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Abstract. We show that M -structures can be extended to Hadamard matrices of generalized
quaternion type and obtain multiplication type theorems which preserve the structure.

1. Introduction

The concept of M -structures generalizes a number of concepts in Hadamard ma-
trices, including Williamson matrices, Goethals-Seidel matrices, Wallis-Whiteman
matrices and generalized quaternion matrices. We found many symmetric Will-
iamson matrices and many Hadamard matrices using the concept of M -structures
(4], [5], [6]. Furthermore, the concept of M -structures leads to the new concept
of strong Kronecker products introduced by Jennifer Seberry and Xian-mo Zhang
[8]. This was used by Craigen, Seberry and Zhang (1] to prove that if there ex-
ist Hadamard matrices of orders 4p, 4 ¢, 47, and 4 s, then we have an Hadamard
matrix of order 16 pgrs.

An orthogonal matrix of order 4 ¢ can be divided into sixteen ¢ x t blocks M;;.
This partitioned matrix is said to be an M -structure. If the orthogonal matrix can
be partitioned into sixty-four blocks M;;, it will be called a 64 block M -structure.

First we give some definitions.

Definition 1: The matrices X and Y are said to be amicable matrices if
XYt=YXt,

where X* and Y are the transpose matrices of X and Y respectively.

Definition 2: Williamson matrices of order w are four circulant symmetric matri-
ces A, B, C, D which have entries 1 or —1 and which satisfy

AA'+ BB+ CC' + DD! = 4w],

where I, is a unit matrix of order w.
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Definition 3: Williamson-type matrices of order w are four pairwise amicable ma-
trices A, B, C, D which have entries 1 or —1 and which satisfy

AA'+ BB+ CC! + DD' = 4wl,.

A generalized quaternion group Q,, of order 2°*2 is a group generated by the
two elements p, j such that

s+ . s L, . -
p2 =1».72=P2»JN I=Pl-

Let G be a semi-direct product of a cyclic group of an odd order n by the gen-
eralized quaternion group Q, of order 2°*2, That is, G is generated by p, £ and j
with the relations

P =1, ==, e =0 pleT =G 6T =T ¢ L

We consider the ring R obtained from the group ring ZG by identifying the
elements +1 in the center of Q, with +1 of the rational integer ring Z. Put
H={p*¢':0<k<2°-1,0 << n—1}andchoose the basis L = H UH;
of R. Anelement £ in R takes the fo]lowing form.

2N-1n-1 2N-1n-1

(= E E“"J(lpk + E Ebk,zC'p"j =a+fj, N=21, 1))

k=0 =0 k=0 =0

where
2N-1n~-1 2N-1 n-1

a= Y Y anl'ptandf= )7 Y biot.

k=0 1=0 k=0 =0
We define the conjugate § = @— fj of { = a + B based on the automorphism
7:p— p~',¢ = ¢! of G. Furthermore, we define the norm N(¢) = &€ so
that: _
N(§) = o+ BB
N(€n) = N(ON(n) for§,n e R.

For an arbitrary element{ € R we construct the right regular representation matrix
R(£), defined by

(6*¢%€) = R(&) (p¥¢h.

More precisely, for an element ¢ of R with the form (1) the right regular represen-
tation matrix R(§) is given by

RO =Ty &)
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Ao Ay e ANy

~Aan1 Ao ... An_2
-A -A2 ... Ao
‘Bp B ... Baya
-Bayt Bo ... Bayoa
B=| —B:nv-2 BN ... Ban-s
-B; —B> vee Bo

where Ay = Y00 ax T and By = Y7 aiT* are the circulant matrices of
order n where T denotes the basic circulant matrix of order n
010 0
001 0
1

T= !
T
1000000
Since R(¢) = R(€)!, we have

ROR© = ROR® = RED = (75 % pw)

Definition 4: If an element in R which is given by the equation (1) above satisfies
(i) all the coefficients ey, be; are from {1, -1} and
(i) N(§)=2""n=4nN,
then the right regular representation matrix R(§) becomes an Hadamard matrix of
order 2°*!n = 4nN, which is called an Hadamard matrix of generalized quater-
nion type.
Similarly, if the following conditions are satisfied:
(iii) a4 = O and all other coefficients a g, by, are from {1,—1} and
(iv) N() =2**n-1=4aN -1,
then R(§) is a C-matrix of order 2**'n = 4xN, which we call a C-matrix of
generalized quaternion type.
We abbreviate generalized quaternion type as GQ type for convenience sake.

Let us express the conditions (i), (ii) in terms of the component matrices Ay,
and B;:

2N-1 2N-1
D A+ Y BiBL=4nNI,
k=0 k=0

-1 2N-t-1

D Ay it Biyog) = 3 (AbAke+ BiBry) =0 forl St <2N -1,
k=0 k=0
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In particular, in the case N = 1 the conditions will become

Ao Ab + A AY + BoB{ + B\ B} = 4nl,
AoAb — A\Ab + BoB! + B1B} = 0.
Moreover, suppose that Ay, A;, Bp and B, are symmetric, that is, Williamson

matrices, or suppose they are pairwise amicable, that is, Williamson-type matrices,
then the second condition is trivial.

2. M-structure Hadamard matrices

We consider Hadamard matrices of GQ type as an M -structure. Namely, an
Hadamard matrix H of GQ type is partitioned into sixteen blocks,

Co C Do D

_(A BY_|[-C C -D1 Do

H={ A')-(-D:, o ¢ —c:) @
-Di -D; G G

where
Ao A vee Aoy AN Anvl ... AN
Co=| —Ana1 Ao o Ay2 |, Ci=| =Ayoy Ay ... Ana2 |,
~Apny =Aye2 ... Ao -A —Ay ... Ay
Bo B ... Bya By  Bys1 ... Banai
Do=| —=Bany-1 Bo ... By2 |, Di=|-Byn By ... By |,
—Bn+1 —=Bne2z .- By -B -B2 ... By

Since H is an Hadamard matrix, the component matrices Co, Cy, Do, D1 satisfy
the following equations,

CoCh + C\C} + DoD}) + D\ D} = C4Co + C{C1 + DyD+ 0+ DiD; = 4nN1I

CoCt — C\C, + D\ D} — DyDfy = C{Cy — C{Cy + D{yDy — DiDo = 0 @
CoDo —CyDy = DoCo + D1C1 =0 .

CoD1+C1Do —DoC1 —D1Cp =0

An Hadamard matrix having the form (3) will be called an M -structure Hadamard
matrix of GQ type.

3. Paley type 1 matrix

The Paley type 1 matrix can be changed into the form of a C-matrix of GQ type
and is defined as follows (see [3]).

Definition 5: Let ¢ be a prime power, ¢ = 3 (mod 4), F = GF(q) the finite
field of g elements, K = GF(q?) a quadratic extension over F, and K* and
F* the multiplicative groups of K and F respectively. Furthermore, let n be a

100



generator of K*, 4 = 5(4*1/2 and let Ng;r and Sk denote the relative norm
and relative trace from K to F respectively. Denote by ¢ the quadratic character
of F'. Then the matrix

P = (W(Ngsra)¥(Sk/ry ™" Ba™))agerc px

is called the Paley type 1 matrix.
We recall here the definition of Seidel-equivalence of matrices.

Definition 6: If a square matrix A can be obtained from a square matrix B by a
sequence of two kinds of operations:

() multiplying the row and the corresponding column by —1 simultaneously,

(ii) mterchangmg two rows and the correspondmg two columns simultaneously,

then A will be said to be Seidel-equivalent to B.

Theorem 1. The Paley type 1 matrix is Seidel equivalent to a C-matrix of GQ
type with some additional properties:
(i) A is skew symmetric;
(ii) BaN-m-1=—-Bi form=0,....N—1whereq+1=2%n,3>1,n
odd, N = 2°*!,

Proof: See [11]. 1

4. Infinite series of Hadamard matrices of generalized quaternion type

Yamada constructed some infinite series of Hadamard matrices of GQ type [11].
In this section we show these constructions of finite series.

Let g be a power of a prime p, F = GF(¢g) denote a finite field of ¢ elements,
K = GF(q") an extension of F of degree t,t > 2. Let 5 be a generator of K*
and let S and Sy denote the absolute trace in K and F. Furthermore, let Sk/r
and Ny p be the relative trace and relative norm from K to F respectively.

Definition7: Let x be acharacter of F and {, = €2™/P, then the Gauss sum 7 ( x)
is defined by

() = Y x(a) ¢S,

aEF
If x is a nonprincipal character of K, then the ratio

_ ()
X 1e(x)

of two Gauss sums is called the relative Gauss sum associated with x.
The following theorem on the relative Gauss sum is very useful.
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Theorem 2. Suppose that x is a character of K inducing in F' a nonprincipal
character. Then the relative Gauss sum associated with x can be written in the
following form

0= Y. x()X(Sk/ra)d,
aEKx [Fx

and we have the norm relation
0,0, =¢"".
Proof: See [11]. . |
Using Theorem 2 for the case t = 2, we give infinite series of Hadamard ma-
trices of GQ type.

Theorem 3. Let g+ 1= 2%, s > 2, n0dd, p a primitive 2°*! th root of unity
and w an arbitrary wth root of unity. Put x = XamXn Where xam(n) = p,
xa(n) = w, so that x induces a quadratic character + in F.

Then for the relatite Gauss sum 6, we have
Oy = a+fp" a,BEZ(p?,w),
and the right regular representation matrix of
y=ati+fj
gives an Hadamard matrix of GQ type of order 2°n where 1 is a primitive fourth
root of unity.
Proof: See [11). |

Corollary 1. Let o, 8 be as in Theorem 3. Then the right regular representation
matrix of

y=(a—1i+Bp")(1 —j) =(1-5)(0+1j)
is an Hadamard matrix of GQ type of order 2°*'n. In particular, if s = 1 then
we get an Hadamard matrix of Turyn’s type 9], [10].
Proof: See [11]. |

Theorem 4. Let ¢+ 1 = 2n, n odd and p a primitive octic root of unity. Let
n and w, be as in Theorem 3. Put x = XsXn, Xs(n) = p. So that x induces a
biquadratic character in F.

The right regular rpp:esenlation matrix of

T= (0 + N1+ (1+),t=1,3,57,

gives an Hadamard matrix of GQ type of order 8 n. We may change the order of
factors 0, + p'j, 1+ i and 1+ j arbitrarily.
Proof: See [11]. |

On the other hand, if there exists an Hadamard matrix of GQ type of order 2 °n,
we can double its order.
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Theorem S. Assume that the right regular representation matrix of £ = a+ fj in
R is an Hadamard matrix of GQ type of order 2°n. Let p be a primitive 2°*! th
root of unity. Then

a=(a+B)(1+ ) fort=1,3,5,...,2° -1,

generates an Hadamard matrix of GQ type of order 2°*'n, We can exchange the
order of two factors o+ j and 1 + p'j.

Proof: See [11]. |

5. Main theorems
Theorem 6. Let H be an M -structure Hadamard matrix of GQ type of order

4n,
Co Ci Do D
H= -Ci Co -Di Dy
“\-By Db ¢ - |-
-D} -0y G G
Furthermore, let Ty, Ty, T> and Ty be matrices of order m which have entries
0,1 or —1 which satisfy
(@) T ATj, i # j (\ the Hadamard product);
(ii) )::ggo T; is a matrix whose entries are 1 or —1;
(i) Yo TiTf = Yieo T{T = mln;
(iv) Ton - T]Té + TzTgf - T3T§ = Tng - TfTo + T§T3 - T3tT2 =0,
o -DIy— NG+ GO =TTs — T+ T —T2Th =0.

Then we have an M -structure Hadamard matrices of GQ type of 4 nm.
Proof: We define the matrices «, 8,y and § as follow.

a=TyxCo-TixC~Ta xD{ -T; x D},
B=ToyxCi+T1 xCo+ Ty x D} = T3 x D},
4=ToxDo—Ti xD+1] XC",+T3 XC:,
§=TyxD1+Ty xDo—Tp xC} +T5 x C§,

It is easily verified that ar, 8, «y and § satisfy the equation (4). Hence
a B ~ &
-8 a -5 9
- & o g
& o g o

is an M-structure Hadamard matrix of GQ type of order 4 nm. [ |
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Corollary 2, Let g be a prime powerand q+ 1= 2°n,nodd. Let my,...,my,
be the orders of Williamson matrices or type 1 Williamson type matrices. Then
(i) when s > 2, there exists an M -structure Hadamard matrix of GQ type of
order2™my...m(g+ 1) =2"°r ...mmn
(ii) when s = 1, there exists an M -structure Hadamard matrix of GQ type of
order 2™ 'my ...my(g+ 1) =2™2m; ...mmn.

Proof: From Theorems 1 and 3 there exists an M -structure Hadamard matrix of
GQ type of order 2°n. From Corollary 1 an M -structure of Hadamard matrix of
GQ type of order 4 nexists. Let Wi, Wa, Wi and W, be Williamson matrices of
order m or type 1 Williamson-type matrices of order m. Put

1 1 1
X1 =2(W1+WL), X2 = E(WI—WZ),YI = E(W3+W4).Yz = E(Ws-W«s)-

Further, put
To = (x, xl)'T‘ = (x2 Xz)'T2= (Yln) T = (Yzyz)'
then Ty, Ty, T, T satisfy the conditions of Theorem 6. ]

Theorem 7. Let H be an M -structure Hadamard matrix of GQ type of order

4n,
Co (o) Do D
H= -Ci G -D1 Do
=\-py b @ -c]-
-Di -Dj C G
Furthermore, let Ty and T, be the matrices of order m which have entries 0,1
or —1 and satisfy
(i) To ATy =0, (\ the Hadamard product);
(ii) To + T\ is a matrix which has entries 1 or —1;
(il)) ToT¢ + T\T} =T§To + T1T1 = ml;
(iv) ToT? - T\T§ = T(§T| - TfTo =0.
Then we have an M -structure Hadamard matrix of GQ type of order 4 nm.

Proof: We define the matrices a;, 8-y and § as follows.

a=To xCo~T1 xC,
B=ToxC+T1 xCo
A4=ToxDo-T1 x D)
6§=Tox D1+T1 x Do

Then, «, 8,y and § satisfy the equation (4). [ |
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Corollary.3. Let q be a prime powerand q+ 1 = 2°n,nodd. Let p; be aprime
powerand p; =1 (mod 4) for1 < i< r. Then
(i) when s > 2 there exists an M -structure Hadamard matrix of GQ type of

order(p1+ DN(p2+ 1) ...(p, + D(g+ 1); .
(ii) when s = 1 there exists an M -structure Hadamard matrix of GQ type of

order2(p1 + 1)(p2 + 1) ...(¢g+ D).

Proof: An Hadamard matrix of order 2(p; + 1) obtained from the Paley type 2
matrix has a form
X Y )
(Y -X/-

Then To = $(X +¥), Ty = 3(X —Y) satisfy the conditions of Theorem 7.

Corollary 4. Let g be a prime powerand q+ 1= 2°n,nodd. Let my,...,m,
be the orders of Williamson type (not necessarily circulant or type 1) matrices.
Then
(i) whens > 2, there exists an M -structure Hadamard matrix of GQ type of
order2'my ... my(q+ 1) = 2% .. .m,m;
(ii) when s = 1, there exists an M -structue Hadamard matrix of GQ type of
order2™'my ...m,(g+ 1) =2"2m; ...mn.

Proof: Let Wy, W5, W3 and W, be Williamson type matrices of order m. Then
W W Wi Wa
W, W Wi -W3
-Ws Wi W W2
Wa W3 =W W

is an Hadamard matrix which has an M -structure

(% %)

-Y X/

where .
x=(5 w) v=(% W)

Then Ty = %(X +Y),1 = -;-(X —Y') satisfy the conditions of Theorem 7. §

Corollary 5. Let g be a prime power and q+ 1 = 2°n, n odd. Suppose there ex-
ists a symmetric C-matrix of order p; + 1 and there exists a symmetric Hadamard
matrix of order p; — 1 for 1 < i < r. Then

(i) when s > 2 we have an M -structure Hadamard matrix of GQ type of
order27p; ...p,(g+ 1) =2"°p, ...p/m;

(ii) when s = 1 we have an M =structure Hadamard matrix of GQ type of
order 2™'p; ...p,(g+ 1) =2™2p; ...p,n.
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Proof: If there exists a symmetric C-matrix of order p; + 1 and there exists a
symmetric Hadamard matrix of p; — 1, then there exists a symmetric Hadamard
matrix of order 4 p; having a form

X Y
Y -x) .
forl1 <i< 1l To=3(X+Y)andT = 3(X — Y) satisfy the conditions of
Theorem 7. |
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