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Abstract. Four {+1}-matrices A, B, C, D of order n are called good matrices if A— I,
is skew-symmetric, B, C and D are symmetric, AAT + BBT + CCT + DDT = 4nl,,
and, pairwise, they satisfy XY7T = Y X 7. It is known that they exist for odd n < 31. We
construct four sets of good matrices of order 33 and one set for each of the orders 35 and
127.

Consequently, there exist 4-Williamson type matrices of order 35, and acomplex Hada-
mard matrix of order 70. Such matrices are constructed here for the first time. We also
deduce that there exists a Hadamard matrix of order 1524 with maximal excess.

1 Statement of the Result

A {#1}-matrix A of order = is called a Hadamard matrix if AAT = I,
where A7 is the transpose of A and I, is the identity matrix of order n. A
{£1}-matrix A is said to be of skew type if A— I,, is skew-symmetric. Two
{£1}-matrices A, B of order n are said to be amicable if ABT = BAT.

Definition 1. Four {+41}-matrices A, B, C, D of order n are called 4—
Williamson type matrices if A, B, C, D are pairwise amicable and satisfy

AAT + BBT + ¢CT + DDT = 4n1,.

Definition 2. 4-Williamson type matrices A, B, C, D of order n are
called good matrices if A is of skew type and B, C, D are symmetric.
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Williamson type matrices are of paramount importance in modem con-
structions of Hadamard matrices, see [Sel], [Se2), [Co]. Given 4—William-
son type matrices of order n one can construct a Hadamard matrix of or-
der 4 nt for infinitely many odd values of t. The permissible values of
t are those for which there exist Baumert-Hall arrays of order 4t, see
[Co] or [Se2] for details. Good matrices can be used to construct new
4-Williamson type matrices. We mention only the following result of J.
Seberry [Sel).

Theorem 1. Assume that there exist good matrices of order n. Then

(i) there exist 4-Williamson type matrices of order n(4n—1);

(i) if there exists a symmetric Hadamard matrix of order 4n+ 4 then
there exist 4—Williamson type matrices of order n(4n+ 3).

So far only finitely many sets of good matrices of odd order are known.
These orders are the odd integers < 31. For the listing of known good
matrices of odd order seec [Sze]. The object of this note is to construct
good matrices of orders 33, 35 and 127.

Theorem 2. There exist good matrices of orders 33, 35 and 127.

The proof of this theorem will be given in the next two sections. Recall
thata {+1, +i}-matrix A of order n is called a complex Hadamard matrix
if AA* = nl,,, where i is the imaginary unit, and A* denotes the conjugate
transpose of the matrix A.

Corollary 1. There exist 4-Williamson type matrices of order 35, and
a complex Hadamard matrix of order 70.

Proof. The first assertion is obvious from Definition 2. The second
follows from the first and an observation of Kharaghani and Seberry in
[Kha]. For the convenience of the reader we give the details. If A, B,C, D
are 4-Williamson type matrices of order n, and if we set

X=(A+B)/2,Y=(A-B)/2,V=(C+D)/2, W=(C-D)/2,
then
( X+iY V+iW)
-V+iW X -iY
is a complex Hadamard matrix of order 2 n.
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2 Method of Construction

In order to describe our construction of good matrices announced above,
we need a few more definitions. Let n be a postive integer.

Definition 3. A matrix A = (as), 4,7 =0,1,...,2— 1, is said to
be circulant resp. back-circulant if a; ; = Qi+1,5+1 TESP. Qi ; = @41 j+1 for
all 4, (indices should be reduced modulo »). :

Definition 4. Four subsets Sp, 51,852,893 of {1,2,...,n— 1} are
called 4-(n; no,n1, n2,n3; \) supplementary difference sets (sds) mod-
ulo n if |Sg| = ny fork = 0,1,2,3 and foreachm € {1,2,...,n— 1}
we have Ao(m) + --- + A3(m) = X, where M\ (m) is the number of solu-
tions (4, ) of the congruence ¢ — j = m (mod n) with 4, j € S.

Suppose that Sy are 4 —(n; ng,n1,n2,n3; \) sds modulo » having
the following additional properties:

n+A=mng+m+m+mng, (N
1€So <= n—-i¢ S, (2)
1ES <= n—-1€8, k=1,2,3, - (3)

where in (2) and (3) it is assumed that 3 € {1,2,...,n—1}.

Let ar = (ako,Gk1,..-,8kn-1), k = 0,1,2,3, be the row vector

defined by
_ -1 ifie S
ki = { 1  otherwise.

Furthermore let Ag be the circulant matrix with first row ag, and let
Ag, k = 1,2,3, be the back-circulant matrix with first row a;. Then it
is well-known (and can be easily verified) that Ao, A1, A2, A3 are good
matrices of order 7.

The good matrices listed in [Sze] are all of the type described above.
The good matrices that we have constructed are also of this type. In order
to prove Theorem 2 it suffices to exhibit the sds’s modulo n = 33, 35 and
127 satisfying the additional conditions (1), (2) and (3).

Let r be an integer relatively prime to n, and set

Si={ri (mod m):i€S}c{l1,2,...,n—1}
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for k = 0,1,2,3. These sets are also 4 — (n; no,n1,n2,n3; A) sds
modulo n satisfying the conditions (1), (2) and (3). We shall say that such
quadruples So, S1,S2,S3 and S’o , .S’l , S'z , S; are equivalent.

We now give a brief description of the method of computation used to
find the necessary sds’s. The numbers ; are easy to determine (cf. [Sze]).
We first generate a number of subsets of size n; of {1,2,...,n}, having
the required symmetry properties (2) or (3), and at the same time com-
pute the corresponding set of differences. We store the multiplicities of
these differences in a file, say f;. In the case n = 127 the sets used were
not arbitrary, but only those which can be built up from cosets of the sub-
group H given in the next section. After creating these files for each of the
sizes no, ..., n3, we try to match the items in the four files to produce an
sds. This is done by examining items in two files only, say fo and f1 and
creating a new file in which we record the pairs which produce relatively
small variation in total multiplicities of the differences. The procedure is
repeated with the remaining two files f2 and f3. Finally the resulting two
files are examined in order to find a perfect match.

3 Supplementary Difference Sets

We consider separately the three cases n= 33, 35 and 127.

Case n= 33. In this case we exhibit 4 non-equivalent sds’s satisfying
the conditions (1), (2), (3). The first two are 4 — (33; 16,16, 18,22; 39)
sds: :
So={3,10,13,14,15,16,21,22,24,25,26,27,28,29,31,32},
s$={1,6,7,9,11,12,13,15,18,20,21,22,24,26,27,32},
s$,={1,3,4,5,6,10,13,14,16,17,19,20,23,27,28,29,30,32},
$3={1,2,3,5,6,7,10,11,12,13,15,18,20,21,22,23,26,27,

28,30,31,32};

So={1,7,9,11,14,15,16,20,21,23,25,27,28,29,30, 31},
S1={3,4,6,8,9,11,14,15,18,19,22,24,25,27,29,30},
$,={2,3,4,5,6,8,10,14,15,18,19,23,25,27,28,29,30,31},

148



53=1{3,4,6,7,9,10,11,12,13,14,15,18,19,20,21,22,23,24,
26,27,29,30}.

The thirdisa4 — (33;16,12,14,14;23) sds :

S0={3,5,6,7,9,11,14,15,16,20,21,23,25,29, 31,32},
$1={2,3,5,8,10,11,22,23,25,28,30, 31},
$:={1,2,6,10,11,13,16,17,20,22,23,27,31,32},
$3={2,4,5,6,7,8,12,21,25,26,27,28,29,31}.

The fourthis a4 — (33; 16,12,16,20; 31) sds :

So=1{1,3,4,6,9,13,17,18,19,21,22,23,25,26,28,31},

$1={1,3,5,6,9,10,23,24,27,28,30,32},

$={3,4,5,6,7,10,11,16,17,22,23,26,27,28,29,30},

$3={1,3,4,5,8,10,11,12,13,15,18,20,21,22,23,25,28,29,
30,32}.

The row sums of the good matrices which correspond to these sds’s are
1,1,-3,—11 in the first two cases, 1,9,5, 5 in the third case,and 1, 9,
1, —7 in the last case.

Casen = 35. Inthis case we have found one setof 4 —(35; 17,12, 16,
16; 26) sds satisfying the conditions (1), (2) and (3) :

S0={4,6,9,10,11,12,15,18,19,21,22,27,28,30, 32, 33,34},
$1={1,9,10,11,14,17,18,21,24,25,26,34},
$2={1,3,6,7,8,11,13,16,19,22,24,27,28,29,32,34},
§3={1,3,10,11,14,15,16,17,18,19,20,21,24,25,32, 34 }.

The row sums of the corresponding good matrices are 1,11,3,3.

Case n = 127. Let G be the group of nonzero residues modulo 127
andlet H =< 2 >= {1,2,4,8,16,32,64} be its subgroup of order 7.
We enumerate the 18 cosets o, 0 < ¢ < 17, of H in G as follows:

ao=H,ay=3H, a4 =5H, a6 =TH, ag =9H,
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ao=11H, aj2 = 13H, a1q4 = 19H, ay6 = 21H,

and o441 = -1 -anifor0 <1< 8.
We have found a 4 — (127; 63,70,70,70; 146) sds modulo 127, Sp,
S1, 82, S3, where each S is a union of certain cosets «;, namely

So = U, i€{0,2,5,6,8,10,13,14,16},
S1 = Ua,i€{0,1,2,3,4,5,10,11,14,15},
$2 = Ua, i€{0,1,4,5,6,7,8,9,14,15},
S3s = Ua, i€{0,1,4,5,12,13,14,15,16,17}.

These sets satisfy the conditions (1), (2), (3). Let us remark that this sds
can be used, as in [P o], to construct a new Hadamard matrix of skew type
of order 4.127.

4 Comments

1) 4-Williamson type matrices of order 127 were constructed by Miyamoto
[Mi]. Our good matrices of order 127 give another such set.

2) Our computer search for good matrices of orders 33, 35 and 127 was
incomplete. Hence there may exist additional solutions not equivalent to
those listed in Section 3.

3)If So,51,52,53 are 4 — (n; no,n1,n2,n3; ) sds satisfying the
conditions (1), (2) and (3), then the row sums of the oorrespondmg good
matrices are r; = n—2n;, withrg = 1 and4n= 13 + r2 + r2 + 3. Thus
we obtain a representation of 4 n— 1 as a sum of 3 odd squares. In the case
n= 33 there are three such decompositions, namely

131=112+32+12=924+724+12=92 4+ 52452,

For each of these decompositions we have found at least one set of good
matrices.

4) From Theorem 1 (i) we infer that there exist 4-Williamson type
matrices of orders 4323, 4865 and 64389. Since there exist symmetric
Hadamard matrices of order 4 - 34,4 - 36 and 4 - 128, Theorem 1 (ii)
implies that there exist 4-Williamson type matrices of order 4455, 5005
and 64897. We believe that all these orders are new.
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5) The row sums of the good matrices of order 127 exhibited above are
1, —13, —13, —13. This implies that there exists a Hadamard matrix of
order 1524 and maximal excess 1524-39, see [Kou, p. 146].

6) The claim made in [Je, p. 163] that the sds’s constructed in [Wh]
give rise to good matrices is in error. These sds’s satisfy (1) and (2), while
(3) is satisfied only by one of the sets S, Sz, S3.
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