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Abstract. A graph is orientable to a line digraph (OLD, for shon) if its lines can be
oriented in such a way that the resulting digraph is the line digraph of some digraph. In
this paper we find all graphs such that both the graph and its complement are OLD and
also characterize these graphs in terms of minimal forbidden subgraphs. As shown, all
of these graphs have at most nine points.

1. Introduction

Herein we consider finite graphs and digraphs without loops; multiple arcs will be
allowed only in digraphs. An oriented graph is a digraph with at most one arc join-
ing any two points. The line digraph L(D) of a digraph D is obtained by taking
as its point set the arc set of D, with two points a = (u, s) and b = (¢,v) being
joined by an arc whenever s = t. This is a standard definition of line digraphs
which reflects only the head-to-tail adjacencies between arcs. However, it is clear
from this definition that a line digraph has no multiple arcs, and furthermore, that
it has a loop at some point ¢ if and only if a is a loop in the original digraph. All
other terminology and notation follows [7].

There are many results in the literature concerning a graph and its complement.
A series of papers in this respect was initiated by Akiyama and Harary [1]. In
[3] Beineke found all coderived graphs, i.e. graphs G such that both G and its
complement G are line graphs. Some further generalizations of this problem are
given in [4], [10], [11). In this paper we will find all graphs such that both G and G
are orientable to line digraphs. Further on, any graph from these complementary
pairs of OLD graphs will be called a COLD graph.

The paper is organized as follows. Section 2 contains some basic tools for our
investigation. In Section 3 we apply some results from the theory of perfect graphs
to prove the sharp upper bound on the number of points of COLD graphs (The-
orem 1). Finally, in Section 4 we first find all maximal graphs which are COLD
(Theorem 2), and then prove that the graphs from Corollary 1 (in Section 2) do
exhaust the list of graphs characterizing the class of COLD graphs in terms of
forbidden induced subgraphs (Theorem 3).
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2. Some Known Results

Line digraphs are characterized in the literature in several ways. The oldest and
the most obvious one is due to Harary and Norman [8]. Let A and B be two disjoint
sets, one of them possibly empty. The digraph K (A, B) is a digraph whose point
set is the union of A and B, with each point of A joined by an arc to each point of
B.

Proposition 1. A digraph is a line digraph if and only if its arcs can be partitioned
into digraphs K ( A;, B;) insucha way thatforallj # k AjnAg = 9, BjnB; = 0,
and|AjNBy| < 1.

The next characterization (see [9]) applies to digraphs with loops and/or multi-
ple arcs.

Proposition 2. A digraph is a line digraph if and only if whenever (a,c), (b,c),
and (b, d) are arcs, sois(a,d).

According to Beineke [2] the next proposition holds:

Proposition 3. An oriented graph is a line digraph of a loopless digraph if and
only if it does not contain any of the three digraphs given in Fig. 1 as an induced

subgraph.
B, B, B,

Figure 1

Corollary 1. IfG is COLD, then G does not contain any of the graphs of Fig. 2
as an induced subgraph.

Proof: By checking that at least one graph from each complementary pair is not
OLD. |

We shall see in Theorem 3, at the end of Section 4, that the induced subgraph
property described in Corollary 1 is not only necessary but also sufficient, in the
sense that it gives a complete characterization of COLD graphs,
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3. Proof Of The Upper Bound

Theorem 1 If G is COLD, then G has at most nine points.

Proof: Suppose to the contrary that G is an OLD graph on (at least) ten points,
such that G is OLD, too. By Corollary 1, K4 C G or K4 C G is not allowed. So,
if G and G both were perfect graphs, then we would have x(G) < 3, x(G) <
3,10 = x(K10) < x(G)x(G), a contradiction (here x denotes the chromatic
number of a graph).

Note further that the Strong Perfect Graph Conjecture is true for K4 -free graphs
[13), implying that if G is not perfect then it contains an odd hole or an odd anti-
hole. This (anti)hole cannot have more than five points because any cycle of length
at least seven contains F; (of Fig. 2) as an induced subgraph. Consequently, both
G and G contain Cs. Suppose now g is a point of G out of Cs. Since Py C Cs, T
is adjacent to at least two points of Cs ; otherwise F3 C G. By the same argument
on the complement, it follows that z is adjacent to at most three points of Cs. If z
were adjacent 10 only two nonadjacent points of Cs (or three consecutive points
of Cs), then P> C G (resp. F» C G) would hold. So, up to isomorphism z is ad-
jacent either to zo and z; (a-type point) or to xg, 71, and 23 (b-type point), where
z9,..., T4 are the consecutive points of Cs. Since G is supposed to have at least
ten points, we can assume that G contains at least three a-type points (otherwise
consider G). If two of these points are adjacent to the same pair of points of Cs,
then either K4 C G or K4 C G; otherwise F3 C G. ]

We note that an upper bound (though not sharp) on the order of COLD graphs
G can be deduced from various known results of combinatorics. For example,
Proposition 3 with the value of the Ramsey number R(4,4) yields |[V(G)| £ 17.
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Moreover, Proposition 1 together with a theorem of the third author’s (14] on
“local edge colorings” of complete graphs implies [V (G)| < 16. We thank the
referee for pointing out the relation between our problem and Ramsey theory.

4, Structural Characterizations

In this section we first find all COLD graphs which are maximal, i.e. which are not
proper induced subgraphs of any other COLD graph. For this purpose we prove
the following sequence of lemmas. Below, A (G) denotes the maximum degree
in G, and we put A*(G) = max(A(G), A(G)). The degree of a point u will be
denoted by deg u.

Lemma 1. IfG is COLD, thenA*(G) £ 6.

Proof: If A*(G) > 6, there is a point in G such that its in-degree, or its out-
degree, is at least 4. Thus we can separate four points which give a contradiction
at once. Namely, by Corollary 1, they cannot be mutually nonadjacent (see Fy),
while due to Proposition 3, no pair of them is adjacent (see B; ). ]
For convenience, hereafter we assume the following:
A(G) 2 A(B),ie. A%(G) = A(G);
u is a point of G whose degree is equal 10 A (G);
G is an orientation of G, while G, given G, is its underlying graph;
inG, Vip = {¥1,...,Vn} and W, = {w1,..., w,} are the in-neighbors and
the out-neighbors of u, respectively.
Now we emphasize two facts (to be used later on repeatedly) which immediately
follow from Proposition 3 and Corollary 1, respectively:
(i) points in V;, and in W, are all mutually nonadjacent;
(ii) if m (or n) is greater than two, then any additional point of G, say z, must
be adjacent to at least two points of Vy,, (or W,,); in particular, m < 3 and
n< 3.

Casel. A*(G) =6.

We first examine the subdigraphs of &, mduced by Vi UW, U {u}, i.e. the
closed neighborhood of u.

Lemma 2. Ifdegu = 6, then the closed neighborhood of u (including orienta-
tion) is one of the digraphs shown in Fig. 3.

Proof; We first conclude by (ii) that m = n= 3. Since the points in V;,, and in W,
are all mutually nonadjacent, it follows that each point v; (w;) must be adjacent
to some w; (resp. v;); otherwise, K4 C G. Therefore, up to symmetry, at least
the following arcs must appear in G between the neighbors of u.

(a) wivi, wavy, wyvs (perfect matching);

®) wiv, wivs, wavz, wavy (no perfect matching).
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Since K4 already exists in (b), at least one further arc should be added to it. But
then, by Proposition 2, it follows that we always have a perfect matching as in
(a). (This fact could have been deduced from a-particular case of the Konig-Hall
theorem as well.) Moreover, the exclusion of B; implies that each connected
component in the subgraph induced by V,,, U W, is a complete bipartite digraph.
|

In what follows, we will show that each digraph of Fig. 3 can be extended (up

to orientation) to a unique digraph on nine points.

Lemma3. IfA(G) = 6, thenG is COLD ifand only ifG is an induced subgraph
of at least one of the three graphs S — Sy of Fig. 6.

Proof: By the previous lemma, it is enough to show that S; results as the unique
maximal extension of D; (1 < i < 3). To do this, observe the point z added to
D;. By (ii), since m = n= 3, z is adjacent to at least two points of V;, and also to
at Jeast two points of W,. But then, for some i (1 < § < 3), x is adjacent to both
v; and w;. By B4, this in further implies that v;z and zw; are arcs. Therefore, by
Proposition 2, we now get that v;z and zw; are arcs for each 1.

If, besides z, we add to D; any further point, say y, then the same holds for y.
Since z,y, and u are mutually nonadjacent (all have degree 6), no further point
can be added. So S; is the unique maximal extension of D;. 1

Case2. A*(G) =5
The next lemma is analogous to Lemma 2.

Lemma 4. Ifdegu = 5, then the closed neighborhood of u (including orienta-
tion) is one of the digraphs Dy = Dy — w3, Ds = Dy — wy, Dg = Dy — w3 and
D; = D3 — wy of Fig. 4, or their converse digraphs (reversing orientation on all
arcs).

Proof: We first conclude by (ii) that m = 3, n= 2 or, vice versa,m = 2, n= 3.
Since the converse digraph of a line digraph is a line digraph of a converse digraph,
we can restrict ourselves to the former case. With these assumptions the rest of
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the proof is similar to the proof of Lemma 2, except that we now have a matching
consisting of two arcs. |

Lemma5. IfA(G) = 5, thenG is COLD ifand only if it is an induced subgraph
of at least one of the four graphs S — S4 of Fig. 6.

Proof: By the previous lemma, it is enough to show that any extension of D;(4 <
i < 7) results in a graph which is contained, as an induced subgraph, in at least
one of the graphs Sj(1 < j < 4). To do this, we first examine the one-point
extensions of D;. If z is the point added to D;, then, since m = 3, it must be
adjacent to at least two points of V,,, (by (ii)). Without loss of generality, we can
assume that « is adjacent to vy (in each D).

Suppose zv; is an arc. Then, for each D;, v,z(s = 2 or 3) is not an arc, since
otherwise we get B2 (= (x,v1,u, v,)! ) which is forbidden by Proposition 3. Then
in Dj, neither zv, nor zvs is an arc, since otherwise, by Proposition 2, wj v, or
w,vs should also be an arc, which is not allowed in Ds. Thus Ds cannot be
extended in this way. Applying the same argument in Ds and Dg, it follows
that zv, may be an arc, but not zvs (otherwise, by Proposition 2, some further
arcs should be added to Ds or Dg). Further, in Ds, z is not adjacent to wy or
ws; otherwise, in the former case we get By (= {z, v, w2)), while in the latter
one B (= (z,v1,v2,ws,v3)) which is forbidden by Corollary 1. Thus we get a
one-point extension of Ds (the arcs are zvy and zv;). Now consider Dg. If 2
is adjacent to v, , and possibly to vy, we already have a forbidden situation due
o Fi(= (z,v3,w1,w2)). Otherwise, if = is adjacent to w; or w, then By (=
(z,v1,ws), s = 1 or 2) appears. S0 Ds cannot be extended in this way. Finally,
consider D; . By Proposition 2, it follows that zv; and zvs both are arcs, and (as
in Dg) z is nonadjacent to w; or w;. So we now get a one-point extension of D
(the arcs are zv), zv2, and zv3 ).

1(z1,...2,) stands for the subgraph induced by {z1,...,2,}.
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Assume now that vy z is an arc. By Proposition 2, so are vy z and v3 x in each
D; (observe z,u,v; and, v» or v3). In D4, z is adjacent to w; and w,, since
otherwise F3(= (z,v,v2,v3,w),t = 1 or 2) appears. Actually, by Proposition
3, zw, and zw, are arcs. Thus we get a one-point extension of D, (the arcs are
v1Z, %2 T, V3T, TW), and zwy ). The situation is similar in Ds. Namely, zws is an
arc by the same argument as above, while zw, is implied by Proposition 2. So we
arrived at another one-point extension of Ds (the arcs are vz, v, T, v3 2, Tws,
and zus). Consider now Dg. If z is nonadjacent to w; and ws, then R (=
(u,w1,w2,v3,x)) appears. So, either zw; or zw; is an arc (the in-degree of
z is at most 3), and consequently, by Proposition 2, they both are arcs. This gives
a one-point extension of D¢ (the arcs are v z, v2 , v3 , zw; , and zw; ). Finally,
in D4, z is not necessarily adjacent to w; or ws, but otherwise, as above, each of
these arcs implies the other. Thus, we now have two possibilities for a one-point
extension of D, (the arcs are either vy z, v2 z, and v3 z, or vy 2, v2 2, v3 T, wy , and
wr x).

To complete the proof, consider the extensions of each D; with (possibly) more
than one point added. Observe first that in D4 and D the situation is quite sim-
ple. There are unique possibilities for one-point extensions, and in both cases the
points being added are nonadjacent (otherwise B, appears). Due to F}, at most
two points could be added. The resulting graphs are contained in S; or S;. For
Ds , there are two ways to get one-point extensions. If we add points of different
types, they must be nonadjacent (one of them has degree 5), but then F4 appears.
Otherwise, we get either a subgraph of S, (at most two saturated points could be
added), or S4 which is maximal. Finally, consider D;. We now have three ways to
obtain one-point extensions. If we add points of all three types, we get S3, which
is maximal as already observed (two nonsaturated points must be adjacent, due to
F1). The other possibility is to add two or more points of the same type. By Fj it
immediately follows that we can add at most two saturated points. The resulting
graph is a subgraph of S3. |

Case 3. A*(G) < 4.

We are now in a position to choose between the technique demonstrated above
or brute force. Now, the number of points of COLD graphs, besides Theorem 1, is
bounded from above by nine also by the degree conditions. With nine points only
regular graphs of degree four need to be examined. It can be easily shown (see
[6] as well) that within these graphs there are no COLD ones. Thus the bound is
reduced to eight. The graphs with at most eight points are catalogued in system
GRAPH (see [S]), and can be treated one by one. The algorithm for checking if
some graph is a line digraph is given in [12]). However, the same result (with more
effort) can be deduced as before. Here we only give the corresponding lemmas.

Lemma 6. IfA(G) = 4, then@G is COLD if and only if it is an induced subgraph
of at least one of the graphs of Fig. 5a.
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Figure 5a.

One can immediately see that Q1,Q2,Qs, and Q7 are induced subgraphs of
some of the graphs of Fig. 6 (for example, of S4, S, S2, and S3 respectively),
while the others are new solutions.

Lemma 7. IfFA(G) = 3, G is COLD if and only if it is an induced subgraph of
at least one of the graphs of Fig. 5b.

MR HPAR

Figure 5b.

1t is obvious that all these graphs are contained in some of the graphs Q, — Q9
IfA*(G) < 2, the discussion is trivial.
Collecting the above conclusions, we arrive at our main result.

72



c(_’/)l

Figure 6

Theorem 2. G is COLD if and only if it is an induced subgraph of at least one
of the fourteen graphs depicted in Fig. 6.

By Theorem 2 COLD graphs are characterized as graphs which can be em-
bedded into at least one of fourteen maximal graphs (appearing as seven pairs of
complementary graphs). The somewhat dual approach (which is more common
in graph theory) is to find a list of all minimal graphs which cannot be embedded
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into COLD graphs, or in other words, to characterize COLD graphs in terms of
forbidden induced subgraphs. Since the maximal COLD graphs have at most nine
points, it follows at once that the collection of forbidden subgraphs is finite (say all
graphs on ten points are forbidden although not necessarily minimal). A possible
collection of all forbidden minimal graphs for COLD graphs is given by Corol-
lary 1 (in Section 2). By a computer search it was established that the collection of
all minimal forbidden graphs for COLD graphs coincides with the list of graphs
of Corollary 1. So we have:

Theorem 3. G is a COLD graph if and only if it does not contain any of the
graphs of Fig. 2 as an induced subgraph.
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