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Abstract. This paper discusses new Erdos - Gallai type necessary conditions for a
sequence I'T of integers to be 3-hypergraphic. Further, we show that some of the known
necessary conditions for 3-hypergraphic sequences are not sufficient.

1. Introduction

An r-uniform hypergraph H is a pair (V, £) where V is a finite non-empty set
and & is a family of subsets with exactly » elements of V. The elements of V'
and & are called vertices and edges respectively. Note that the elements of £ need
not be distinct. An r-uniform hypergraph H = (V, £) is called simple if all the
elements in & are distinct. The degree deg ;(v) of a vertex v in an r-uniform
hypergraph H is the number of edges containing the vertex v. The sequence
I = (deg y(v1),...,deg #(vp)) where V = {vy,v3,...,v,} is called the de-
gree sequence of H = (V, &)

In this paper I1 = (d;,d3,...,dp) denotes a non-increasing sequence of non-
negative integers. IT is said to be r-uniform hypergraphic if there is a simple
r-uniform hypergraph H on p vertices vy, va,..., vp such that deg g (v;) = d; for
every i, 1 < 1 < p. In what follows, an r-uniform hypergraphic sequence will be
simply referred to as an r-hypergraphic sequence.

Note that a simple 2-uniform hypergraph is a simple graph. For general defini-
tions and notation we refer to Berge [1] and Bondy and Murty [3]. In this paper
we provide new Erdds and Gallai type necessary conditions for 3-hypergraphic
sequences. Further we show that some of the known necessary conditions for
3-hypergraphic sequences are not sufficient. Some of these results appeared in
Simanihuruk [8].

For a real number z, let |z] denote the greatest integer less than or equal to .
Further z* denotes max (0, z) . Wedenote (z1,z3,..., z5) by (z1,22,...,3p)".

We state some of the known results used in the later sections.

Theorem 1.1: (Dewdney [6]). Let IT1 = (di,d,...,dp,) be a non-increasing
sequence of non-negative integers. Then I1 is an r-hypergraphic sequence if
and only if there exists a non-increasing sequence I1' = (d,,dj, ..., d,) of non-
negative integers such that

(i) T’ is an (v — 1) -hypergraphic sequence,

(i) Y F,di=(r-1)d,,and
(i) N"=(d, -dy,ds —dj,..., dp, — d;,) is an r-hypergraphic sequence. 1
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Theorem 1.2: (Erdds and Gallai [7]). A sequence I1 = (dy,dy,...,dp) is
2-hyperraphic iff ¥ ., d; is even and

k P
S di<k(k—1)+ Y min(d;, k), 1< k<p.
1=l j=k+1

There are no known necessary and sufficient conditions, generalising Theorem
1.2 to 3-hypergraphic sequences (refer Colbourn et. al. [§], Billington [2]). Fur-
ther there is no known polynomial time algorithm to construct a 3-uniform hy-
pergraph realizing a given I1. Billington [2] established the following Erdds and
Gallai type necessary conditions for 3-hypergraphic sequences.

Theorem 1.3: (Billington [2]). Let I1 = (dy,da,...,dp) be a 3-hypergraphic
sequence. Then ) %, d; =0 (mod 3), and forevery k, 1 < k < p, we have

=1

Sasa()-2((37)-4) 2 Zme(w(3)

=1

» 1.1)
+ Y min(d;, (i~ k= 1)k)
i=k+1

|
A k-multigraph is a loopless undirected graph with at most k edges joining a
pair of vertices. Note that a k-multigraph is a 2-uniform hypergraph where an
edge appears at most k times. Let Gi(IT) = {G: G is a k-multigraph on p vertices

v1,v2,...,Vp Such that deg g(v;) < d; foreveryi, 1 <1< p}. Let

Mi(IT) = max{|e(G)|: G € Gi(1T1) }.

A sequence IT is said to be k-multigraphic if there is a k-multigraph whose degree
sequence is IT. Choudum (4] established the following Erdds and Gallai type
necessary conditions for 3-hypergraphic sequences.

Theorem 1.4: (Choudum [4]). Let I1 = (d1,da,...,dp) be a 3-hypergraphic
sequence. Then

P
Zdizo (mod 3);
i=1

f:dggk(kgl)+ ‘LP: 2 min (d,-, (:)) (1.2)

i=1 j=k+1
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2. 3-Hypergraphic Sequences

LetIl = (d,,dy,...,dp) be anon-increasing 3-hypergraphic sequence and H =
(V, &) bea 3-uniform hypergraph realising IT. In the following we introduce some
notation related to H that will be assumed throughout the paper. We represent the
vertex set V by {1,2,...,p}. Further, assume that deg y(4) = d;, 1 < i < p.
Note that |€| = } Y7, d;. Given an integer k such that 1 < & < p, we partition
the vertex set V into sets S = {1,2,...,k}and T, = {k + 1,...,p} . Further
define subsets Ay, By and C;, of the edge set £ as:

A= {E € &|EN S| =3},
By={E €& |ENS;|=2},and .1
Ci={E€&|ENS=1}.
Note that A, By and C; are pairwise disjoint. Further, it is easy to see that every
edge of A; contributes exactly 3 to the sum Ef-‘,,, d;. Similarly every edge of By
(C%) contributes exactly 2 (1) to the sum Ef,l d;. Thus we have
k
D di=3|Ax+2|Bil +[Cil, 1 < k< p. 22)
i=1
Lemma2.l. LetTl = (di,...,dp) beanon-increasing 3-hypergraphic sequence
and H = (V,€) be a 3-uniform hypergraph realising T1. Then for every k,
1 £ k < p, we have
+
M 1< @) - () -a),
@) 1Bl < X240 min (5, (5)),
(iii) Ckl < YBepsp min(dy, (j — k— 1)k) and
@) |Bil + il < min (J€], F.p.y min (45,7~ &~ Dk + (5))).
Proof: We notice that | Ax| is at most (¥) and every vertex of Sy is contained in at

most (*;') edges of Ag. Thus if di < (*;') then the above upper bound for | 4|
can be further reduced by (¥;') — di. Thus

k k-1
|Ak| < (3) — max (0,( 5 )—dk).
This proves (i).

Consider j such that k+ 1 < j < p. Let B} = {E:j € E € B:}. Then
{Bj:k+ 1 < j < p} provides a partition of B. Thus |By| = > F ke |Bil-
Further it is easy to see that

|B}| < min (d,-, (;)) . (2.3)



Therefore |Bi| < 37, min (4, (g)) and this establishes (ii).
Consider integers 1 and j such thatk+ 1 <1 < j < p. Let

Cij={E:i,j € E€Cy}.
Clearly {C};: k+ 1 < i < j < p} is a partition of C;. Thus

P

j-1
Icd= > Y ICyl- (24)

jok+2 fmk+ 1

Forafixed j, k+ 2 < j < p, an edge E of | JI},, C}; consists of the vertices ,
tandfwherek+1<i<j—1and1 < £< k. Therefore

-1

U Chl<G-1-kk

i=k+1

forafixed j, k+ 2 < j < p. Also | UL, Cyl < dj, since deg #(j) = dj.

Hence
j-1

| U Cjl < min(dy, (5 — k—1)k). @.5)
ssk+l

Combining (2.4) and (2.5) we have

P
ICel < ), min(d;,(j — k- 1)k)
jek+2 '

and this proves (iii).
From the definitions of B} and C;; we have

ByUC = (O B;)U(LPJ U C.‘;)

J=k+1 J=k+2 i=k+1

- (Bln)U ( ) ) y (}o i )

J=k+2 j=k+2 i=k+1

= (Bj) U (;Qz (B}U (i:gl Cfi))) :

Note that B; N C;; = ¢.



Using (2.3) and (2.5) we have

= : k
|B}U(U c,.,.) IS G-1-kk+ (2)

i=k+1
Also
j-1
|B; U ( U C,f,-) | < d; since deg 4(;) = d;.

s=k+1

Therefore, fork + 2 < j < p, we have,

j-1
. . k
|B;j| + E |Ci;] < min (d;,(] —k—-Dk+ (2)) .

t=k+1

We recall that | B, | < min (dk“ , (g)) . Now

P Jj=1
|Bil + |G| = [Bhar |+ >, (IB}I+ > |ij|)

j=k+2 s=k+1

P
< Y min (d,-,(j-k- Dk+ (;))

j=k+1

It is obvious that [Bi| + |Ci| < |&]. Thus we have established (iv) and this
completes the proof of Lemma 2.1. 1

Using Lemma 2.1 in (2.2) we have the following:

Theorem 2.2. Let I1 = (dy,dz,...,dp) be a non-increasing 3-hypergraphic
sequence. Then

i:d,-zo (mod 3);

i=1

Bass)5((5) ) Em(ll) o

i=1
3 k
+ ) min (d.,-,(j—k— Dk + (2)) 1<k<p.

j=k+1

Let Uy, and U, be the upperbounds for 3% | d; from Theorems 1.3 and 2.2
respectively. We have the following remark.



Remark 2.3. U, < U,. Further Uy < U if there exists an integer j, k+ 1 <
j<psuchthat dj < (j—k—Dk+ (5).

Proof: Let

a=3(5)-2((*3)-4) » 3 mo (%))

Then,
P k P
Uy=a+ Y min (d,, (2)) + Y min(d;,(j — k- 1)k),
J=k+1 J=k+1
. . k
Uz =¢x+i§;1 min (d,-,(; —k—1)k) + (2))

Note that when & = 1, Uy = U,. Therefore let & > 1. Now observe the
following inequalities for k + 1 < j < p. If dj < (j — k— 1)k + (§), then

min (d;,(j— k—Dk+ (:)) < min (dj, (;)) + min(d;,(j — k — 1)k).
@7

Ifd; > (j —k—1Dk+ (§), then

min {4, — k= k+ ()} =min {d;, (¥)) + min(dj, (j - k — 1))
2 2

2.8)

Next note that when j = k + 1, (2.8) is obviously true. Now using (2.7) and
(2.8) it is easy to see that U» < U,. Further we have U, < U, if there exists an
integer j suchthatd; < (j — k — Dk + (g) This completes the proof. 1

Remark 2.4. The conditions of Theorems 1.3, 1.4 or 2.2 are not sufficient for
Il = (dy,...,dp) to be a 3-hypergraphic sequence.

Proof: Consider the sequence IT = (7,5,5,3,3,1). Itis easy to verify that IT
satisfies the conditions (1.2) and (2.6) of Theorems 1.4 and 2.2 respectively. Using
Remark 2.3, note that IT satisfies conditions (1.1) of Theorem 1.3. Now we show
that IT is not a 3-hypergraphic sequence. Suppose that IT is a 3-hypergraphic
. sequence. Then by Theorem 1.1, there exists a non-increasing sequence I’ =
(dy,d5,d;, ds, dg) of non-negative integers such that

(i) IT'is a 2-hypergraphic sequence,

(i) S5,di=2d =14 and
(i) 1" = (dy — dj,ds — d3,da — d},ds — ds,dg — d) is a 3-hypergraphic

sequence.



The various non-trivial (2-hypergraphic) candidates for I’ satisfying condition
(ii) are:

@ I'=(4,3,3,3,1)
() I'=(4,3,3,2,2)
© I'=(3,3,3,3,2) and
@ I'=(4,4,2,2,2).

Now, IT' = (4,3,3,3,1), results in 1" = (1,2,0,0,0) which is clearly not
3-hypergraphic, contradicting (iii). Similarly IT' = (4,3,3,2,2) or(3,3,3,3,2)
or(4,4,2,2,2) results in a contradiction to (iii). Thus IT = (7,5,5,3,3,1) is
not a 3-hypergraphic sequence. This completes the proof of Remark 2.4. 1

Billington (2] suggested that his Erdds - Gallai type conditions are not likely
to be sufficient for 3-hypergraphic sequences since they take no account of the
interactions between the edges from the sets A, B, and C;. In the following
lemma we incorporate some quantification of these interactions between Ag, By
and C, in the form of certain lower bounds on their sizes.

Lemma2s5. LetTl = (d,,...,d,) beanon-increasing 3-hypergraphic sequence
and H = (V,&) be a 3-uniform hypergraph realising 1. Then for every k, 1 <
k < p, we have

: P p-k-1 ko mi *
@ 1Bil 2 Ty (¢ - (57") — Tk min(ds, (p— k= 1))
+
@ 1G> Thy (d = (5") = 5y min(dy, (k= 1)) and
+
@) |Bel + Gk 2 Thopsr (d — 57") = Thayuy min(ds, 6))
Proof: Consider an integer j such that k+ 1 < j < p. We partition the edges
containing the vertex j as
D;={E:|[ENTi|=3andj € E};
Cij={E:i,jEE€C}, 1<i< kiand
B;={E:j € E€ B:}.
Clearly

k
dj = |Dj| + |Bj| + ) ICyl-
i=1
Now using the facts that

IDjl < (p—l2c— ') and [Cyj| < min(d;, (p— k — 1))



we get

k
< B+ (P75 1)+ Lmincduto— k- 1.
i=1

Combining this with the fact that | B}| > O we have

k +
IBjl > (d;— (”"'2‘" l) — Y min(d;, (p— k- 1)))
i=1

Using this inequality and the fact that | Bx| = 3"%_,,, | Bj|, we have,

P p—k—1 k +
1Bel > D (d;—( 5 )—Zmiﬂ(ds,(p—k—l))) .

j=k+l i=1
This establishes (i). Now (ii) can be proved using similar arguments.
To prove (iii), once again consider an integer j suchthatk + 1 < 7 < p. Now
partition the edges containing the vertex ; as follows:
D;={E:|ENTi|=3 andj € E};
Ci={E:,jEEE€C}, k+1<i<j;
Cji={E:i,jEE€C)}, j<i<poand
Bi={E:j€ E€B;}.
Clearly
_ J-1 P
dj=[Djl+ Y ICsl+ Y ICH| + 1B}l
i=k+1 i=j+1

Using the facts that [D;] < (P~5") and |C};| < min(k,di) fork+1 < j <
i < pwe get

& p—k—1 Ld ‘
1Bjl+ Y IC4| > d;—( ) )—Emin(d;,k) .

s=k+1 i=j+1

Now

P Jj-1
|Bi| + Gl = > (lB;-|+ > |0.f,|)

j=k+1 i=k+1
P P *
p—k—-1 .
>3 (d,- - ( ) ) - mm(d,-,k)) :
J=k+1 f=j+1

10



This establishes (iii) and completes the proof of Lemma 2.5. |

Using Choudum’s [4] proof of Theorem 1.4 one can easily establish the follow-
ing for a 3-hypergraphic sequence IT = (d,,...,d;):

il + Gl < 3 min (df' @)

j=k+l

ot (o= (@)t () ) 1550

Now combining this and (iv) of Lemma 2.1 we have the following remark.
Remark 2.6. Let I1 = (d,,...,dp) be a non-increasing 3-hypergraphic se-

quence and H = (V, &) be a 3-uniform hypergraph realising I1. Then for every
k,1 < k< p, we have

|Bel + [Ci| < min(|€], @, B)

where
c.\:=j§l min (d,-,(j— k-Dk+ (;))
and
ﬁ=j§:;lmin (d;,(:))+Mk((dk+1—(:),dmz— (:),...,dp— (;))+> .

Next we prove our main theorem.
Theorem 2.7. Let 11 = (di,dy,...,dp) be a non-increasing 3-hypergraphic

sequence. Fora fixed k,1 < k < p, let fi be the maximum value of 3z+2y+ z
subject to the constraints:

® s< @) - () -d)
@) S (4 - (57) - Ty min(di, (- k- 1)) <y
< ek min (¢, (),

) Ty (= (5") = Tfopsr min(ds, (k- 1)) <2
< Thukea in(ds, (i = k= 1K),

11



(w) 2}=k+l ( (p-k-l) 2.-,“ min(dl's l‘v'))+ S yt+z
. { 3-2;—1 d‘ E;=k+l min (d)"(j_ - l)k"' (g)) ) }
< min + ’
Speter i (d,, @)+ M ((dn - @) - §))

V) z+y+2<3 2,=1
(vi) z,yandz am non-negaave integers.

Then
P
Y di=0 (mod 3);

i=1

and
k
Y i< fi,1<kLp.
i=1

Proof: Let H = (V, &) bea 3-uniform hypergraph realising IT = (dl 2, ..., dp).
Then} %, d; =0 (mod 3) since the number of edges in H is § 3 7., d;. Define
z = |Ag), y = |Bi| and z = |G| for a fixed k, 1 < k < p. From Lemmas 2.1, 2.5
and Remark 2.6 it follows that ( z, y, 2) satisfy the constraints (i) to (iv). Since
|Ag| + | B| + |Ck] is at most, the size of £, we have the constraint (v). Now from
(2.2) and the definition of f; we have

k
> di=3|Akl+2|Bel + |Gl < fi, 1 < k< p.

i=1

This establishes Theorem 2.7. |

Remark 2.8. The sequence Il = (7,5,5,3,3,1) which formed a counter ex-
ample for the conditions of Theorems 1.3, 1.4 and 2.2 to be sufficient, does not
satisfy the second condition of Theorem 2.7.

Letk = 3. Then Yo, d; = 17. We determine f3 as follows:
fi=max{3z+2y+z}

where

) zL1

) 0<y<7
(iii) 1<2<4
(iv) 1<y+2<7
V) z+y+2<8.

12



It is easy to check that the optimal solution is given by z* = 1, y* = 6 and
z* = 1 yielding f3; = 16. Thus the condition Ef,,l d; < f3 is violated. This
proves Remark 2.8, | |

We conclude this paper by emphasising that we are unable to prove or dis-
prove the sufficiency of the conditions of Theorem 2.7 for a sequence to be 3-

hypergraphic.
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