A Generalized Steiner Distance for Graphs¹

Gary Chartrand² Westem Michigan University

Songlin Tian Central Missouri State University

Abstract. For a nonempty subset S of vertices of a k-connected graph G and for $1 \le i \le k$, the Steiner i-distance $d_i(S)$ of S is the minimum size among all i-connected subgraphs containing S. Relationships between Steiner i-distance and the connectivity and hamiltonian properties of a graph are discussed. For a k-connected graph G of order p and integers i and n with $1 \le i \le k$ and $1 \le n \le p$, the (i, n)-eccentricity of a vertex v of G is the maximum Steiner i-distance $d_i(S)$ of a set S containing v with |S| = n. The (i, n)-eccentricity. It is proved that for every graph H and integers $i, n \ge 2$, there exists an i-connected graph G such that $G_{i,n}(G) \cong H$.

1. Introduction

The distance between two vertices u and v in a connected graph G is the length of a shortest path in G connecting u and v. Equivalently, it is the smallest size (number of edges) in a connected subgraph containing u and v. From this point of view, the standard distance between two vertices was extended in [2] to the Steiner distance of a set of vertices, namely, if S is a set of vertices in G, then the Steiner distance d(S) of S is the smallest size of a connected subgraph containing the vertices of S. If the graph G is k-connected for some integer $k \geq 1$, then for each integer i with $1 \leq i \leq k$, there is always an i-connected subgraph of G containing the vertices of S. This observation suggests a generalization of the Steiner distance on graphs, which we present in this paper.

Let G be a k-connected graph where $k \ge 1$, and let S be a nonempty set of vertices of G. For $1 \le i \le k$, we define the Steiner i-distance $d_i(S)$ of S as the minimum size among all i-connected subgraphs containing S. Therefore, the Steiner 1-distance $d_1(S)$ of S is simply the Steiner distance d(S) of S. A subgraph H of G is called a Steiner i-subgraph of S if H is i-connected, $S \subseteq V(H)$, and $d_i(S) = |E(H)|$. For the graph G of Figure 1 and $S = \{u, v, w\}$, we have $d_1(S) = 3$, $d_2(S) = 5$, $d_3(S) = 10$, and $d_4(S) = 17$. Steiner i-subgraphs for i = 1, 2, 3, and 4 are also shown in Figure 1.

The Steiner distance satisfies an extended triangle inequality, which we now describe. Let G be a connected graph, and let S, S_1 , and S_2 be subsets of V(G) such that $\emptyset \neq S \subseteq S_1 \cup S_2$ and $|S_1 \cap S_2| \geq 1$. Then $d(S) \leq d(S_1) + d(S_2)$. There

¹This paper was presented at the Sixth Midwestern Conference on Combinatorics, Cryptography, and Computing (October 31-November 2, University of Nebraska, Lincoln).

²Research supported in party by Office of Naval Research Contract N00014-91-J-1060.

Figure 1

is an extension of this property to the Steiner *i*-distance. Let G be a k-connected graph and let S, S_1 , and S_2 be subsets of V(G) such that $\emptyset \neq S \subseteq S_1 \cup S_2$ and $|S_1 \cap S_2| \geq i$, where $1 \leq i \leq k$. Then $d_i(S) \leq d_i(S_1) + d_i(S_2)$. To see this, let H_i (i = 1, 2) be a Steiner *i*-subgraph of $d_i(S_i)$ such that $S_i \subseteq V(H_i)$. Let H be the graph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. Since H_1 and H_2 are *i*-connected and $|V(H_1) \cap V(H_2)| \geq |S_1 \cap S_2| \geq i$, the graph H is *i*-connected. Since $S \subseteq V(H)$, it follows that $d_i(S) \leq |E(H)| \leq d_i(S_1) + d_i(S_2)$.

2. (i, n, p)-Graphs

Lemma 1. Let i, n, and p be integers with $1 \le i < n \le p$. A graph G of order p is (i, n)-connected if and only if G is (p - n + i)-connected.

Proof: Suppose, to the contrary, that there exists an (i, n)-connected graph that is not (p-n+i)-connected. Then there exists a cut set X with |X| = p-n+i-1 such that G-X is disconnected. Let S=V(G)-X and let $X'=\{x_1,x_2,\ldots,x_{i-1}\}$ be an arbitrary subset of i-1 vertices in X. Then X' is a cut set of $(S \cup X')$, so that $(S \cup X')$ is not $(S \cup X')$ i

We now prove the sufficiency. Let G be a (p-n+i)-connected graph and let S be a subset of V(G) with |S|=n. Suppose that $\langle S \rangle$ is not i-connected. Then there exists a subset X of S with |X|=i-1 such that $\langle S \rangle - X$ is disconnected. Therefore, $G-(X\cup (V(G)-S))$ is disconnected. However, since $|X\cup (V(G)-S)|=p-n+i-1$, it follows that G is not (p-n+i)-connected, which is a contradiction.

Theorem 2. Every (i, n, p)-graph, $2 \le i < n \le p$, is (p - n + i)-connected.

Proof: Since every (i, n, p)-graph is (i, n)-connected, the theorem follows immediately from Lemma 1.

If n = i + 1 in Theorem 2, then it follows that G is (p - 1)-connected, which yields the following result.

Corollary 3. Let i and p be integers with $2 \le i < p$. Then every (i, i+1, p)-graph is complete.

It is important to note that the converse of Theorem 2 is not true in general. For example, consider the complete bipartite graph $K_{3,3}$ and let i=2 and n=5. Thus, p-n+i=3, and $K_{3,3}$ is (p-n+i)-connected. The graph $K_{3,3}$ is not a (2,5,6)-graph, however, since every 2-connected subgraph of order 5 in $K_{3,3}$ has size 6, not 5 as is required. In particular, a graph G is a (2,n,p)-graph if and only if G has order P and S is hamiltonian for every set S of P vertices of G. Therefore, P is a P p-graph if and only if P is hamiltonian. From this point of view, the P p-graphs are generalized hamiltonian graphs. Consequently, the problem of determining whether a graph is a P p-graph is P p-complete.

Chartrand, Kapoor, and Lick [1] introduced the concept of n-hamiltonian graphs. A graph G is n-hamiltonian if the removal of any set of n vertices from G results in a hamiltonian subgraph. Therefore, a graph G is a (2, n, p)-graph if and only if G is (p-n)-hamiltonian. Wong and Wong [8] studied the minimum size of n-hamiltonian graphs (or (2, p-n, p)-graphs). The extremal graphs constructed by Wong and Wong are hamiltonian. We ask the following question: Does there exist a nonhamiltonian (2, n, p)-graph for each n with $3 \le n < p$? The $circumference\ c(G)$ of a graph G is the length of a longest cycle in G. With the aid of the following lemma, we can give upper and lower bounds for c(G) for a (2, n, p)-graph G.

Lemma 4. Let G be a (2, n, p)-graph with $3 \le n \le p$. If S is a subset of V(G) with $|S| \ge n$, then $\langle S \rangle$ is a (2, n, |S|)-graph.

We now establish an upper bound for the circumference of nonhamiltonian (2, n, p)-graphs.

Theorem 5. Let G be a (2, n, p)-graph with $3 \le n < p$. If G is not hamiltonian, then $c(G) \le 2n - 6$.

Proof: Let C be a longest cycle in G and let $H = \langle V(C) \cup \{v\} \rangle$, where v is a vertex not on C. Since G is a (2, n, p)-graph, it follows that $c(G) \geq n$. By Lemma 4, H is a (2, n, c(G) + 1)-graph. It follows from Theorem 2 that H is (c(G) + 1 - n + 2)-connected. Therefore,

$$\delta(H) \ge c(G) + 1 - n + 2 = c(G) - n + 3.$$

If $\delta(H) \ge (c(G) + 1)/2$, then it would follow from a well known theorem of Dirac [3] that H is hamiltonian. Consequently, $\delta(H) \le c(G)/2$ so that $c(G) - n + 3 \le c(G)/2$. implying that $c(G) \le 2n - 6$.

A lower bound for the circumference of a nonhamiltonian (2, n, p)-graph is given in our next result.

Theorem 6. If G is a (2, n, p)-graph with $3 \le n \le p$, then $c(G) \ge p - \lfloor n/2 \rfloor + 1$.

Proof: If G is hamiltonian, then $c(G) = p > p - \lfloor n/2 \rfloor + 1$. Otherwise, let C be a longest cycle in G and let X = V(G) - V(C). Then $X \neq \emptyset$. We prove that $|X| \leq \lfloor n/2 \rfloor - 1$. Suppose, to the contrary, that $|X| \geq \lfloor n/2 \rfloor$. Define m = n-2 if $|X| \geq n-2$, and m = |X| otherwise. Let $V_1 \subseteq X$ be a subset of cardinality m. Let $P: u = v_1, v_2, \ldots, v_{n-m} = w$ be a subpath of C. Since G is a (2, n, p)-graph and $|V_1 \cup V(P)| = n$, the graph $\langle V_1 \cup V(P) \rangle$ is hamiltonian. Suppose C_1 is a hamiltonian cycle in $\langle V_1 \cup V(P) \rangle$. Since C_1 contains the vertices u and w, the cycle C_1 produces two edge-disjoint u - w paths P_1 and P_2 . Clearly, at least one of them, say P_1 , has length at least $\lceil n/2 \rceil$. Therefore, by the choice of m,

$$|V(P_1) \cup (V(C) - V(P))| = \lceil n/2 \rceil + 1 + c(G) - n + m$$

= $c(G) + m - \lfloor n/2 \rfloor + 1$
 $\geq c(G) + 1$.

Since $V(P_1) \cap (V(C) - V(P)) = \emptyset$, the induced graph $\langle V(P_1) \cup (V(C) - V(P)) \rangle$ is hamiltonian. Therefore, the graph G contains a cycle of length exceeding c(G), a contradiction.

For integers $p \ge 3$, we define the parameter f(p) to be the minimum n with $3 \le n < p$ for which there exists a nonhamiltonian (2, n, p)-graph. The parameter $f(p) = \infty$ if no nonhamiltonian (2, n, p)-graph exists for all n with $3 \le n < p$. A lower bound for the parameter f(p) is given in the following corollary.

Corollary 7. For all integers $p \ge 3$, $f(p) \ge \lceil \frac{2p+14}{5} \rceil$.

Proof: Suppose f(p) is finite. Let G be a nonhamiltonian (2, n, p)-graph with $3 \le n < p$. Combining Theorems 5 and 6, we have

$$p-\lfloor n/2\rfloor+1\leq c(G)\leq 2n-6,$$

that is, $n \ge \lceil (2p-1)/5 \rceil + 3$. Therefore, $f(p) \ge \lceil (2p+14)/5 \rceil$ for all $p \ge 3$.

A graph G is hypohamiltonian if G is not hamiltonian and G-v is hamiltonian for all vertices v of G. Therefore, a nonhamiltonian (2, p-1, p)-graph is then a hypohamiltonian graph. Much study has been done on the existence of hypohamiltonian graphs. Thomassen [7] showed that there exists a hypohamiltonian graph of order p for all $p \ge 13$ except for p = 14, 17, 19. Thus, $f(p) \le p-1$ for $p \ge 13$ and $p \ne 14$, 17, 19.

3. (i, n)-Eccentricity and (i, n)-Centers

Let G be a k-connected graph of order p, and let i and n be integers with $1 \le i \le k$ and $1 \le n \le p$. The (i, n)-eccentricity $e_{i,n}(v)$ of a vertex v of G is defined by

$$e_{i,n}(v) = \max\{d_i(S)|v \in S \subseteq V(G) \text{ and } |S| = n\}.$$

Observe that, for $v \in V(G)$,

- (1) $e_{1,1}(v) = 0$;
- (2) $e_{1,2}(v) = e(v)$, the standard eccentricity;
- (3) $e_{1,n}(v) = e_n(v)$, the Steiner *n*-eccentricity (see [6]).

We call a nondecreasing sequence $S: a_1, a_2, \ldots, a_p$ of nonnegative integers an (i, n)-eccentricity sequence if there exists an i-connected graph G whose vertices can be labeled as v_1, v_2, \ldots, v_p so that $e_{i,n}(v_j) = a_j$ for $1 \le j \le p$. The (1, 2)-eccentricity of a connected graph is the standard eccentricity sequence. Lesniak [4] showed that a nondecreasing sequence $S: a_1, a_2, \ldots, a_p$ with m distinct values is the eccentricity sequence of a connected graph of order p if and only if some subsequence with m distinct values is eccentric. A (2, 2)-eccentricity sequence may be characterized in an analogous fashion.

Theorem 8. A nondecreasing sequence $S: a_1, a_2, \ldots, a_p$ with m distinct values is the (2, 2)-eccentricity sequence of a graph if and only if some subsequence of S with m distinct values is the (2, 2)-eccentricity sequence of some graph.

Proof: If S is a sequence with m distinct values that is the (2,2)-eccentricity sequence of some graph, then S is a subsequence of itself, that is, S is the (2,2)-eccentricity sequence of a graph.

For the converse, suppose that S' is a subsequence of S that has the same m distinct values as S and suppose that S' is the (2,2)-eccentricity sequence of some graph G. Let t_1, t_2, \ldots, t_m be the distinct values of S'. For each t_i , $1 \le i \le m$, select a vertex v_i of G whose (2,2)-eccentricity in G is t_i . Let n_i $(1 \le i \le m)$ be one more than the number of occurrences of t_i in S less the number of occurrences of t_i in S'. In G replace v_1 with a copy of K_{n_i} and join each vertex of K_{n_i} to all the vertices adjacent to v_1 in G. Denote this graph by G_1 . In G_1 , replace v_2 with a copy of K_{n_2} and join each vertex of K_{n_2} to all the vertices adjacent to v_2 in G_1 . We continue in this fashion to obtain the graph G_m . Then S is the (2,2)-eccentricity sequence of G_m .

The (i, n)-center $C_{i,n}(G)$ of an *i*-connected graph G is the subgraph induced by those vertices with minimum (i, n)-eccentricity. For i = 1, this is the Steiner n-center of H (see [5]). We now prove that for integers i and n with i, n > 1 and for a given graph H, there exists an i-connected graph G such that the (i, n)-center of G is isomorphic to H.

Theorem 9. Let H be a graph and let $i, n \ge 2$ be integers. Then there exists an i-connected graph G such that $C_{i,n}(G) \cong H$.

Proof: Let $k = \max\{\lceil i/2 \rceil, i - |V(H)|\}$ and let $m \ge 3$ be an integer such that $i \mid i/2 \mid m > 2 \mid E(H) \mid + 1$. We first define a preliminary graph G_1 by

$$V(G_1) = \{v\} \cup \{v_{r,t} \mid 1 \le r \le n+1, 1 \le t \le m\}$$

and

$$E(G_1) = \{v_{r,t}v_{r,t+1} \mid 1 \le r \le n+1, 1 \le t \le m-1\} \cup \{v_{n+1,m}v_{1,m}\} \cup \{v_{r,m}v_{r+1,m} \mid 1 \le r \le n\} \cup \{v v_{r,1} \mid 1 \le r \le n+1\}.$$

Let G be the graph obtained from G_1 by first replacing the vertex v by V(H) and replacing the vertex $v_{r,t}$, where $1 \leq r \leq n+1$ and $1 \leq t \leq m$, by the set $V_{r,t} = \{v_{r,t}^1, v_{r,t}^2, \ldots, v_{r,t}^k\}$ of vertices. To define the edge set of G, we let $\varphi: V(G) \to V(G_1)$ be a mapping defined by $\varphi(w) = v$ for $w \in V(H)$ and $\varphi(v_{r,t}^s) = v_{r,t}$, where $1 \leq r \leq n+1$, $1 \leq t \leq m$ and $1 \leq s \leq k$. We then define the edge set of G by

$$E(G) = E(H) \cup \{xy \mid x, y \in V(G) \text{ and } \varphi(x)\varphi(y) \in E(G_1)\}$$

(see Figure 2).

Figure 2

Now we show that all vertices of H have the same (i,n)-eccentricity in G. Let $v \in V(H)$. Suppose that $S \subseteq V(G) - \{v\}$ is a set of n-1 vertices and F is an i-connected subgraph of G with $\{v\} \cup S \subseteq V(F)$ such that $e_{i,n}(v) = d_i(\{v\} \cup S) = |E(F)|$. We claim that $S \cap V(H) = \emptyset$. Suppose, to the contrary, that $w \in S \cap V(H)$. Since |S| = n-1, there exists V_r such that $S \cap V_r = \emptyset$.

Let $S' = (S - \{w\}) \cup \{v_{r,2}^1\}$. Let F' be an *i*-connected subgraph of G with $\{v\} \cup S' \subseteq V(F')$ such that $d_i(\{v\} \cup S') = |E(F')|$. Since F' is *i*-connected, it contains at least $\lfloor i/2 \rfloor$ vertices of $V_{r,j}$ for each j with $1 \le j \le m$. Then,

$$d_i(\lbrace v \rbrace \cup S') \ge d_i(\lbrace v \rbrace \cup S) + \lfloor \frac{i \lfloor i/2 \rfloor m}{2} \rfloor - |E(H)|$$

> $d_i(\lbrace v \rbrace \cup S) = e_{i,n}(v),$

a contradiction. Therefore, $S \subseteq \sum_{r=1}^{n+1} V_r$. Assume, without loss of generality, that $v_{r,1}^{\sigma} \in V(F)$. Then $v_{r,1}^{\sigma}$ is adjacent to at least i-k vertices of V(H) in F. Therefore, $|V(F) \cap V(H)| \ge i-k$. Since F is a minimal i-connected graph containing $\{v\} \cup S$, we have $|V(F) \cap V(H)| = i-k$. Further, the induced subgraph $\langle V(F) \cap V(H) \rangle$ of F is empty. Therefore, $e_{i,n}(v)$ in G is independent of the choice of v from H. Hence, $e_{i,n}(v) = e_{i,n}(w)$ for all $v, w \in V(H)$.

We now prove that $e_{i,n}(v) < e_{i,n}(w)$ for all $v \in V(H)$ and $w \in V(G) - V(H)$, from which it will follow that $C_{i,n}(H) \cong G$. Consider again a vertex $v \in V(H)$. Then, by the above, $e_{i,n}(v) = d_i(\{v\} \cup S)$, where S is a subset of $\{v'_{j,2} \mid 1 \leq j \leq n+1\}$ of cardinality n-1. Consider a vertex $v^s_{r,t} \in V(G) - V(H)$. Let S' be a subset of $\{v'_{j,2} \mid 1 \leq j \leq n+1, j \neq r\}$ of cardinality n-1. Then

$$e_{i,n}(v_{r,t}^s) \geq d_i(\{v_{r,t}^s\} \cup S').$$

Let F' be an *i*-connected subgraph containing $\{v_{\tau,t}^s\} \cup S'$ such that $d_i(\{v_{\tau,t}^s\} \cup S') = |E(F')|$. Then, clearly F' contains i - k (> 1) vertices of H. Suppose that v is such a vertex. Therefore,

$$d_i(\{v_{r,t}^s\} \cup S') = d_i(\{v,v_{r,t}^s\} \cup S').$$

Clearly, $d_i(\{v, v_{r,t}^s\} \cup S') > d_i(\{v\} \cup S')$. Therefore, $e_{i,n}(v_{r,t}^s) > e_{i,n}(v)$. This completes the proof.

References

- 1. G. Chartrand, S.F. Kapoor and D.R. Lick, *n-Hamiltonian graphs*, J. Combin. Theory 9 (1970), 308–312.
- 2. G. Chartrand, O.R. Oellermann, S. Tian, and H.B. Zou, Steiner distance in graphs, Casopis Pest. Mat. 114 (1989), 399-410.
- 3. G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
- L. Lesniak, Eccentricity sequences in graphs, Period. Math. Hungar. 6 (1975), 287–293.

- 5. O.R. Oellermann and S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990), 585-597.
- 6. O.R. Oellermann and S. Tian, *Steiner n-eccentricity sequences of graphs*, in "Recent Studies in Graph Theory", (ed. V. R. Kulli), Vishwa International Publications, India, 1989, pp. 206–211.
- 7. C. Thomassen, *Hypohamiltonian and hypotraceable graphs*, Discrete Math. 9 (1974), 91–96.
- 8. W.W. Wong and C.K. Wong, *Minimum k-hamiltonian graphs*, J. Graph Theory 8 (1984), 155–165.