using the symbolic manip-
ulation package MAPLE. Then MAPLE was used to evaluate the cycle index to
generate the pattern inventory. The computations took a few seconds of computer
time.

Let U, be the number of non-isomorphic graphs with n vertices. Let C, be
the number of these which are connected. Using Polya’s Theorem U, can be
computed. The results for n < 20 are presented in Table 2. The components
of a graph induce a partition of the vertices, each partition subset consisting of all
vertices in the same component. It follows

n—-1
Co=U,— > H(C‘J';'—l)

bi+2by+ -+ (n=1)by g1 =n I=1

where the binomial coefficient counts the number of non-isomorphic graphs con-
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sisting of b; connected components of [ vertices each. The C, can be computed
inductively. The results for n < 20 are presented in Table 3.

vertices n

non-isomorphic graphs Uy,

VNN NLRWN -0

Table

1

1

2

4

11

34

156

1044

12346

274668

12005168

1018997864

165091172592

50502031367952
29054155657235488
31426485969804308768
64001015704527557894928
245935864153532932683719776
1787577725145611700547878190848
24637809253125004524383007491432768
645490122795799841856164638450742749440

2: Number of non-isomorphic graphs

vertices n  non-isomorphic connected graphs Cy

Poo©YENAUMEWRN—O

1

2

6

21

12

853

1117

261080
11716571
1006700565
164059830476

Table 3: Number of non-isomorphic connected graphs
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vertices n  non-isomorphic connected graphs C,

13
14
15
16
17
18
19
20

50335907869219

29003487462848061

31397381142761241960
63969560113225176176277
245871831682084026519528568
1787331725248899088890200576580
24636021429399867655322650759681644
645465483198722799426731128794502283004

Table 3 (continued): Number of non-isomorphic connected graphs
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