Parallel Algorithms for Generating Integer Partitions and Compositions’

Selim G. Akl
Department of Computing and Information Science
Queen’s University
Kingston, Ontario
Canada K7L 3N6

Ivan Stojmenovi¢
Computer Science Department
University of Ottawa
Ottawa, Ontario
Canada K1N 9B4

Abstract. We present cost-optimal parallel algorithms for generating partitions and
compositions of an integer n in lexicographic order. The algorithms use a linear ar-
ray of nprocessors, each having constant size memory and each being responsible for
producing one part of a given partition or composition.

1. Introduction

Given an integer n, it is possible to represent it as the sum of one or more positive
integers a;,i.6. n= a; + a2 + - - - + ap. This representation is called a partition
if the order of the a; is of no consequence. Thus two partitions of an integer n are
distinct if they differ with respect to the a; they contain. For example, there are
seven distinct partitions of the integer 5:

5,4+1,3+2,3+ 1+ 1,242+ 1,24 141+ 1,1+ 1+ 14141,

For a given integer n, the representation n = @1 + a2 + -+ + 6 is said to
be a composition if the order of the e; is important. Thus two compositions of
an integer n are distinct if they differ with respect to the a; they contain and the
order in which the a; are listed. For example, there are sixteen compositions of
the integer 5: -

5,441,1+4,3+2,2+3,3+1+1,1+3+1,1+1+3,2+2+1,

24142,142+42,2+414+1+1,14+2+1+1,1+1+2+1,
1+14+1+2,1+1+1+1+1.

The partitions and compositions of an integer have been the subject of extensive
study for over 300 years, since Leibniz asked Bernoulli if he had investigated
P(n), the number of partitions of an integer n. Details of the history and the
state of the art as of 1920 can be found in Chapter 3 of [D]. Additional details and

1'This research was supported by the Natural Sciences and Engineering Research Council of Canada

JCMCC 13 (1993), pp. 107-120

later results can be found in most combinatorics texts; in particular, see [H, Li,
Ri]. This interest is partly motivated by the important role played by partitions
and compositions in many problems of combinatorics and algebra. In general,
a list of all combinatorial objects of a given type might be used to search for a
counter-example to some conjecture, or to test and analyze an algorithm for its
correctness or computational complexity. For computational purposes one is often
interested in generating all the partitions of an integer, or sometimes just those
satisfying various restrictive conditions. Several such algorithms, dealing with
both the unrestricted [An, Le, Mk, Mk1, NW, PW, RND, RJ, W] and restricted
[An, Le, NMS, RJ, W, Wh] cases, have appeared in the literature. Algorithms
for integer compositions are given in [F, Le, NW, PW, RND].

In this paper, we describe algorithms for generating partitions and compositions
of integers using a linear array of processors. The algorithms that we present
satisfy several optimality criteria. We begin by listing some desirable properties
of parallel generation techniques.

Property 1. The objects are listed in lexicographic order, i.e. if A = (ay,a32,...,
a,) and B = (b1, b,,...,b,) are representations of objects, then A precedes B
lexicographically if and only if, for some j > 1, a; = b; when i < j, and a;
precedes b;. Lexicographic order is desirable as it is the natural (dictionary) order,
and can be easily characterized.

Integer partitions and compositions are represented by integer sequences. De-
pending on the definition of ‘precedes’ among integers, various lexicographic or-
ders can be obtained. In ordinary lexicographic order, the relation a ‘precedes’
b means a < b (i.e. a is smaller than b). The algorithms in this paper generate
objects in reverse lexicographic order, in which a ‘precedes’ b means a > b (i.e.
a is larger than b).

Property 2. The algorithm is cost-optimal, i.e. the number of processors it uses
multiplied by its running time matches—up to a constant factor—a lower bound
on the number of operations required to solve the problem.

This property can be further specified according to the way in which the lower
bound is definred. We identify two such definitions:

a) The time required to “create” the objects, without actually “producing” as
output the s elements of each object, is counted. Optimal sequential algo-
rithms in this sense generate objects in O(B(s)) time, i.e. time linear in
the number of objects of s elements.

b) The time to output each object in full is counted. Here, optimal sequential
algorithms run in O(s * B(3)) time, since it takes O(s) time to produce
an object. In this paper we adopt this measure; designing optimal parallel
algorithms under measure (a) remains an open problem.

108

Property 3. The time required by the algorithm between any two consecutive ob-
Jjects it produces is constant. A constant time delay between outputs is particularly
important in applications where the output of one computation serves as input to
another, As usual in sequential computation, we assume that a processor requires
constant time to perform an elementary operation. Examples of such elementary
operations are adding or comparing two numbers of log n bits each.

Property 4. The model of parallel computation should be as simple as possible.
Arguably, the simplest such model is a linear array of p processors, indexed 1
through p, where each processor i (2 < i < p— 1) is connected by bi-directional
links to its immediate left and right neighbors, i—1 and i+ 1, and processors 1 and
p are each connected to one neighbor. This model is practical, as it is amenable o
VLSI implementation [A1].

It should be noted here that, from both the theoretical and practical points of
view, an algorithmic result is more valuable if it is derived on a parallel model
of computation that makes the fewest assumptions possible about processor con-
nectivity. Indeed, the weaker the model, the stronger an optimality result, since
a more powerful model can simulate the algorithm with no increase in running
time. In this respect, the linear array of processors (the model for which all of
the algorithms in this paper are defined) is weaker than the two-dimensional array
or hypercube models, which are in turn weaker than the Parallel Random Access
Machine (PRAM) [A1]. The latter consists of a set of processors sharing a com-
mon memory from which they can read and to which they can write. Depending
on whether more than one processor can gain access to a given memory location
simultaneously, we distinguish between the EREW PRAM (no simultaneous reads
or writes), CREW PRAM (simultaneous reads, but not writes), etc.

Property 5. Each processor needs as little memory as possible, preferably a con-

stant number of words, each of logm bits and hence capable of storing an integer
no larger than n. This implies that no processor can store an array of size n, or a
counter up fo n!.

Property 6. The algorithm should produce all objects of a given kind, not just a
subset.

Algorithms exist that satisfy these criteria for generating permutations [AMS],
combinations [AGS,LT], derangements [ACS], subsets and equivalence relations
[St]. There a number of parallel techniques for generating combinatorial objects
that do not satisfy all listed properties: for example, such algorithms exist for
permutations [CC, L, AMS, Al, A2], combinations [CA, CC, Al, A2], and de-
rangements [GB].

The algorithms presented in this paper satisfy all properties 1-6, and gener-
ate partitions or compositions of a given integer (therefore they provide the first

109

parallel analogues to known sequential techniques). More precisely, we describe
algorithms for generating the following objects:

(1) partitions of n in the multiplicity representation,

(2) partitions of n in the standard representation,

(3) partitions of n whose largest part is k in the multiplicity representation,

(4) partitions of n whose largest part is the standard representation,

(5) partitions of ninto m parts in the multiplicity representation,

(6) compositions of ninto m parts,

(7) compositions of » into any number of parts.

The number of processors used is O(n'/2) for problems (1), (3) and (5), O(m)

for (6), and O(n) for (2), (4), and (7).

2, Generating partitions in parallel

In standard representation, a partition of n is given by a sequence z; ... z,,, where

Ty 232 2 - 2 Im,ad Ty + 22 + -+ 2 = n In the sequel z will
denote an arbitrary partition and m will denote the number of parts of z (m is
not fixed). The number of parts of z greater than unity will be denoted by 4, i.e.
z; > 1forl <1< hyandz; = 1forh < 1 < m. Similarly let ¢ denote
the number of parts of = greater than 2. It is sometimes more convenient to use a
multiplicity representation for partitions in terms of a list of the distinct parts of the
partition and their respective multiplicities. Lety; > - -+ > y, be all distinct parts
in a partitions, and cy,...,cq their respective (positive) multiplicities. Clearly
ant---tcgya=n

The number of partitions P(n) of n can be determined using the following
recurrence relation: P(n,l) = P(n— L) + P(n,l=1) (n >l > 1), where
P(n,l) is the number of partitions of n such that the largest part z; is no larger
than . Using boundary conditions P(n,1) = P(1,l) = P(n,0) = P(0,)) = 1
and P(n) = P(n,n), P(n) can be determined in O(?) using the technique of
dynamic programming [RND].

The well known sequential algorithm for generating all partitions in (reverse)
lexicographic order is due to G. Ehrlich (cf. [RND]) and is described in [NW,
RND, PW]. 1t finds the next partition from a given one by decreasing element z,
by one and updating zp+1 = --- = Tper = T — 1 Wherer = (n—zy —-- - — x5 +
1) /(x4 — 1) (integer division), Tpeps1 = N— Ty — -+ - — Ther, and Tpepez = 0.
For example, the partition that follows 8+ 5+ 1+ 1+ 1+ 1+ 1+1is8+4+4+3.In
other words, a partition is derived from the previous one by subtracting 1 from the
rightmost part greater than 1, and distributing the remainder as quickly as possible.
The delay between the generation of two consecutive partitions in the algorithm
is O(m) in the worst case.

2.1, Generalting partitions in the multiplicity representation
If the above method is implemented in the multiplicity representation [NW, RND,

110

PW], a loop-free algorithm can be obtained, i.e. all partitions can be produced
with constant delay per partition (if the time to output partitions is not taken into
consideration). The following code is adapted from [NW].

Algorithm 1. Sequential generation of partitions of n in the multiplicity repre-
sentation with nonincreasing parts.

Yy n

C1 4—1;

de1;

printout ¢y, y1;

repeat
if y4 = 1 then {rem « y4_1 + c4; d « d — 1} else rem « yg;
im «yq—1;
ifcg>1then{ci—cs—1;d—d+1};
ydq—lim;
cq + |rem/lim|;
dif « rem — ¢4 * lim;
if dif > O then {d — d+ 1;yq «— dif;cg « 1};
printoutc;,y; fori=1,2,...,d

untily1=l

The calculation is applied only on indices d,d — 1, d + 1, which means that,
if the time required to produce a partition as output is not counted, the algorithm
has constant delay between partitions. This procedure is implementable on alinear
array of n processors in a straightforward way, and the resulting algorithm satisfies
all properties 1-6. The number of processors is, in the multiplicity representation,
actually less thann. Fromy; > --- > ygitfollows that 1+ 2+ ---+d <
Ya+ -+ 9 < myie. d(d—1)/2 < n This in turn implies d < (2n)'/2, which
is also the number of processors that are needed in a linear array.

In addition to registers y;, c;, rem;, lim;, and dif;, each processor has a register
m; for message exchange (mq = 1; m; = 2 if processor 1 desires to communicate
a message to the right neighbor (processor i + 1); m; = 3 if processor i desires
to communicate a message to processor 1 — 1; m; = 0 otherwise), and a regis-
ter term; for termination. All processors will terminate simultaneously when the
termination register receives the value 1. We obtain the parallel Algorithm 2.

Theorem 1. Algorithm 2 generates, in the multiplicity representation, all parti-
tions of w in reverse lexicographic order and with constant delay per partition on a
linear array of n'!? processors, thus achieving an optimal cost of O(n'/2 P(n));
furthermore each processor has a memory of constant size and can generate ele-
ments without the need to deal with large integers such as P(n).

111

Algorithm 2, Parallel generation of partitions of z in the multiplicity represen-
tation with nonincreasing parts.

for each processor j (1 < j < (2n)!/2) do in parallel
yj —0;¢c; —0;m; « 0;term; «— O;
if j = 1 then {y; — m ¢; — 1; m; « 1; print out c;,y;};
repeat
if mj = 1 then if y; = 1 then
{read y;j_1; rem; «— yj_1 + ¢j;m; — 3;¢; — 0}
else rem; y)-;
read mj,1;
if mj,1 = 3 then {read remj,; rem; «— remj,;; m; « 1};
ifm.j = 3 then m; «— 0;
ifmj = 1 then {lim,- — Yy — 1; iij > 1 then {C" — Cj — 1; mj 2}}
read mji—1, ifm;_1 = 2 then {read limj_l,rem;_l;
]im,- (-lim,-_l;remj 4—rem,-_1; m; «— 1};
ifm; =2 thenm; « 0;
if m; = 1 then {y; « lim;; ¢; « [rem;/lim;];
dif; — rem; — ¢; = limy; if dif; > O then m; « 2};
read m;_1; if mj_; = 2 then {m; — 1, y; « difj;c; — 1};
ifm; =2 thenm; « 0;
if term; = O then
{read term;_, ; if term;_, > O then term; « term;_; — 1}
else term; « term; — 1;
if j = 1 and y; = 2 and term; = O then term; «— |n/2] + 1;
if ¢; > 0 then print out ¢;, y;;
until term; = 1

2.2, Generating partitions in the standard representation

If the output is desired in the standard representation, then the sequential algorithm
has a linear time delay in the worst case, even when the time required for output
is not taken into consideration. The same sequential algorithm can be used, with
minor modifications, to produce partitions in the standard representation. A direct
implementation of the sequential algorithm on parallel models will give the fol-
lowing results: constant delay on the CREW PRAM, O(logn) time on the EREW
PRAM, and linear time (per partition) on a linear array of processors. Thus, de-
signing a cost-optimal partition procedure on a linear array of processors, with
standard output, is a nontrivial problem, the solution to which is presented below.
For illustration, Table 1 gives all partitions of 7 in reverse lexicographic order.
Processor ¢ is responsible for producing part z;. For a partition into m parts,

112

7

6 1

5 2

5 1 1

4 3

4 2 1

4 1 1 1

3 3 1

3 2 2

3 2 1 1

3 1 1 1 1

2 2 2 1

2 2 1 1 1

2 1 1 1 1 1

1 1 1 1 1 1 1

Table 1

let g1 = --- = z, = 0 for convenience. Each processor 1 also keeps a register
r; = n—1x) —- - -—;, namely the remainder to be distributed once z; is established.

Each processor produces the same part unless it is informed to change it. Con-
sider first some trivial cases. If z; = 2 and ;41 = 1, in the following step we
set T = 1; this means that one more part of size 1 should be added. This is done
automatically unless a message to stop adding new unit parts is received. Thus if
z; = 1 and 2441 = 0, then in the next step we have £z, = 0. Also, whenz, = 1
then in the next step we repeat z; = 1 until a message has arrived telling when to
stop producing 1.

Whenever z > 2 and z+1 < 1, processor k subtracts 1 from z;. However,
some processors with index greater than & have to adjust their value at the same
moment, which will not be possible unless they are prepared in advance to do so.
It is a trivial case if v, < 1: in the next step, x4+ increases by 1, and it is the
only adjustment in the system. However, when zi,; = 1 and ¢ > 1, the system
undergoes a major change (major changes are underlined in Table 1). Processor
k begins preparing processors k + 1, k+ 2,..., for a major change whenever the
two conditions z; > 2 and z;,; = 2 are true for the first time. It sends a message
toward processors k+ 1, k+ 2, ... informing them about their new value and the
moment when the new value will take effect.

After subtracting 1 from z; the amount 7 + 1 should be distributed over pro-
cessors k+ 1,k + 2,...,k + t such that each gets the maximal possible value
no greater than zx — 1. Clearly ¢t = [(r% + 1)/(zx — 1)]. On the other hand,
when 2 is encountered in .1 for the first time, the amount r;, — 1 is partitioned
as2+2+-.--+2+ 1+ ...+ 1 in all possible ways. The number of such partitions

113

is |rx/2] + 1. If the message is communicated with unit speed (from a processor
s to processor s + 1 between the productions of two partitions), there is enough
time to communicate the message to processors k+ 1,..., k+ t before the change
becomes effective, because [(7x + 1) /(zx — 1)] < |7e/2] + 1 is always satis-
fied. However, there are 7 1s in the last partition --- + =z + 1+ --- + 1 before
the major change, and a message with unit speed is not able to reach the later 1s
in the partition to inform them to stop producing 1s at a certain moment. Thus we
decide to double the speed of the message: it advances by two processors between
the productions of two partitions. The total path length of a message is 2 | /2 |
and the distance from processor k to the last 1 is rem;. Because this can still be
short by one we actually let processor k + 1 start the message by getting data from
processor k. The contents of the message is in fact the new value in the proces-
sors. Together with the message the waiting time is also communicated, which
determines when the new value takes effect. The message passing is indicated in
bold in the examples of Tables 1 and 2.

8 2 2 2 2 1
8§ 2 2 2 1 1.1
8 2 2 1 1 1 1 1
8§ 2 1 1 1 11 1 1
g8 1.1 1 1 1 1 1 11
7 7 3

Table 2

The example in Table 1 also shows how the algorithm terminates. The termi-
nation message is originated by processor 1 when it produces 2 for the first time,
and communicated with double speed as before.

In the Algorithm 3, the eight numbered statements inside the loop correspond
to printing the partition, forwarding messages (w denotes the waiting time, m
is the new value for z, rd is the new value for r, and ¢ is the termination flag),
initiating the messages, initiating the termination flag, updating the values z in
obvious cases, assigning new values for z and r (major change), decreasing the
waiting time, and decreasing the termination time, respectively.

Theorem 2. Algorithm 3 generales, in the standard representation, all partitions
of n inreverse lexicographic order and with constant delay per partition on a linear
array of n processors, thus achieving an optimal cost of O(nP(n)), furthermore
each processor has a memory of constant size and can generate elements without
the need to deal with large integers such as P(n).

114

Algorithm 3. Parallel generation of partitions of n in the standard representa-
tion.

for each processor k from 1 to ndo
T — 0371 e~ 0;mp — 0w —0;ifk=1thenz; « n ¢t « 0,
repeat
if z; > O then print out x;
2. fori« 1to2do {ty «— tg—1;if we—1 > 0 and wi = O then {w — wi_;
ifrdg_y > my_, then {mk — my_1; rdy —rdiy — m;}
else {mi «— rdi_1; rdi — 0}}};
3. ifzk1 >2andz =2 and wi = O then {
Mgl — Th1 — 13 7dgy — 71 + 15w — I_'rk_1/2_] + 1w — wk,
if rdg_1 > mi_y then {my «— my_1; rdp «— rdx_1 — mi}
else {mk — Tdk_l; 'rdg - 0}};

—
.

4, ifk=1andzy=2andt; =0 thent; — n/2+2;

5. fxr=0and(zp_y >1or(zp-1=1andz3 <3 and wiy <> 1))
then z; = 1 else {if z; > 1 and z3+1 < 2then {T; «— Zp_1; Tk — Th41}
else {if zx = 1 and 74— > 2 and z4) = Othen z = 2}};

6. ifw,=1then{z; — my;mp—0;wp —0; 7, — 7ds;7dp —0};

7. ifwg > 1 then wy «— wi_;

8. ifty>1thent; « tx_1;

until ¢ty =1

3. Partitions whose largest part is &

In this and following sections we consider some cases of restricted partitions. We
begin by investigating partitions of » in which the largest part is &, i.e. z; = k
in the standard representation, and y; = k in the multiplicity representation. The
case of partitions whose largest part is k is given in [NW] as a special case of their
general method for listing, ranking and unranking combinatorial objects. Note
that the case of partitions of n whose largest part is smaller than or equal to & is,
by adding one more part of size k, equivalent to the case of partitions of n + k
with largest part exactly k.

Sequential generation algorithms for partitions whose largest part is k can be
obtained from the algorithm for the case of unrestricted partitions of n by “cutting”
the execution, i.e. by choosing the first and last partitions. The first partition is
yi=k,c = |n/y1], 92 =n—ciyi,c2 = 1ify, > 0, ¢ = 0 otherwise, and the
last partition appears when y; becomes k£ — 1, in the multiplicity representation.
Similarly one can obtain the first and last partitions for the standard representa-
tion. This can be easily incorporated in the corresponding parallel algorithms for
generating partitions with largest part & in both the multiplicity and standard rep-
resentations. The first partition is defined as above before entering the loop. The

115

termination criteria can be also modified easily by “pretending” that partitions of
n— k into any number of parts are being generated (the termination condition for
such partitions and for the partitions under consideration coincide).

4. Partitions of ninto m parts

Using the Ferrers graph (cf. [PW]) a one-to-one correspondence between parti-
tions of ninto m parts and partitions of n whose largest part is m is established. Let
21 ...z, be a partition into m nondecreasing parts, 21 < -+ + < 2, and 7y ... T,
x1 > .-+ > 3}, be a partition of » into any number of nonincreasing parts (i.e.
k varies) with largest part z; = m. The following Ferrers graph illustrates the
relationship between the two kinds of partitions.

. ° z1=2
. . . z=3
. . ' z3=3
° ° ° . ° z23=15
'y ° ' . ™ ® z5=6

T1=5 x;3=85 33=4 T4=2 35=2 1x¢=1

The following relation follows from the Ferrers graph: zp,_g = max{j |
z; > i}. Consider now the corresponding multiplicity representation of par-
titions with largest part m: ¢y, ..., cq are the multiplicities of y1,...,yq4, where
m=y >--->yq,and c1d; + - - - + cqy¢4 = n For the partitions into m parts, let
e1,..., eq be the multiplicities of w;, ..., wq (clearly the two sequences have the
same number d of different parts), where wy < --- < wg,ejwy + -- -+ eqwg = n,
ande; + --- + eg4 = m. Then it easily follows that w; = ¢; + ¢ + --- + ¢;, and
e; = y; — yi+1 where yqg.1 = 0. The sums for w; can be easily maintained during
the execution of the program for generating partitions of n with largest part m in
the multiplicity representation (in nonincreasing order of parts); recall that at any
step in the algorithm all changes are done in processor d and its immediate neigh-
borhood, and the partial sum ¢, + - - -+ ¢; is affected only in these processors. The
necessary modifications to Algorithms 1 and 2 can be done in a straightforward
way.

There exists another solution for the case of partitions of n into m parts in
the multiplicity representation. In [Le,RND] algorithms are presented for the
restricted case of partitions in which the number of parts is exactly m, and in
lexicographic order for each fixed m, but considering the parts of the partition in
increasing order. In fact, this algorithm was discovered by K.F. Hindenburg in
1778 (cf. [RND]). To obtain the next partition from the current one, the elements
are scanned from right to left, stopping at the rightmost z; such that z,, — z; > 2.
Replace z; by z;41 for j = 4,i+ 1,...,m — 1 and then replace z,, by the re-
mainder, to get the sum n. For example, in the partition 11334, i = 2 and the next
partition is 12225.

116

If the multiplicity representation is used, the algorithm is again loop free and
works on the last indices only, enabling a parallel implementation satisfying prop-
erties 1-6; a linear amray of m (more precisely, (2m)1/2) processors suffices.

Finding a corresponding parallel algorithm for partitions of » into m parts in
the standard representation is an open problem for further research.

5. Compositions of n into m parts
Compositions of n into exactly m parts can be written in the form z, + - - -+ z, =
n, where there is no requirement for the decreasing order of parts (i.e. 1+2+ 1 and
2+ 1+ 1 are two different compositions). Sequential algorithms for generating
compositions appear in [NW, PW, RND).

There are two cases:

a) z; > 0 foreachi. Lety,..., yy, be the following sequence:

Yi= T+ -+ IT)

The sequence y1,..., ym is a combinations of m out of n elements such that
ym = m; in other words, it is a combinations of m — 1 out of n — 1 elements
from {1,...,n— 1}, and the number of compositions in question is R(m,n) =
C(m—1,n— 1), where the latter is the binomial coefficient (proofs can be found
in [NW,RNDY]). Thus, this case can be solved using the solution for combinations
[AGS,ST2]. Each sequence z; ...z, is easily obtained from y; ...y, by the
relation: z; = y; — y;—) (with yo = 0).

b) =z; > 0. By adding 1 to each part we get compositions of the number n+ k

and proceed as in case (a).
Thus we obtain the following theorem.

Theorem 3. It is possible to generate all compositions of n into m parts in lex-
icographic order and with constant delay per composition on a linear array of n
processors, thus achieving an optimal cost of O(nR(m,n)); furthermore each
processor has a memory of constant size and can generate elements without the
need to deal with large integers such as R(m,n).

6. Compositions of n into any number of parts

Let the sequence y; ...y, be defined as in 5(a). Here, however, m is not fixed.
This case corresponds to the generation of all subsets of {1,2,...,n—1}. A
solution to this problem on a linear array of processors appears in [S). The number
of such compositions is R(n) = 2" — 1.

Theorem 4. It is possible to generate all compositions of n into any number of
parts in lexicographic order and with constant delay per composition on a linear
array of n processors, thus achieving an optimal cost of O(nR(n)); furthermore
each processor has a memory of constant size and can generate elements without
the need to deal with large integers such as R(n).

117

7. Conclusion

We derived cost-optimal algorithms for generating integer partitions and com-
positions on a linear array of processors. The algorithms produce partmons and
compositions with constant delay.

The partition and composition generation algorithms can be made adaptive (i.e.
to run on a linear array consisting of an arbitrary number k of processors) if the
processors are divided into k/n groups of n processors each such that each group
produces an interval of consecutive partitions or compositions. The first and last
partitions/compositions in each group can be determined in a preprocessing step
by applying known unranking functions. Since compositions are generated by
means of combinations, the unranking function described in [K] that maps integers
between 1 and C(m, n) onto the set of combinations of m out of n elements can
be used. However, the function involves very large integers. Another scheme that
does not deal with large integers and yet divides the job evenly among groups is
described in [St1).

A general method for unranking combinatorial objects is given in [NW], with
partitions and compositions given as special cases. The method deals with large
integers. However, we are aware neither of an unranking procedure for partitions,
nor of a way of dividing partitions into groups of roughly equal size, that do not
use large integers.

Finding a parallel algorithm for the case of partitions of n into m parts that
satisfies properties 1-6 and uses the standard representation of partitions, remains
an open problem for further research. The case of compositions of n whose largest
part is k is not studied here.

References

Al S.G. Akl, “The Design and Analysis of Parallel Algorithms”, Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

A2 S.G. Akl, Adaptive and optimal parallel algorithms for enumerating per-
mutations and combinations, The Computer Journal 30, 5 (1987), 433-436.

AGS S.G. AKkl, D. Gries, and 1. Stojmenovi¢, An optimal parallel algorithm
Jor generating combinations, Information Processmg Letters 33 (1989/90),
135-139.

ACS S.G. Akl J. Calvert, and 1. Stojmenovi¢, Systolic generation of derange-
ments, Proc. of the Workshop on Algorithms and Parallel VLSI Architectures
11, France, Elsevier (1992), 59-70.

AMS S.G. AKl, H. Meijer, and 1. Stojmenovi€, Optimal parallel algorithms
Jor generating permutations, Technical Report No. 90-270, Department of
Computing and Information Science, Queen’s University, Kingston, Ontario,
Canada (1990).

118

An G.E. Andrews, “The theory of partitions”, Addison-Wesley, Reading, Ma,
1976.

CA B. Chan and S.G. AKkl, Generating combinations in parallel, BIT 26, 1
(1986), 2-6.

CC G.H. Chen and M.-S. Chem, Parallel generation of permutations and com-
binations, BIT 26 (1986), 277-283.

D L.E. Dickson, “History of the theory of numbers, Vol. II, Diophantine Anal-
ysis”, Chelsea Publishing Co., New York, 1971.

F W. Feller, “An Introduction to Probability Theory and its Applications”, Wi-
ley, NY, 1951.

FL T.I. Fenner and G. Lonzou, A binary tree representation and related al-
gorithms for generating integer partitions, The Computer J. 23, 4 (1980),
332-337.

GB P. Gupta and G.P. Bhattacharjee, A parallel derangement generation algo-
rithm, BIT 29 (1989), 14-22.

H M. Hall, “Combinatorial Theory”, Blaisdell, Waltham, Mass., 1967.

K G.D.Knott, A numbering systemfor combinations, Comm. ACM 17, 1(1974),
45-46.

Kn D.E. Knuth, “The Art of Computer Programming, Vol. 1: Fundamental Al-
gorithms”, Addison-Wesley, Reading, Ma, 1968.

Le D.H. Lehmer, The machine tools of combinatorics, in “ Applied Combinato-
rial Mathematics”, Beckenbach (ed.), Wiley, NY, 1964.

L C.J. Lin, Parallel generation of permutations on systolic arrays, Parallel
Computing 15, 1 (1990), 267-276.

LT C.J.Lin andJ.C. Tsay, A systolic generation of combinations, BIT 29 (1989),
23-36.

Li C.L. Liu, “Introduction to Combinatorial mathematics”, McGraw Hill, 1968.

Mk JK.S. McKay, Partition generator, Algorithm 263, CACM 8 (1965), 493.

Mk1 J.K.S. McKay, Partitions in natural order, Algorithm 371, CACM 13
(1970), 52.

NMS T.V. Narayana, R.M. Mathsen, and J. Saranji, An algorithm for generating
partitions and its applications, J. Comb. Theory 11 (1971), 54-61.

NW A. Nijenhius and H.S. Wilf, “Combinatorial Algorithms”, Academic Press,
NY, 1975.

NW1 A. Nijenhius and H.S. Wilf, A method and two algorithms on the theory
of partitions, J. Comb. Theory A 18 (1975), 219-222,

PW E.S. Page and L.B. Wilson, “An Introduction to Computational Combina-
torics”, Cambridge Univ. Press, 1979.

R R.C. Read, A survey of graph generation techniques, Lect. Notes in Math.
884 (1980), 77-89.

RiJ. Riordan, “An introduction to Combinatorial Analysis”, John Wiley, 1958.

119

RND E M. Reingold, J. Nievergelt, and N. Deo, “Combinatorial Algorithms”,
Prentice Hall, Englewood Cliffs, New Jersey, 1977.

RJ W. Riha, and K.R. James, Efficient algorithms for doubly and multiply re-
stricted partitions, Algorithm 29, Computing 16 (1976), 163-168.

SaC.D. Savage, Gray code sequences of partitions, J. of Alg. 10 (1989), 577-595.

St 1. Stojmenovi€, An optimal algorithm for generating equivalence relations
on a linear array of processors, BIT 30, 3 (1990), 424-436.

Stl 1. Stojmenovi€, On random and adaptive parallel generation of combina-
torial objects, Int. J. Computer Math.. (to appear).

ST2 1. Stojemoni€, A simple systolic algorithm for generating combinations in
lexicographic order, J. of Comb. Math. and Comb. Computing. to appear.
W M.B. Wells, “Elements of Combinatorial Computing”, Pergamon Press, Ox-

ford, 1971.
WhI.S. White, Restricted partition generator, Algorithm 374, CACM 13 (1970),
120.

120

