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Abstract. For a nonempty subset § of vertices of a k-connected graph G and for
1 £ 1 < k, the Steiner i-distance d;( S) of S isthe minimum size among all s-connected
subgraphs containing S. Relationships between Steiner i-distance and the connectivity
and hamiltonian properties of a graph are discussed. For a k-connected graph G of
order p and integers § and nwith 1 < i < kand 1 < n < p, the (4, n)-eccentricity of
avenex v of G is the maximum Steiner i-distance d;(S) of a set S containing v with
|S] = n. The (4, n)-center C;,(G) of G is the subgraph induced by those vertices with
minimum (1, n) -eccentricity. It is proved that for every graph H and integers ,n > 2,
there exists an {-connected graph G such that C; »(G) & H.

1. Introduction

The distance between two vertices u and v in a connected graph G is the length
of a shortest path in G connecting u and v. Equivalenly, it is the smallest size
(number of edges) in a connected subgraph containing 4 and v. From this point
of view, the standard distance between two vertices was extended in [2] to the
Steiner distance of a set of vertices, namely, if S is a set of vertices in G, then the
Steiner distance d(S) of S is the smallest size of a connected subgraph containing
the vertices of S. If the graph G is k-connected for some integer k > 1, then for
each integer 4 with 1 < i < k, there is always an i-connected subgraph of G
containing the vertices of S. This observation suggests a generalization of the
Steiner distance on graphs, which we present in this paper.

Let G be a k-connected graph where k > 1, and let S be a nonempty set of
vertices of G. For 1 < i < k, we define the Steiner i-distance d;(S) of S
as the minimum size among all i-connected subgraphs containing S. Therefore,
the Steiner 1-distance d;(S) of S is simply the Steiner distance d(S) of S. A
subgraph H of G is called a Steiner s-subgraph of S if H is i-connected, S C
V(H), and d;(S) = |E(H)|. For the graph G of Figure 1 and S = {u, v, w}, we
have d;(S) = 3,d(S) = 5,d3(S) = 10,and ds (S) = 17. Steiner i-subgraphs
fort=1,2,3, and 4 are also shown in Figure 1.

The Steiner distance satisfies an extended triangle inequality, which we now
describe. Let G be a connected graph, and let S, S, and S, be subsets of V(G)
suchthatd # S C S1US; and|SiNSz| > 1. Thend(S) < d(S1)+d(S,). There
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Figure 1

is an extension of this property to the Steiner i-distance. Let G be a k-connected
graph and let S, S, and S, be subsets of V(G) suchthat@ # S C S; U S, and
|S1NSz2| > i, where 1 < i < k. Then di(S) < di(S)) + di(Sz). To see this,
let H; (i = 1,2) be a Steiner i-subgraph of d;(S;) such that S; C V(H;). Let
H be the graph with vertex set V(H1) UV (H3) and edge set E( H,) U E( H3).
Since Hy and H, are i-connected and [V (H;) NV (H2)| > |S1 N Sz| > 4, the
graph H is i-connected. Since S C V(H), it follows that d;(S) < |E(H)| <
di(81) + di(8S2).

2. (1, n,p)-Graphs

Let G be a k-connected graph. For 1 < i < k, every Steiner i-subgraph H of
a subset S of V(G) is necessarily minimally i-connected, that is, the removal of
any edge of H results in a graph that is not i-connected. Since H is i-conencted,
6(H) > isothatdi(S) = |E(H)| > [i|S|/2]. An i-connected graph G of order
p is called an (4, n,p)-graph, where 2 < i < n < p, if &i(S) = [i|S|/2] for
every set S of n vertices of G. A graph G is (i, n)-connected, 1 < i < nif the
induced subgraph (S) is i-connected for every set S of n vertices of G. Certainly,
every (1, n, p)-graph is (¢, n) -connected.

Lemma 1. Lef i,n, and p be integers with 1 < i < n< p. A graph G of order
p is (1, m) -connected if and only if G is (p — n+ i) -connected.

Proof: Suppose, to the contrary, that there exists an (i, n)-connected graph that is
not(p—n+1) -connected. Then there exists acutset X with | X| = p—n+i—1 such
that G — X is disconnected. Let S = V(G) — X andlet X' = {zy,23,...,71}
be an arbitrary subset of ¢ — 1 vertices in X. Then X' is a cut set of (S U X'),
so that (S U X') is not i-connected. Since |SU X'| = m, it follows that G is not
(1, n)-connected, a contradiction.

We now prove the sufficiency. Let G be a (p — n+ 1) -connected graph and let
S be a subset of V(G) with |S| = n. Suppose that {S) is not i-connected. Then
there exists a subset X of S with | X| = i — 1 such that {(S) — X is disconnected.
Therefore, G—(XU(V(G) —S)) is disconnected. However, since [ XU(V(G) —
S)| = p—n+ i— 1, it follows that G is not (p — n+ i)-connected, which is a
contradiction. [ |
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Theorem 2. Every (i,n,p)-graph,2 < i < n< p, is (p — n+ i) -connected.

Proof: Since every (1, n, p)-graph is (1, n)-connected, the theorem follows im-
mediately from Lemma 1. |

If n= 1+ 1 in Theorem 2, then it follows that G is (p — 1)-connected, which
yields the following result.

Corollary 3. Let i and p be integers with 2 < i < p. Then every (i,i + 1,p)-
graph is complete. '

It is important to note that the converse of Theorem 2 is not true in general. For
example, consider the complete bipartite graph K33 andleti = 2 and n = 5.
Thus,p —n+ 4= 3,and K33 is (p — n+ i)-connected. The graph K33 isnot
a(2,5,6)-graph, however, since every 2-connected subgraph of order 5 in K3 3
has size 6, not 5 as is required. In particular, a graph G is a (2, n, p) -graph if and
only if G has order p and (S) is hamiltonian for every set S of n vertices of G.
Therefore, G is a (2, p, p) -graph if and only if G is hamiltonian. From this point
of view, the (1, n, p)-graphs are generalized hamiltonian graphs. Consequently,
the problem of determining whether a graph is a (2, n, p) -graph is NP-complete.

Chartrand, Kapoor, and Lick [1] introduced the concept of n-hamiltonian graphs.
A graph G is n-hamiltonian if the removal of any set of » vertices from G results
in a hamiltonian subgraph. Therefore, a graph G is a (2, n, p)-graph if and only
if G is (p — m)-hamiltonian. Wong and Wong [8] studied the minimum size of
n-hamiltonian graphs (or (2, p — n, p)-graphs). The extremal graphs constructed
by Wong and Wong are hamiltonian. We ask the following question: Does there
exist a nonhamiltonian (2, n, p)-graph for each n with 3 < n < p? The cir-
cumference c(G) of a graph G is the length of a longest cycle in G. With the
aid of the following lemma, we can give upper and lower bounds for ¢(G) for a

(2,n,p)-graph G.
Lemma 4. Let G be a (2,n,p)-graph with 3 < n < p. If S is a subset of
V(G) with |S| > », then (S) is a (2,n,|S|) -graph.

We now establish an upper bound for the circumference of nonhamiltonian
(2,n,p)-graphs.
Theorem 5. Let G be a (2,n,p)-graph with 3 < n < p. If G is not hamilto-
nian, then c(G) < 2n—6.

Proof: Let C be a longest cycle in G and let H = (V(C) U {v}), where v is
a vertex not on C. Since G is a (2,n, p)-graph, it follows that ¢c(G) > n. By
Lemma 4, H is a (2,n,¢(G) + 1)-graph. 1t follows from Theorem 2 that H is
(c(@) + 1 — n+ 2)-connected. Therefore,

(H)>2c(@)+1—-n+2=¢(G) —n+3.
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If 8(H) > (c(G) + 1)/2, then it would follow from a well known theorem of
Dirac 3] that H is hamiltonian. Consequently, §( H) < ¢(G)/2 so that ¢(G) —
n+ 3 < ¢(G) /2. implying thatc(G) < 2n—6. [ |

A lower bound for the circumference of a nonhamiltonian (2, n, p)-graph is
given in our next result.

Theorem 6. If G is a (2,n,p)-graph with 3 < n < p, then ¢(G) > p —
[n/2] + 1.

Proof: If G is hamiltonian, then ¢(G) = p > p — |n/2] + 1. Otherwise, let C
be alongestcyclein G and let X = V(G) — V(C). Then X # 0. We prove that
|X| < |n/2]—1. Suppose, to the contrary, that | X | > [n/2]. Definem = n—2
if|X| > n—2,and m = | X| otherwise. Let V; C X be a subset of cardinality m.
LetP:u=v,v2,...,%-n = wbeasubpath of C. Since Gisa(2,n, p)-graph
and |V} U V(P)| = n, the graph (V; U V(P)) is hamiltonian. Suppose C; is a
hamiltonian cycle in (Vi U V(P)). Since C; contains the vertices u and w, the
cycle C; produces two edge-disjoint u — w paths P, and P, . Clearly, at least one
of them, say Py, has length at least [n/2]. Therefore, by the choice of m,

[V(P1) U(V(O) = V(P)| = [0/2]+ 1+ AG) —n+m
=c(@)+m—|nf2]+1
2@ +1.

Since V(P;) N(V(C) — V(P)) = @, the induced graph (V(P,) U(V(C) —
V(P))) is hamiltonian. Therefore, the graph G contains acycle of length exceed-
ing ¢(G), a contradiction. |

Forintegers p > 3, we define the parameter f(p) tobe the minimum nwith 3 <
n < p for which there exists a nonhamiltonian (2, n, p)-graph. The parameter
F(p) = oo if no nonhamiltonian (2, n, p)-graph exists forall n with3 < n < p.
A lower bound for the parameter f(p) is given in the following corollary.

Corollary 7. Forall integers p > 3, f(p) > [22:14].

Proof: Suppose f(p) is finite. Let G be a nonhamiltonian (2, n, p) -graph with
3 < n< p. Combining Theorems 5 and 6, we have

p—In/2]+1<c(G) <2n-6,

thatis, n > [(2p—1)/57+3. Therefore, f(p) > [(2p+14) /5] forallp>3. U

A graph G is hypohamiltonian if G is not hamiltonian and G — v is hamiltonian
for all vertices v of G. Therefore, a nonhamiltonian (2,p — 1, p) -graph is then
a hypohamiltonian graph. Much study has been done on the existence of hypo-
hamiltonian graphs. Thomassen [7] showed that there exists a hypohamiltonian
graph of order p for all p > 13 except for p = 14,17, 19. Thus, f(p) < p—1
forp > 13 andp # 14,17, 19.

140



3. (4, n)-Eccentricity and (1, n) -Centers

Let G be a k-connected graph of order p, and let{ and nbe integers with1 <1< k
and 1 < n< p. The (4, n)-eccentricity e;,(v) of a vertex v of G is defined by

esn(v) = max{d;(S)|v € S C V(G) and |S| = n}.

Observe that, forv € V(G),
(1) er1(v) =0;
(2) e12(v) = e(v), the standard eccentricity;
(3) e1,4(v) = ey(v), the Steiner n-eccentricity (see [6]).

We call a nondecreasing sequence S : a1,az,...,ap of nonnegative integers an
(1, n)-eccentricity sequence if there exists an i-connected graph G whose vertices
can be labeled as vy, vz, ..., vp S0 that e;4,(v;) = a; for1 < j < p. The (1,2)-
eccentricity of a connected graph is the standard eccentricity sequence. Lesniak
[4] showed that a nondecreasing sequence S : ay, a3, ... ,ap, With m distinct val-
ues is the eccentricity sequence of a connected graph of order p if and only if some
subsequence with m distinct values is eccentric. A (2, 2)-eccentricity sequence
may be characterized in an analogous fashion.

Theorem 8. A nondecreasing sequence S : ay,a3,...,ap With m distinct values
is the (2, 2) -eccentricity sequence of a graph if and only if some subsequence of
S with m distinct values is the (2 ,2) -eccentricily sequence of some graph.

Proof: If S is a sequence with m distinct values that is the (2, 2)-eccentricity
sequence of some graph, then S is a subsequence of itself, that is, S is the (2,2)-
eccentricity sequence of a graph.

For the converse, suppose that S’ is a subsequence of S that has the same m
distinct values as S and suppose that §' is the ( 2, 2) -eccentricity sequence of some
graph G. Let #;,t,,..., 1, be the distinct values of S’. Foreacht;, 1 < i < m,
selecta vertex v; of G whose (2, 2) -eccentricity in Gis t;. Letn; (1 < 1 < m) be
one more than the number of occurrences of ¢; in S less the number of occurrences
of t; in §'. In G réplace v, with a copy of K,, and join each vertex of Ky, toall
the vertices adjacent to v; in G. Denote this graph by G;. In G, replace v, with a
copy of K, and join each vertex of K, toall the vertices adjacenttov; inG;. We
continue in this fashion to obtain the graph G,,. Then S is the (2, 2)-eccentricity
sequence of Gp,. | |

The (i, n)-center C;,(G) of an i-connected graph G is the subgraph induced
by those vertices with minimum (1, n) -eccentricity. For ¢ = 1, this is the Steiner
n-center of H (see [5]). We now prove that for integers ¢ and n with 5, n > 1 and
for a given graph H , there exists an i-connected graph G such that the (1, n) -center
of G is isomorphic to H.
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Theorem 9. Let H be a graph and let i,m > 2 be integers. Then there exists an
i-connected graph G such that C;,(G) & H.

Proof: Letk = max{[i/2],i— |V (H)|} andlet m (> 3) be an integer such that
i|$/2|m > 2|E(H)] + 1. We first define a preliminary graph G by
V(G1) ={v}U{ve [1 <7 <n+ 1,1 <t < m}

and

B(G1) ={vrgvrgn1 | 1 <7< 0+ 1,1 <t < m — 1} U {vpe miy m}U
{VemVreim |1 <7 <n}U{vy, |1 <7< n+ 1}

Let G be the graph obtained from G by first replacing the vertex v by V( H)
and replacing the vertex vy, where 1 < r < n+land1 <t < m, by the
set iy = {v};,v2,...,vf,} of vertices. To define the edge set of G, we let
¢ : V(@) — V(G1) be a mapping defined by p(w) = v forw € V(H) and
p(vpy) = vrg,wherel <r<m+ 1,1 <t<mand1 < s < k. We then define
the edge set of G by

E(G) = E(H) U{zy | z,y € V(G) and p(z) p(y) € E(G1)}

(see Figure 2).

Figure 2

Now we show that all vertices of H have the same (1, n) -eccentricity in G.
Letv € V(H). Suppose that S C V(G) — {v} is a set of n — 1 vertices and
F is an i-connected subgraph of G with {v} U S C V(F) such that e;,(v) =
d;({v}U 8) = |E(F)|. We claim that S NV (H) = §. Suppose, to the contrary,
that w € SN V(H). Since |S| = n— 1, there exists V; such that SN V; = §.
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Let §' = (8 — {w}) U {v},}. Let F' be an i-connected subgraph of G with
{v}U S’ C V(F') suchthat d;({v} U S') = |E(F’)|. Since F' is s-connected, it
contains at least |{/2 | vertices of V;,; for each j with 1 < j < m. Then,

a((w}US) > a{wus) + |27 gy
> di({v}US) = ein(v),

a contradiction. Therefore, S C Z;":} V. Assume, without loss of generality,
that v?, € V(F). Then v}, is adjacent to at least ¢ — k vertices of V(H) in F.
Therefore, |V(F) N V(H)| > i — k. Since F is a minimal i-connected graph
containing {v} U S, we have |[V(F) N V(H)| = i — k. Further, the induced
subgraph (V(F) N V(H)) of F is empty. Therefore, e; ,(v) in G is independent
of the choice of v from H. Hence, e;,(v) = e;,(w) forallv,w € V(H).

We now prove that e;,(v) < e;n(w) forallv € V(H) and w € V(G) —
V(H), from which it will follow that C;,(H) = G. Consider again a vertex
v € V(H). Then, by the above, e;n(v) = d;({v} U S), where S is a subset
of {vj; | 1 < j < n+ 1} of cardinality n — 1. Consider a vertex v, €
V(G) — V(H). Let S'beasubsetof {vi, | 1 < j < m+1,j #r}of
cardinality n— 1. Then

ein(vyy) 2 di({v7,} U S").

Let F' be an i-connected subgraph containing {v7, }US’ such that d;( {v2,}JUS’) =
|E(F')|. Then, clearly F’ contains i — k (> 1) vertices of H. Suppose that v is
such a vertex. Therefore,

di({v2}US") = di({v,v5,} U S).

Clearly, di({v,v};} US') > di({v} U §’). Therefore, e;(vZ;) > €ina(v). This
completes the proof. |
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