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Abstract. Reconfigurable parallel computers provide a number of choices of algo-
rithm or architecture configurations 1o execute a task. This paper introduces and dis-
cusses the problem of allocating configurations to nodes of a task precedence graph,
where each node represents a subtask. Each subtask can be executed on one of a num-
ber of distinct configurations and one of these choices must be assigned to it. We are
given the execution time on a configuration, and the reconfiguration time between any
allocatable pair of configurations of related subtasks. The objective is to assign a con-
figuration for each subtask such that the overall completion time of the entire task is
minimized. This paper provides a graph theoretic formulation for this configuration
assignment problem, and shows that it is NP-hard even if the maximum degree of the
precedence graph is at most 3 and the number of choices for each subtask is at most
2. The problem is shown to be solvable when the maximum degree of the precedence
graph is 2, thus closing the gap between the P and NP cases in terms of the degree of
the graph. We then present efficient polynomial time algorithms, to find the optimal as-
signment, for two special cases of precedence graphs—(1) trees, and (2) series-parallel
graphs.

1. Introduction

The advances in technology have led to the design of reconfigurable parallel com-
puter architectures which include the class of partitionable parallel architectures
[8], [10]. In a reconfigurable parallel computer, the configuration of the set of
processors assigned to a task, which is to be executed using a parallel algorithm,
can be varied to better match the requirements of the task. The configuration can
vary in the type of architecture or in the type of algorithm [9] and each config-
uration can result in a different execution time for the task. An example of the
first instance is when the number of processors or their interconnection topology
is a variable. An example of the second instance is when we can change the data
structures and data allocation schemes of the algorithm. Changing data structures
or the data allocation actually results in a different algorithm, and thus results in
the selection of a parallel algorithm for the problem. Since the configuration can
vary in the architecture or the algorithm, we do not distinguish between the two.
When the architecture has to be reconfigured, from its present configuration to
the configuration required by the task, it incurs a cost (time) which is called the
reconfiguration cost.

A task, to be executed on a reconfigurable parallel architecture, can consist of
a number of constituent subtasks which must be executed to compute the final
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result. Furthermore, the data dependencies among the subtasks enforce a prece-
dence relation among the subtasks. Examples of such tasks are frequently found in
computer vision [3], [9]. A set of precedence constrained tasks can be represented
by a directed acyclic graph called a task precedence graph. An edge from the node
corresponding to subtask T; to the node corresponding to T denotes that 7} can-
not start execution until T has completed and requirés the data/ouput from T; as
part of its input. Under this situtation, the machine must reconfigure from that (the
configuration) assigned to T; to the configuration assigned to T}, and this recon-
figuration cost/time adds to the total completion time of the entire task. The above
framework, of reconfigurable architectures and task precedence graphs, gives rise
to the design problem of assigning a configuration to each task [2], [9] to minimize
the completion time of the task. The presence of reconfiguration costs implies that
the problem of assigning (i.e., selecting) configurations is a non-trivial one, since
without this cost we can simply assign the best configuration for each task.

This paper formulates and discusses the problem of allocating configurations
to nodes of a task precedence graph of n nodes, where each node represents a
subtask. Each subtask T3, for 1 < i < m, can be executed on one of g; distinct
configurations (g; is the maximum number of allocatable configurations for this
subtask) and must be assigned to one of these choices. As part of the input to
the problem, we are given the execution time on a configuration and the recon-
figuration time between any allocatable pair of configurations of related subtasks.
The objective is to assign (i.e., select or allocate) a configuration for each subtask
such that the overall completion time of the entire task is minimized. There are
a number of methods of identifying bounds on the execution and reconfiguration
times, for example see [2]. In this paper we use the terms allocation, assignment
and selection interchangeably to mean the same.

We provide a graph theoretic formulation of the optimal configuration assign-
ment problem. In our formulation, finding a feasible optimal assignment corre-
sponds to finding a subgraph of a certain property with minimum weight. We
show that the problem is NP-hard even if the number of choices for each subtask
is at most 2 while the degree of each node of the precedence graph is limited to
3, i.e., each subtask is dependent on at most 3 other subtasks and max;{¢g;} < 2.
We develop efficient polynomial time algorithms for the special cases where the
precedence graph is a tree and a series-parallel graph. Finally, we show that the
problem is solvable in polynomial time when the degree of each node is less than
3 (for arbitrary ¢;), thus closing the gap between the P and NP cases in terms of
the degree of the precedence graph.

The paper is organized as follows. The following section formulates the prob-
lem and expresses it as a subgraph assignment problem. Section 3 discusses the
complexity of the problem, and polynomial time algorithms for special cases are
presented in Section 4. Section 5 provides concluding remarks and future endeav-
ors.
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The problem studicd in this paper can also be applied to the design of paral-
lel algorithms for a system of tasks. As observed in [9], there are many issues
that need to be accounted for during the design of parallel algorithms including
the number of configurations that the algorithm can execute on. Therefore our as-
signment problem can also be viewed as an abstraction of the problem of selecting
efficient parallel algorithms for a precedence constrained task.

2. Problem Formulation

As an input to the configuration allocation problem, henceforth denoted CA, we
are given a task precedence graph, choices of configurations for each subtask,
execution time on each choice (i.c., on each configuration), and the reconfigura-
tion time (referred to as RC time) between choices of dependent subtasks. Let
Go = (V, E) be the task precedence graph, where the set of vertices V(Go) =
{vi,v2,...,v,} denotes the n subtasks and E(G)) is the set of directed edges
denoting the precedence relations. If (v;,v;) € E(Go) then subtask v; cannot
start until v; has completed and in addition, the edge indicates that data must be
transfered from v; to v;.

The set of choices of configurations, for each subtask, and the execution and
reconfiguration times associated with the choices can be represented by a weighted
communication graph G . Each subtask T;, denoted by node v; in the precedence
graph, has g; choices of configurations that can be allocated to it. The vertex set
of G is defined as

V(G) = U Vi, where V; = {v},2,...,v¥}.
1<ign

The vertex subset V; corresponds to subtask T; where vf represents the p-th choice
(of configuration) for T;. In other words, each node v; in the precedence graph is
replaced by g¢; nodes, where each of the g; nodes represents an assignment of a
configuration for the subtask T;.

The edge sct of G, is defined such that for any two vertex sets V; C V(G1)

andV; C V(G1),for1 <4,j < n,
either E(V;,V;) = 0 if (v;,vj) € E(Go) or E(V;,Vj) = {(v],v)) |1 <
p< gand 1 < g < g} if (v;,v5) € E(Go), where E(V;, V;) represents
the set of edges in G; whose tails are in V; and whose heads are in V.

To each vertex v} € V(G1), there is assigned a positive number w(v}) rep-
resenting the execution time on the p-th choice for subtask T;. Similarly, to each
edge e = (vf,v]) € E(G1), there is assigned a positive number w(e) represent-
ing the reconfiguration time, the g-th choice for T7}, i.e., the time to reconfigure
from configuration p of subtask T; to configuration ¢ of subtask Tj. Figure 1
shows a precedence graph and a corresponding communication graph when g; is
2 foralls.
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Figure 1
Precedence Graph Go and Communication Graph G

Let A(Gy) denote the maximum degree of Go; A(Gp) gives the maximum
number of related subtasks for any subtask in Gy (i.e., it is a predecessor or suc-
cessor of at most A (Glo) subtasks). Given a communication graph G, we define
a to be max;¢ica{¢;}. In practice, « is a small number bound by a constant.
A subgraph H(V, E) of G(V, E) is called an induced subgraph of G(V, E), if
V(H) C V(G) and E(H) = {(u,v) € B(G) | u,v € V(H)} [6].

A feasible assignment, of configurations to subtasks, is one in which one con-
figuration (among the g; choices) is selected for each subtask T;, 1 < i < n,
i.e., from each node subset V;, of V(G1), select one node vf. The set of selected
nodes and the edges connecting these nodes would form an induced subgraph of
@G, that is isomorphic to the precedence graph Go. We call such a graph an alloca-
tion graph; note that an assignment is given by V( H) the nodes in H. Therefore
an assignment can be simply stated as: from the communication graph G select
an alocation graph H. Figure 2 gives an allocation graph for the communication
graph in the example in Figure 1.

The vertices of the allocation graph H determine the set of configurations that
must be selected, i.e., assigned, to give us minimum completion time on the par-
allel architecture. In the remainder of this paper we refer to the allocation graph
as an assignment although an assignment is in fact the vertices of the allocation
graph. In our problem we are only focusing on determining what choices to select,
i.e., determine H, so as to minimize objective function, and thus the problem can
be viewed as an assignment problem as opposed to a scheduling problem.

For any allocation graph H, the vertex and edge weights dictate the resulting
execution and reconfiguration times. We now define the completion time resulting
from an allocation graph H. For any allocation graph H C G, let Py be a
directed path in H. The weight of the path Py denoted by W ( Py) is defined as:

W(Py) = E w(v) + E w(e).

veV(Py) e€E(Py)
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The completion time of the task is the weight of the “heaviest” path, i.e., the path
with the largest weight, denoted by Wnax ( H), is

Whnax (H) = max{W( Py) | Py is a directed path in H}.

Figure 2
An Allocation Graph H

The configuration assignment problem with the objective of minimizing overall
completion time of the task, denoted CA-MAX problem, as: “Find an allocation
graph H of G such that Wi ( H) is as small as possible.”

The variable Wi ( H) denotes the completion time of the task resulting from
an allocation corresponding to the vertices in H. If we define the objective to be
the sum of the vertex and edge weights in H, then our problem with this objective
(note that this objective does not give the completion time and hence is not appli-
cable to our problem) can be reduced to the well studied task assignment problem
in distributed systems [1], [4].

3. Problem Complexity

We now prove that the problem is NP-hard even for a very restricted case where
each subtask has at most two choices of configurations and at most three related
subtasks, and the precedence graph is bipartite.

The proof of NP-hardness is based on the following decision problem whose
NP-completeness result is well-known [7].
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3SAT Problem

INSTANCE: Given a set U of variables and a collection C of clauses over U such
that each clause ¢ € C has [c| =

QUESTION: Is there a truth assignment for I/ such that each clause in C has at
least one true literal?

Theorem 1. CA-MAX problem is NP-hardevenif « < 2,A(Go) < 3 and Gy
is bipartite,

Proof: To prove the NP-hardness, we will show the NP-completeness of the de-
cision version of the CA problem defined as follows:

INSTANCE: A precedence graph G the communication graph G and deadline
time D.

QUESTION: Is there an allocation graph H such that W,,,x (H) < D?

It is not difficult to see that the decision version of the problem belongs to NP
since for any assignment we can determine the path with heaviest weight. We next
show a polynomial time transformation from the 3SAT problem.

LetU = {u1,u2,...,u,}andC = {c1,¢c2,...,cm} be an instance of the 3SAT
problem. Foreach i, 1 < 1 < n,let A(4) = {1,12,...,15} be the set of indices
such that 4y € A(9) if and only if either literal u; or &; appears in clause c;,,
1 <1 <12 <--- <1, < m. Using this instance, we construct a precedence
graph G as follows. The vertex set of Gy is

V(Go) = {c;,d; |1 <j<m} |J {=} lire A(i)} | B
1<ign 1<ign

To define B;, we construct a rooted binary tree T; corresponding to variable u,, for
1 <1< ninthe followmg way. The vertex set of T; is V(T}) = {z}, , =} I

! } U B;, where {z} , 2}, ,. '.} represents the set of leaves all located at the
same level of the tree, and B, denotes all nonleaf nodes. The edge set of T; is
denoted by A;.

Note that that each clause c; has three literals and thus there are three vertices

,f, xf,z € V(Gbo) forsome f, g, hsuchthat f < g < h. Now, todeﬁnetheedge
set of Go construct a path connecting from c; to d, through T ,a:g , z, and let E;
denote the edges in this path, i.e., E; = {(c,,a: ), (! z;,29), (=5, 2, (=}, d)) }.
The edge set of G is then defined such that

EGy= |J B U 4

1<j<m  1<ign
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Figure 3
Precedence Graph G constructed from
C= {(u1,u2,u3),(1-[1,03,!-1,4),(&2,1-1.3,114),(U],Uz,iﬂ)}

It is observed that the number of edges adjacent to each vertex in Gp is at
most three and G) is bipartite. Hence A(Gp) < 3. Figure 3 shows an exam-
ple of Gy by following the above procedure, when U = {u;,u2,u3,us} and
C={{uv1,u2,u3}, {81, u3,@a}, {¥2,83,us}, {u1,u2,83}}.

We next describe a procedure to construct a communication graph G of Go
such that each subtask has two choices of configurations. The vertex set of G
is defined such that each vertex v in V(Go) — {¢j,d; | 1 < j < m} has
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two corresponding vertices (represented as v and ) in G and each vertex in
{c¢j,d;j | 1 < 1 < m} has one corresponding vertex (represented as c; or d;)
in G . The edge set of G, is defined such that for each (y, 2) € E(Gbo), there are
edges connecting from the vertices corresponding to y € V(Go) to the vertices
corresponding to z € V(Go). The number of such edges is either 2 or 4 depend-
ing on whether, or not, y or z is in {¢;,d; | 1 < j < m}. Formally, graph G, is
defined as follows. The vertex set of G, is

V(G ={c,dj | 1 <5 <m} | {=h, 3 | € A(i)}
1<i<n

H{v.5lveBiu---UB,}.

The edge set of G is

EGn= |J b; | R,

1<j<m 1<i<n

where D; = {(c;,z]), (¢, %), (z],3), (=], 5D, G, 2D, (z],3D), (5, z}),
(2§,2}), (55,2}), (25,30, (},d)), (&},d;)}; and for each edge (y,2) €
Ai(C E(GoS) , there is a corresponding set F; of four edges (y, 2),(y, 2),(9,2),
(9,2),ie, F; = {(y,2),(y,2),(9,2),(9,2) | (y,2) € A;}.

To assign the weight of each vertex of G, set w(v) = 1,forallv € V(G,). To
assign the weight of each edge, let M) be any number larger than 2 [log, m] + 7
and M3 be any number larger than 2 [log, m] + 7 + 2 M;. For each edge e =
(z,w) € D; where w € {zf,3],13,%9,z}, 24}, set w(e) = 1, if the literal
corresponding to w (i.e., uy, iy, ug, ¥y, up Or &t5) appears in clause c;; and set
w(e) = M, otherwise. For each edge directed to d;, for 1 < j < m, setw(e) =
1. Finally, for each edge e € F; corresponding to (y,z) € A;, setw(e) = 1, if
e is either (y, z) or (§, 2); and set w(e) = M, if e is either in (y, z) or (¢, 2).
Figure 4 shows acommunication graph G corresponding to the precedence graph
Go shown in Figure 3 by following the above procedure.

We next show that there exists a truth assignment for U such that each clause
in C has at least one true literal if and only if there exists an allocation graph H
of Gy such that Wy, (H) is less than 2 [log, m] + 7+ 2 M.

Suppose there exists a truth assignment for U. Using this truth assignment, an
allocation graph H C G is constructed in the following manner. The vertex set
of H is ‘

V(H)={cj,dj |1 <j < m}U{z}|uistrue,1 <i<mand1<j < m}
U{z} | uiistrue,1 < i< mand1<j < m}
U{veB;|u;istrue,1 <i<n}U{v € B;|yistrue,1 < i< n}.



The edge set of H is
E(H) = {(2,w) € E(G) | 2,w e V(H)}.

Figure 5 depicts an allocation graph H whenu; = T, u3 = T, u3 = F, and
us = F.

To compute Wh.x (H) it is observed that (i) for any directed path P; in H from
cjtodj,forl < j < m, 3  cpp)wle) < 2M + 7 and (ii) for any directed
path P, in H from the vertex comresponding to the root of T; to d;, for any i, 7,
Y ecE(p) W(e) < 2[log, m]+2M; +5. This follows from the observation that
each binary tree T; of G has at most m leaves and thus the depth of T is at most
[log, m]. Therefore, we have Wi (H) < 2[log, m] + 2 M) + 7.

Conversely, assume that there exists an allocation graph # C G such that
W (H) < 2[log, m] +2M,; +7. Since Mz > [log, m] + 2 M; + 7, for any
edge e € E(H), w(e) < M,. Thus, ife € F, and e € E(H), e must be either
(y,2) or (y,2). Further, for any directed path in H from c; to d;, there are at
most two edges with weight M. The above discussion establishes the existence
of a truth assignment for U. In particular, assigning true value to literal u; (or
©;) if (y,2) € F; (or (¢, 2) € F;)isin E( H;). This completes the proof of the
theorem. : |

4. Polynomial Time Special Cases

Although the CA-MAX problem is NP-hard, we show that some useful special
cases can be solved in polynomial time. We first consider the case when the prece-
dence graph is a tree. We then consider the case when the precedence graph is a
series-parallel graph. Finally, we discuss the case when the maximum degree of
the precedence graph is 2; this closes the gap between P and NP in terms of the
degree of the graph.

4.1 Algorithm for Tree

Programs whose precedence graphs are tree-like form an important class; for ex-
ample, divide and conquer algorithms exhibit a tree-like precedence graph as do
semigroup computations. In addition, programs written as a hierearchy of subrou-
tines also have a tree-like structure [1].

Theorem 2. CA-MAX can be solved in O(|E(G))|) = O(a? | V(Gh)|) time
if Gg is a tree.

Proof: Suppose the precedence graph G is a tree, i.e., a precedence tree. Either
out-trees (edges directed to child nodes) or in-trees (edges directed to parent node)
are permissible. Without loss of generality, because path lengths are not affected
by the arc direction, our discussion will consider in-trees. Therefore the root is
the terminal node.
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Figure 4
Communication graph G (partially drawn) corresponding to G in Figure 3
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Figure §
Allocation Graph H with W (H) =2M +7 < [log, m] + 2M +7

The completion time of a node v; in Gy is dictated by the completion time of
its children. The node v; can be executed on any one of g; configurations, and
let f( u,i- ) for each vertex v{ in G, denote the earliest time that subtask v; can
complete using its j-th choice of configuration. We assume that a list L[ f(vf )]
stores the assignments, of configurations to its predecessors, that result in the time
F(v!). Note that the term earliest completion time is in fact the shortest/minimum
time for v}.

From the definition of f(v}), it follows that for any leaf vertex v; € Go,
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S = w(v)) forall 1 < j < g¢;. Now consider any non-leaf vertex v; €
V(Go),and let B = {v;,,v;,,...,v; } denote the children of v; (i.e., B is the set
of predecessors of v; in Go). Note that vertex v; € V(Go) corresponds to subset
Vi € V(G1) and vertex v;, € V(Go) to subset V;, CV(G:)foralll,1 <I<b.

The earliest completion time f( vj ) for each v}, the j-th choice for v;, is de-
termined by the earliest completion Umes of its chlldren nodes and the reconfig-
uration time, from the choices assigned to the children nodes to v. Consider an
assignment of configurations ji, j2,.. ., /i, to the child nodes v;, , v;,, ..., v; re-
spectively. For this assignment the earllest time for nodes in B is determined by
the variable f(vf‘) for v;; € B (with corresponding assignments stored in the
lists L[ f( v")]) Thus, given this assignment of configurations to nodes in B the
completion time of vf (the 7-th choice for the parent node) is the maximum among
all path lengths from u{ to leaves of the tree. But these paths to the leaves must
go through the nodes in {v}' | 1 < I < b} (using nodes in the lists L[ f(v{)1),
and therefore the completion time of v{ for the assignment (1, j2,...,Js) canbe
expressed as: ‘ )

w(v)) + max{f(vf) + w(sf,, ) }-

However, for each child node v;, € B, there are g;,, choices of configurations
that can be assigned. The earliest completion time f(v}) for v/ is that assignment
which results in the minimum value. Firstly note that the set of paths from the
child nodes to leaves are disjoint, thus we can select the best configuration for
each node v;, € B independent of the configuration selected for other nodes in B.
To determine the best choice for v;, € B we search all g;, possible choices, and
select the assignment with the minimum value for completion time for u{ ,and this
is done for each v;, B. The value (and the assignment) of f(v) is the maximum

ong these times. The earliest time for each child node v;, is determined by
b (v ') . Therefore from the principle of optimality we have the following relation

forf(irf),forl <ji<a
f(u{) = w(v{) + "mg)é{ mm {f(u’) + w(v! o ,}}

The above dynamic programming formulation can be directly implemented
into an iterative procedure. This can be done by first computing f( vj ) for all
uj € V(G1), where the predecessors of v; € V(Go) are all leaves. We then
neranvely compute the values of all the remaining vertices until the values of the
vertices in V(G)) corresponding to the root (or terminal) vertex in V(Gy) are
computed. In each step of the above computation, if there exists a tie, we can
arbitrarily select one among them. After we have completed the computation of

88



J( v{ ) for all vf € V(G}), the minimum completion time for the given input is
equal to min{f(v/) | 1 < j < ¢,}, wherev, € V(Go) is the root of Go.. By stor-
ing the assignments (i.e., the values of 1, j2, ..., js in the dynamic programming
equation) along with the value of f(v{ ), at each step of the algorithm, we can
recover the optimal assignment. The subgraph induced on the selected nodes that
give the minimum value is an allocation graph. Figure 6 illustrates an application
of the above described procedure to the example in Figure 1.

' Figure 6
Computing f(v}) and the Optimum Allocation Graph H

The time complexity of our algorithm is seen to be O(|E(G1)|) = O(a?n)
since each edge (vf, vj) € E(G) is considered exactly once in the computation
of f(vf) forall vf € G. 1

4.2 Series-Parallel Graphs

We now consider a subclass of directed acyclic graphs, directed series-parallel
graphs. Two edges of a directed graph are series if the head of one edge is the tail
of the other one and are parallel if both edges have the same head and the same
tail. A directed series-parallel graph is a directed acyclic multigraph which can
be defined recursively as follows [5].

A directed single edge is a directed series-parallel graph. If G is a directed
series-parallel graph, then a graph obtained from G by replacing an edge by se-
ries or parallel edges (i.c., a series or parallel composition) is a series-parallel
graph. Figure 7 shows the construction of a series-parallel graph by a sequence
of series and parallel compositions. Throughout the remaining section, directed
series-parallel graphs are simply referred to as series-parallel graphs.

Series-parallel graphs form another important class of program dependency
graphs; they can represent programs in which subtasks lie in loops or conditional
branches (i.e., they model loops and conditional branches). Series-parallel graphs
also include the class of fork-join graphs in which a process (i.e., subtask) cre-
ates a number of dependent processes which have common terminatation points,
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i.e., they have a common join point in the graph. We now describe the following
algorithm to solve CA-MAX problem for series-parallel graphs, and the ensuing
theorem concludes the correctness of the algorithm.

Note that Go represents the dependency relations between the nodes and thus,
we can assume without loss of any generality of the problem that for any two
nodes u and v in G there exists at most one edge from u to v. We also observe
that since Gl is a series-parallel graph, G is a planar graph. It then follows that
IE(Go)| = O(|V(Go)|). We next describe our algorithm that finds an optimum
solution by replacing the input by another one with smaller size but such that the
minimum for the new input is the same as that of the original one.

Initially, set Fp and F; to be Go and G, respectively. Construct a new prece-
dence graph Fp and its communication graph F| from Fp and F; such that the
number of 'edges in Fp is one less than that in Fy by executing either Step 1 or
Step 2.

Step 1: If there exist two edges e; = (v;,v), €2 = (v,vj) € E(FR),ie., e
and e; are series edges, then delete e) and e from Fy and add a new edge
e = (v;,v;) t0 Fp. (Note that the vertex subsets in F; corresponding to
vi,v;,v; in Fy are denoted by V;, V;,V;, respectively.) Let the resulting
graph be Fy. Construct a communication graph F{ from F, by deleting
the vertices in V; and together with their adjacent edges (i.e., whose tails
or heads are in V}) and by adding the edges (denoted by E(V;, V;)) from
each vertex in V; to every vertex in V;. Assign the weight of each edge
(v?,v}) € E(V;, V) such that

w(v,?,v;) = 1'5"2&,{'”(”?’ vf) + w(vf) + w(vf,v))}.

Step2: If there exist two edges e; = (v, v;), e2 = (v, vj) € Fy,i.e.,e; and e; are
parallel edges, then delete ey and e, from Fy andadde = (v;, vj) to Fy. Let
Fp be the resulting graph. Denote the set of edges in F; corresponding to e;
(and e2) by E' (V;, Vj) (and E2(V;, V;)). Construct a new communication
graph F{ from F; such that the edges in E' (V;, Vi) UEX(V;, V;) are deleted
and the edges connecting from each vertex in V; to every vertex in V; are
added. (This new edge set is denoted by E(V;, V;).) Assign the weight of
each edge (vf, v}) € E(V;, V) such that

1
w(v{-‘,v}) = max{w (v}',u;),wz(v;’,v;)},

where w'(v¢,v}) and w?(vf,v}), respectively, represent the weights of
edges in E'(V;, V;) and E2(V;,V;) connecting from v{ to v},
If Fp has more than one edge, we set Fy to be Fj and F; to be F{, and repeat
the above procedure. If Fy consists of a single edge (v;, v;), then the optimum
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Series-Parallel Graphs

solution is
min{w(vf) + w(v¢,v}) + w(v)) [1<a < g, 1 <DL g5}

Figure 9 illustrates the application of the above procedure, and the resulting op-
timum allocation graph H, to the example (of precedence graph and corresponding
communication graph) shown in Figure 8.

Theorem 3. CA-MAX can be solved in O(a’n) time, if Gy is a series-parallel
graph.

Proof: The proof is completed by showing the correctness of the two step proce-
dure described above. To verify the correctness of the algorithm, we first note that
after completing Step 1 or Step 2 at each iteration, the minimum solution of Fp
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Figure 8
Examples of Gy and G,

and F\ is the same as that of Fp and F). It is also observed that if F, has more
than one edge, we can always find two edges that are either series edges or paral-
lel edges. This follows from the fact that F; at each iteration is a series-parallel
graph.

To analyze the time complexity of the algorithm, note that | B( F3 ) | = |E(Fy) |-
1 after executing Step 1 or Step 2 at each iteration. At each iteration, we need
O(a®) or O(a?) time for doing Step 1 or Step 2 respectively. The number
of iterations is bound by the number of edges in E(Go). Since |[E(Go)| =
O(|V(Go))), it follows that the time complexity of the algorithm is O(a®n),
where n= |V(Go)|. 1

4.3 Graph of degree two

We finally show that an optimum allocation graph of G can be found in poly-
nomial time if each subtask has less than three dependent subtasks. This result,
together with the NP-hardness result in Theorem 1, completely closes the gap be-
tween the polynomially solvable cases and the NP-hardness cases in terms of the
maximum degree of the precedence graph. We first describe the algorithm and the
theorem follows as a consequence.

Let Gy and G be a precedence graph and a communication graph. If the num-
ber of edges in G incident at each vertex is no larger than two, the underlying
graph of Gy (i.e., the graph without considering the directions of the edges) is ei-
ther a simple path or a cycle. As the former case can be solved using the algorithm
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After applying Step 1 to Fp and Fj in Figure 8 . After applying Step 2 to F; and £ in Part (a)

(c)
\ Optimum allocation graph #

Figure 9

for the latter case, we only consider the case when the underlying graph of Go is
a cycle. The following steps will produce an optimum allocation graph H of G;.

Step 1: Construct directed graphs Fy and F; from Go and G as follows. If there
existtwo edges e; = (v, v),e2 = (v, v;) € E(Fp),thendelete e; and ez
from Fy and add a new edge e = (v;, v;) to Fo; delete all the vertices in V;
together with their adjacent edges from F, and add edges to F; connecting
from every vertex in V; to every vertex in V;, and assign the weight of each
new edge (v¢,v}) € E(F) such that w(vf, v}) = min; cocq {w(vf, vf) +
w(vf) + w(vf, v}) }. Repeat the above process unlil every vertex in Fo has
either two incoming edges or two outgoing edges.

Step 2: Find a cycle C; (by ignoring the directions of edges) from F) by selecting
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one vertex from V;, for each V; C
E(C,)} is the minimum.
Step 3: Construct an optimum allocation graph H by replacing each edge in C; by
the corresponding path in G, .
Figure 11 illustrates the application of the above three step procedure to the
example shown in Figure 10. Figure 11(a) and (b) show Fp and F) respectively.
Figure 11(c) shows C; and (d) shows the optimum allocation graph H.

Theorem 4. CA-MAX can be solved in 0( o n) time if each subtask has at most
two dependent subtasks.

V(F1) such that max{w(e) | e €

Proof: To analyze the time complexity of the above steps, we first note that Step 1
can be done in O(a’n) time, since there are at most O( n) iterations and each

iteration takes O(a?) time. To ﬁnd acycle C, in Step 2, select an arbitrary vertex
subset V; of V(F1). For each v € V;, find a cycle going through v? while leaving
the minimum value of max{w( e) | e € E(Cy)}. Sucha cycle can be found
in O(a?n) time by defining a function f similarly as described in Theorem 2.

Since there are O(a) verices in V;, Step 2 can be done in O(a?#) times. Finally,
Step 3 can be done in O(|E(G1)|) = (a?n) time, which gives the desired time
complexity. To conclude the correctness, note that the optimality of the cycle
selected in Step 2 can be concluded from the arguments used in Theorem 2. |

Figure 10
Degree 2 Precedence Graph Go and Communication Graph G

5. Conclusions

This paper introduced and formulated a graph assignment problem which has
applications in reconfigurable parallel architectures. Specifically, we considered
the assignment of machine configurations to nodes of a task precedence graph
when we are given the time/cost of a node on each configuration. The problem
was seen to be NP-hard even when the degree of the precedence graph was 3 and
each subtask has at most 2 choices of configurations. This led to the investiga-
tion of special instances of precedence graphs such as trees and series-parallel
graphs. These two classes of graphs model many common programs and thereby
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(a)
After applying Step 1 to Go and G, in Figure 10

(b) (c)
C, after Step 2 Optimum allocation graph #
Figure 11

Application of the Algorithm

constitute an important class of precedence graphs. We developed an O(c?n)
algorithm for tree precedence graphs and an O( o”*n) algorithm for series-parallel
graphs. By showing that the CA-MAX problem is solvable for any precedence
graph with degree at most 2, we closed the gap between the P and NP cases in
terms of the degree of the graph. Since a is bound by a small constant in prac-
tice, our algorithms effectively run in linear time. Future endeavors include the
investigation of approximation algorithms and the pursuance of additional useful
special instances.
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