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Abstract. For a wide range of p, we show that almost every graph ¢G(np) has no
perfect dominating set and for almost every graph GeG(a,p) we bound the cardinality of
a set of vertices which can be perfectly dominated. We also show that almost every tree
Ter(n) has no perfect dominating set.

1. Introduction.

For a graph @, the neighborhood Ng(v) of a vertex v is the set of vertices
adjacent to v and the closed neighborhood Ng[ v] of a vertex v is the set Ng(v) U
{v}. AsetS of vertices in a graph G is independent in G provided Ng(v)NS = 0
for all v € S while S dominates G provided Ng[v]l N S # @ forallv € V(G).

A set S of vertices ina graph G perfectly dominates G provided |[Ng[vlNS]| =
1 forallv € V(G). We note that S perfectly dominates G if and only if S is
independent in G and {Ng(v) : v € S} partitions V(G) — S (where we allow
the empty set). The perfect dominating number p(G) of G is the minimum
cardinality of a perfect dominating set in G, should one exist.

We note that [5] contains a bibliography of the numerous domination parameters
of a graph and [1], [2], [3] contain results regarding perfect domination of graphs
(therein referred to as efficient domination of graphs).

The probability space G(n,p) consists of all graphs G with vertex set [n] =
{1,...,m} in which the edges are chosen independently with probability p =
p(n) (sc; that P(G) = p™g"¥~™ when G has the size m where ¢ = 1 — p and
N=(3).

'I‘hezprobabilily space T(n) consists of all trees with vertex set {n] where
each tree is chosen randomly according to a uniform distribution so that P(T') =
n~("=2) by Cayley’s theorem.

A class of graphs which is closed under isomorphism is called a property of
graphs. For a model Q(n) of random graphs of order n, we say almost every
graph in Q(n) has a property Q provided P(G € Q(n) hasQ) — 1 asn — oo.

Although little is known about domination in random graphs, Weber [6] has
essentially determined the domination number and the independent domination
number of almost every graph G € G(n,p) for constant p.

For a wide range of p, we show that almost every graph G € G(n,p) has no
perfect dominating set and for almost every graph G € G(n,p) we bound the
cardinality of a set of vertices which can be perfectly dominated. We also show
that almost every tree T" € T (n) has no perfect dominating set.
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We use the notation and terminology of [4]. In particular, we use the following
standard inequalities.

l-z<es TR e forz €[0,1], n
e 11—z forz€[0,.68]and (2
el 1+zLer forz € [0,1]. (3)

Forl1 <t < m,let(n) =n(n—1)...(n—t+ 1). Then (1) implies
(n)t S nte-(;)/"_(;) (2t-n/6% S nte-(;)/" S ﬂt (4)

while (4) implies n . e
(3) < (e < (3, ®)

since t! > (t/e)*. Throughout the paper all logarithms are natural logarithms.

2. Results.

For a wide range of p, we first show that almost every G € G(n,p) has no
perfect dominating set. Our proof shows the probability that a graph has a perfect
dominating set is exponentially small.

Theorem 1. For0 < p=p(n) <1 with .li—l:lop< 1 and pn — oo,
n—
P(G € G(n,p) has aperfect dominating set) = O(ne~"")
where 48 = 1 — 1im p.
n—o0
Proof. For S C [7) and G € G(n,p), let

1, §isa perfect dominating set of G,
0, otherwise,

Xs(G) = {

and

X= E Xs (X counts the number of perfect dominating sets) .
s

For § = {41,...,4,} with1 < i} < --- < 4, < mand division (an ordered
partition where we allow empty sets) (A4;,...,4,) of [n] - S, .

P(G € G(n,p) has Ng(i1) = Ay,...,Ng(i,) = A,)
spltl+lAs| grms—|Ai[++nma—|Aal+ ()
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and

E(XS) = E p|A||+ --~+|A.g|qn—a—]A| |+...+u—a—|Aa|*(:)

(Al As)
division of (n)-§

= E pn—a q
L (Areds)
division of [n]-$

(s=1D(n—-2)+(2)

= (ps)n-aq(s-l)(u-a)+(2")

so that (1) implies

EB(X) = E (Z)(ps)""’q(d—l)(n-a)-&(g)
8=1
< i (:)(ps) "Pae_"[("'l)(n—ah(;)]
s=1

8=l
Let45=1— Tim pandclog(e/c) /(1 —2¢c) = §sothatc € (0,1/16) since

8 € (0,1/4]. Then for all large n (say n > mp) we have 1 — p > 28, pc*>n > 2
andn—2 >2cn> 2 sothat

clog(3) — (1 -p)(1 - 0) < clog(2) —28(1 — ) = =5

and

logZ—EC—ZZEg—(l—logm < 6.

If t = [cn] then for n > ny we have 1 < t < n/2 while (5) implies
Cn.t €\entl
H< <™.
Forl < s<tandn > np,
e(n—2)[log ps—ps+p] < 3e-(1-pP)(1-)n
sincelogz — z < —1 on (0, 00) and

t
z (:’)e(n—a)[losw—m+p]—l’(:) < 3t(§)m*le-(l-p)(l—c)n

< 6 en e™los( efc)=(1-p)(1~c)n

< 6ene™",
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Fort+1 < s<nandn> n,

oD < omptr2

and
n
Z (")e( n—2)(log ps—ps+p)—p( 5) < 27 PR N2
s=t+1 s
<en log 2—p a2 [2
S e-&n.
Consequently,

E(X) = O(ne™%™)
and Markov’s Inequality implies

P(G € G(n,p) has a perfect dominating set) = O(ne=5"). 1

Foragraph G with § C T C V(G), we say S perfectly dominates T in G
provided [Ng[v1 N S| = 1 forall v € T. Note that S perfectly dominates T in G
if and only if S is independent in G and {Ng(v) N(T — 8) : v € S} partitions
T — S. Observe that if S perfectly dominates T'in Gand S C U C T then S
perfectly dominates U in G.

For a graph G, let ¢(G) = max{|T| : 38 which perfectly dominates T in
G'}. For a wide range of p, we next show that for some constant d € (0, 1),
€(G) < [dn] for almost every G € G(n,p).

Theorem 2. For0 < p = p(n) < 1 with n@p < 1/2 and pn — oo, there
existsd € (0, 1) so that

P(G € G(n,p) has «(G) > [dn]) = O((pm)™*).

Proof. First,for S C T C [n] and G € G(n,p), let

1, S perfectly dominates T in G,

Xisn(G) = { 0, otherwise

andforl <r,t<n

Xen= ), Xsm.
1<IsI<r
|T—S|=t
ForSCT C [n) with|S|=sand|T - S| =1t,

E(X(sm) = (ps)tqte-0+(2)

176



so that (1) implies

E(X(ry)) = E (:) (nt_ 3)(p3)¢q(8-l)t+(:)

8=l

r
< E (:) ("t_ s)et[los ps—ps+p

s=1

<L O] et

8=l

Next, for S C [n]) and G € G(n, p), let

1, S isindependentin G,
Y- =
(&) { 0, otherwise,
and
Y=) Y
ISl=r
so that (1) implies

E(Y) = ([)¢(
S (:)C-P(;).

Let 85 = 1/2 — mpandc/znogc = 1/2 —2&sothatc € (.9,1)

since § € (0 1/16]. Then for all large n (say » > mg) we have p < 1/2 — 456,
5pn > 5log? pnandn > 1/(1—c) sothatpn > 6000 andpn > 5 log pn > 40.
Ifr = [2 log pn/p] and t = [cn] then for n > 7y we have

32 <4logpn< r < min {;, (Pn)r}

and 5 5
r
T < log pn
while (5) implies
en ,
(M) < (D) < ()" < (om)
and

(:) < (e%)‘e‘(i)/" <2 (E)'e—tc/z.
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Forzn > ng,

B(X(ra) < 7(7) (e
< 2¢tl(2r/0) log putlog( e/c)—c/2—-(1=p)]

S 26—&
< 2e~bcn

while
E(Y) < erllog( epnf2 log pn)—log pr+1/2)
< e'r[l-log log pm)
<e™’
< (pm)~*.

Then
E(X@y +Y) = 0((pn)~*)

and Markov'’s Inequality implies
P(Xtry 2 D+ P(Y 2 1) = O((pm) ™).

Letd € (c,1). Then for all large n (say n > m > no) we have r + t < [dn].
Forn> n,

P(G € G(n,p) has «(G) > [dn])
< P(38 perfectly dominates T" in G with |S| < rand |T — S| > t)
+ P(38 perfectly dominates T in G with |S| > r)
< P(Xpy 21+ P(Y > 1).

Consequently,

P(G € G(n,p) has (@) > [dn]) = O((pn)~*). (]

Remark. As a consequence of our last result, there exist constants 0 < ¢; <
c2 < 1sothatcn < e(G) < cznforalmostevery G € G(n,p) with p constant,
since e(G) > A(G).

We finally show that almost every tree T € T(n) has no perfect dominating
set. Again, our proof shows the probability that a tree has a perfect dominating
set is exponentially small.
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Theorem 3. P(T € T(n) has a perfect dominating set) = O(ne~%!%),

Proof. Fix S = {i;,...,14,} C [n) with1 < 1} < --- < i, < nand division
(Ay,...,A;) of [n] — S. For T € T(m) with perfect dominating set S and
Nz(i;) = A; (1 < j < s) wehave, (1) S, Ay,..., A, are independent sets in
T, (2) |Ai1],-..,|As] > 1 since T is connected and (3) there is at most one edge
between A;and A; for1 < ¢ # j < ssince T is acyclic. (We note that necessarily
s < n/2 by (2)).

Consequently, in [n] — S if we contract each A; t0 a vertex { we obtain a simple
graph (no loops nor multiple edges) 7" which must be a tree with vertex set [s].
Conversely, any tree T* with vertex set [s] and degree sequence (dy,...,d,)
where dp.(i) = |[N7-(3)| = d; (1 < i < s) comes from at most

[A1]% ... |A4,)%
such trees T € T(n).

The number of trees T* with vertex set [ s] and degree sequence (d,...,d,)
wheredr.(i) =d; € N ={1,2,3,...} (1<i<s)is

(a1 am)
da-—1,...,dy,—1

so that the Multinomial Theorem gives

P(T € T(m) has perfect dominating set S with Np(i)) = Ayq,..., Np(is) = A,)

< ¥ (dl N )H' Ayfn D

(di,...ds)EN? j=1
dy#+dg=2s5-2

= IIIA,Icn— 5)* e,

]—
First, going from fixed neighborhoods to fixed degrees we have

P(T € T(m) has perfect dominating set S with dp(1y) = £,,...,dr (%) = £,)

< (070 ) Tyt

)(n- 8)s(n— 8)* 0~ (*2

|
O]
|
-3
|
[
FR )
|
p—
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so that upon summing over all such degree sequences, the Multinomial Theorem
gives

P(T € T(m) has perfect dominating set S) .
> =29 V(n—s(n— 8)*u D
6 —1,...,8—1
(&, L)EN®

4+ +4=n—-8

= su-ZJ(,n — 8)(n— 8)5—2 n—(rv—?.)
and, finally, going from fixed set to fixed cardinality we have

P(T € T(n) has perfect dominating set of cardinality s)
< (")SW—ZQ (n— 3)0(7"— )5—2 n—(n-2)

_ (Mao(n—s)*2sm2

3' nﬂ—z
o (Mzs(n—s)°~2s™2
nha(n—s a=2 gn-2s
f(s) s' ﬂ'b-z
e ( D(n—-2s)(n—2s-1)
9(8)= n—s8-— n—cs){n [

(s+1)3

and note that g( s) is a nonnegative, decreasing functionof son [1,(n— 1)/2].
For2 < s<(n—-2)/2,

f(8+ 1) 8=2 n—-2s
D - (- 550 )
so that (2), (3) imply
f(s"’ 1) ~23/(n—3)+(n—22) /25 =
NN > g(s)e 9(s)h1(s)
while (1), (3) imply
1
f(;(:) L < g)e (DI tm29/5 12 g(5)ha(s)

where h1(3), ha (s) are decreasing functions of son [2,7n/2]. Hence g(s) h1(s) >
g((n—13)/3)h1(n/3) > 2e7'/2 > 1for2 < s < (n—3)/3 whileg(s)ha(s) <
9(3n/8)h2(3n/8) < (20/27)e!/* < 1 for3n/8 < s < (n— 2)/2 provided
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n 2> 18. Then f(s) isan increasing sequenceon {2,..., |n/3 ]} and a decreasing
sequence on {[3n/8],..., n/2 ]} provided n > 18.
For1 < s < n/2, (1) implies

(l _ f_)a < e~ /620
n =
while (4) implies
(n)Za < 3,‘206-2&1/”—433/3?33

so that
£(3) < 12¢°-38 /n-1187 /6% +(35~r) log(n/e)

where s—3 5% /n—11s® /6 n? is a decreasing function of s on [#/12,n/2] while
(3 — m) log(n/s) is an increasing function of s on [n/12,n/2]. Then

f(s) < 12eM(1-3c2) log c2+e1 =3¢ ~11¢] /6)}

forn/12 < e1n< s < an< n/2.
Finally, let

h(c,d) = (1 —3d)logd+c—3c? -¥

withc; = .33, ¢ = .35, c3 = .362, ¢4 = .37, ¢s = .376, and ¢ = .38 so that
h(ci,civ1) £ —.008 for1 <4< 5 and

f(s) < 12¢715
on {[.33n],...,|.38n|}. Forn > 400,
£(1.330]) < F(In/3]) < 12K31n ¢ 19616
since n/12 < [.337] < |n/3] < n/2 while
F(1:38n)) < f([37/8]) < 1264C3/83m ¢ 1 g-w/125

since n/12 < [3n/8] < [.38n] < n/2. Note that f(1) = n~(»-3) =
O(ne~15),

Consequently,
P(T € T(n) has perfect dominating set)
w2
< E P(T € T(n) has a perfect dominating set of cardinality s)
s=1
= O(ne™"1%), |
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3. Conclusion.

For a wide range of p we have shown that almost every graph G € G(=,p) has no

perfect dominating set and we have determined the order of magnitude of e(G)
for almost every graph G € G(=,p) provided p is constant. Determination of
the order of magnitude of ¢(G) for other ranges of p could be of interest. We
have also shown that even for the set of labelled trees, almost every tree has no
perfect dominating set. Again, determination of the order of magnitude of e(T")
for almost every tree T € T(n) could be of interest.

w &
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