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Abstract. It has been conjectured by D. R. Stinson that an incomplete Room square
(n, 5)-IRS exists if and only if n and s are both odd and n > 35 + 2, except for the
nonexistent case (n, 8) = (5, 1). In this paper we shall improve the known results and
show that the conjecture is true except for 45 pairs (n, s) for which the existence of an
(n, 8)-IRS remains undecided.

1. Introduction

Let S be a set of n+ 1 elements called symbols. A Room square of side n (on
symbol set S) is an n x narray, F', which satisfies the following properties:
1. every cell of F either is empty or contains an unordered pair of symbols
from S
2. each symbol of S occur once in each row and column of F
3. every unordered pair of symbols occurs in precisely one cell of F.

It is immediate that » must be odd for a Room square of side n to exist. The
spectrum of Room squares was determined in 1975 by Mullin and Wallis [7].

Theorem 1.1. A Room square of side n exists if and only if n is an odd positive
integer,and n# 3 or 5.

A further problem, which has attracted much research interest in recent years,
is the existence of incomplete Room squares. Here is the definition.

Let S be asetof n+ 1 symbols and let T" be a subset of S of cardinality s + 1.
An (n, s)-IRS, called an incomplete Room square, is an n x n square array F
which satisfies the following:

1. every cell of F either is empty or contains an unordered pair of symbols of
S

2. thereis an empty s x s subarray G of F

3. each symbol of S\T occurs once in each row and column of F

4. each symbol of T occurs once in each row and column not meeting G, but
not in any row or column meeting G

5. the pairs occurring in F' are precisely those {z,y} where (z,y) € (S x
SH\(T xT).

1 Research supported by NSFC grant.

JCMCC 14 (1993), pp. 183-192



We refer to the subarray G as the hole. An (n,0)-IRS is simply a Room square
of side n. We suppose that s > 0 from now on. Simple counting shows that the
existence of an (n, s)-IRS implies that n and s are both odd, n > 3s + 2, and
(n,s) # (5,1). The following conjecture was first presented in [9].

Existence Conjecture. An (n, s)-IRS exists if and only if n and s are both odd
Dpositive integers,n > 33+ 2, and (n,38) # (5,1).

Many papers over the years have studied the existence of incomplete Room
squares [3-4], [9-11], (13-15]. The bestknown general existence results for (n, s) -
IRS are summarized in the following theorem.

Theorem 1.2,

1). [1]Forodd n> 1, there is an (n, 1) -IRS.

2). [15]Forodd s > 3, thereisan (3s+ 2,3) -IRS.

3). 23], [A5] Forodd s,3 < s < 15 and s = 23, 33, and for all odd
n > 3s+ 2, there is an (n, s) -IRS.

4). [3]Forallodd s > 37 andallodd n > (7s—5) [2, there is an (n, 3) -IRS.

S). [13] Forall odd s > 393 and all odd n > 3s + 2, there is an (n, 8) -IRS.

6). [3]Foranyodd s, 17 < s < 35 and for any odd n > 3s + k there is an
(n, 8) -IRS, where k is shown in the table.

S 17 19 21 23 25 27 29 31 33 35
16 12 8 4 20 16 12 8 4 10

In this paper we shall improve these results and prove the following theorem.

Theorem 1.3. For any odd integer s > 1, an (n, s) — IRS exists if and only if
nisoddand n > 33 + 2, with 45 ordered pairs (n, s) as possible exceptions, as
listed in Table 1.

2. Preliminaries

In this section we shall state some known constructions to obtain incomplete
Room squares. The first one involves the use of transversal designs. The sec-
ond one needs the existence of a starter and adder, while the last uses frames. For
general concepts and notation on designs the reader is referred to the book of Beth,
Jungnickel and Lenz [1].
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Table 1
parameters s and k for which a (3s + k, ) — I RS is unknown

s k
21,37,51,57,121 4
31,35,41,49 46
45 48
19,25,55 4,68
29,89 48,10
105 4,10,12
17,47 4,8,10,12
27 48,12,14

A transversal design, denoted by T D[ k,m], is a triple (X, G, A ), which sat-
isfies the following properties:

1. X isakm-set

2. G is a partition of X into km-subsets called groups

3. A isa set of k-subsets of X (called blocks) such that a group and a block

contain at most one common point, and

4. every pair of points from distinct groups occurs in a unique block.

We also require the idea of incomplete transversal designs. Informally, an in-
complete T D, denoted by T D[ k, n] — T D[k, m],isaT D[ k, n] “missing” a sub-
TD{k, m]. WeobservethataT D[ k,n] —T'D[k,0] andaT D[ k,n] —T D[k, 1]
exists if and only if a T D[ &, n] exists. We have the following known results on
TDs and incomplete TDs.

Lemma 2.1. [12, Lemma 1.4] Forall integers m > 5, m # 6,10,14,18,22,
26,30,34 or42, thereisa TD(6,m].
Lemma 2.2. /5] There exists a T D{4,n] — TD[4,m)] forany integer m > 2
and n> 3m.

The first construction is as follows.

Lemma 2.3. [3, Theorem 4.7] Suppose there is a T D[ 6 , m], and suppose there
exists an (2r + a,a)-IRS forall r suchthat m < r < 2m. Letm <t <2m
and let 5m < w < 10m. Then there exists an (2w + 2t + a,2t + a) -IRS.

Remark: From the proof of [3, Theorem 4.7] one may easily find that if the con-
dition m < r < 2m in Lemma 2.3 is replaced by m < m' < r < 2m, then the
conclusion still valid provided that 5m' < w < 10m.

A starter in an abelian group G of order 2n— 1 is a set of n— 1 unordered pairs
{z1,m1},{z2,92},-..,{Tu-1, yn-1 } which satisfy the following properties:

L {si11<i<n—-1}u{ts1<i<n—1}=G\{0}
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2 {£(si—-t):1<i<n—1}=G\{0}.

Anadder for astarter {z1, %1 }, {Z2,¥z},+++, {Za-1,¥n-1 } inGisasetof n—1
distinct non-zero elements a;, az,...,8,— Suchthat {z;+a;:1 <i<n—-1}U
{yi+a:1 <i<n—1}=G\{0}.

For existence of starter an adder, the following result is known.

Lemma 24. /8] Forodd g,7 < g < 47, there is a starter and adder in Z,.

The following is the second known construction.

Lemma 2.5, [13, Lemma 4.4] Suppose there exists a starter and adder in Z,.
Suppose 0 < u< 3(g—1)/2 and 0 < k < 7[(g — 1)/2 — [u/3]]). Further,
suppose thereisa (6 u+2k+ 11,2u+ 3)-IRS. Thenthereisa (24g+6u+2k+
11,89 + 2u + 3)-IRS.

Let Sbeaset,andlet{S;,S,,...,S,} beapartitionof S. An{S;,S,,...,8.}-
Room frame is an | S| x |S| array, F, indexed by S, which satisfies the following
properties:

1. every cell of F either is empty or contains an unordered pair of symbols of

S .

2. the subarrays S; x S; are empty, for 1 < 1 < n(these subarrays are referred

to as holes)

3. each symbol z ¢ S; occurs once in row { or column) s, for any s € S;, and

4. the pairs occurring in F' are those {s,t}, where (s,%) € (S x 8)\ Uici<n

- {(Six S)).
As is usually done in the literature, we shall refer to a Room frame simply as a
frame. The type of a frame F is defined to be the multiset {|Si|:1 < i < n}.
We usually use an “exponential” notation to describe types: a type t}"¢5? ... ¢;*
denotes u; occurrences of ¢;, 1 < i < k. The order of the frame is |S|.

We observe that existence of a Room square of side nis equivalent to existence
of a frame of type 1™ , and existence of an (#, s)-IRS is equivalent to existence
of a frame of type 1%2s!.

For existence of frames, the following results are known.

Lemma 2.6. [3],9] There exist frames of type 4,254 and 4%6".

Lemma 2.7. @] Suppose there is a frame of type T', and suppose m is a positive
integer, m # 2 or 6. Then there is a frame of type mT .

Using frames and the Filling in Holes techniques we have the third construction
to obtain incomplete Room squares.

Lemma 2.8. /9] Suppose there is a frame of type {s;:1 < 1 < n},andleta > 0
be an integer. For 1 < i < n— 1, suppose there is an ( s; + a, a) -IRS. Then there
isan (8 +a,8,; + a) -IRS, where s = legsﬂs,-.

We now give generalization of Filling in Holes [9] which starts with a Room
square and uses an incomplete transversal design.
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Lemma 2.9. [6] Suppose there is 2 Room square of side s, and suppose there
exista (v+ 1,w)-IRS and a TD[4,v] — TD[4,w)]. Then there exists a (uv +
1, uw)-IRS.

3. Main result

In this section we shall prove our main result, namely Theorem 1.3. Define § =
{s: there exists an (n, 3)-IRS forallodd n > 35+ 2}.

Lemma 3.1. s € S for any odd integer 3, 107 < s < 391, and s % 9
(mod 16).

Proof: For any such s, s can be uniquely written in the form s = 8g + 2u + 3
such that g is an odd integer, 13 < g < 47 and0 < u < 6. Since there
exists by Lemma 2.4 a starter and adder in Z,, we may apply Lemma 2.5 to obtain
incomplete Room squares. By Theorem 1.2 3),2u+3 € Sfor0 < u < 6. We
obtaina (3s+2+2k,s)-IRS for0 < k < 7[(g—1)/2 — [u/3]]. On the other
hand, there exists from Theorem 1. 24) an (7, 3)-IRS forallodd n > (7s—5)/2.
It is readily checked that

35+ 2+ 14[(g—1)/2 — [u/3]]1 > (75— 5)/2.

Then the conclusion follows immediately.
Lemma 3.2. s € S forany odd integers =9 (mod 16) and 281 < s < 391,

Proof: Since 33 € S from Theorem 1.2 3), we take u = 15 in Lemma 2.7. Write
s=8g+2u+ 3, whereg > 31. A similar proof to that of Lemma 3.1 shows that
s€S.

In what follows we shall discuss the remaining cases, namely s < 105 and
s =9 (mod 16) for 107 < s < 279. For each s we have from Theorem 1.2
4) that an (n, 3)-IRS exists if s > 37 and n > (7s — 5)/2. Similar results for
17 < s < 35 are also known from Theorem 1.2 6). These results provided a
bound ko = ko(s) such that an (#n, s)-IRS exists whenever n > 3s+ ko. In the
next lemma we shall i 1mprove thebound n > 3s+ ko ton > 3s+ Ic1 by using
Lemma 2.3.

Lemma 3.3. For any odd integer s, 31 < s < 105, and for any s = 9

(mod 16), 107 < s < 279, an (=, s)-IRS exists whenever n > 33 + ky is
odd, where the value k, is given in Table 2.
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Table 2

s ko k) m t a z-y
37 16 6 8 15 7 6-86
39 17 2 8 16 7 2-82
41 18 8 9 17 7 8-98
43 19 4 9 18 7 4-94
45 20 10 9 18 9 10-90
47 21 16 11 19 9 16-126
49 22 12 11 20 9 12-122
51 23 8 11 21 9 8-118
53 24 4 11 22 9 4-114
55 25 10 12 22 11 10-130
57 26 6 12 23 11 6-126
59 27 2 12 24 11 2-122
61 28 8 13 25 11 8-138
63 29 4 13 26 11 4-134
65 30 20 15 26 13 20-170
67 31 16 15 27 13 16-166
69 32 12 15 28 13 12-162
71 33 8 15 29 13 8-158
73 34 4 15 30 13 4-154
75 35 10 16 30 15 10-170
77 36 6 16 31 15 6-166
79 37 2 16 32 15 2-162
81 38 8 17 33 15 8-178
83 39 4 17 34 15 4-174
85 40 20 19 35 15 20-210
87 41 16 19 36 15 16-206
89 42 12 19 37 15 12-202
91 43 8 19 38 15 8-198
93 44 14 20 39 15 14-214
95 45 10 20 40 15 10-210
97 46 16 21 41 15 16-226
99 47 12 21 42 15 12-222
101 48 28 23 43 15 28-258
103 49 24 23 44 15 24-254
105 50 20 23 45 15 20-250
121 58 8 25 49 23 8-258
137 66 16 29 57 23 16-306
153 74 24 33 65 23 24-354
169 82 32 37 73 23 32-402
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Table 2 (cont’d)
3 ko k1 m t a T-y
185 90 40 41 81 23 40-450
201 98 48 45 89 23 48-498
217 106 56 49 97 23 56-546
233 114 64 53 105 23 64-594
249 122 72 57 113 23 72642
265 130 80 61 121 23 80-690

Proof: InTable2, we give the integer ko where the bound n > 3 s+ k¢ comes from
Theorem 1.24). By applying Lemma 2.3 we have the improved bound n > 3s+k;
where the integer k; is also given. The parameters m, ¢, ¢ in Lemma 2.3 are listed.
Instead of giving a resultant interval [3 s + z,3s + y], we simply write “z - y”,
where z = 10m — 4t — 2q and y = z + 10 m. The fifth line in Table 2 comes
from the Remark of Lemma 2.3 where m' = 10, z = 10m' — 4t — 2a and
y=20m—4t—2a.
We shall further lower the bound n > 3s + k; whenever possible.

Lemma34. s€ Sifs=9 (mod 16) and 137 < s < 265.

Proof: Apply Lemma 2.5 withu =7 and g = (s — 17) /8. Since 15 < g < 31
and g is odd, there exists from Lemma 2.4 a starter and adder in Z,. We then obtain
a(3s+2+2k,s)-IRSfor7 < k < 7[(g—1)/2 —3] since an (n, 17) -IRS exists
for n > 67. Combining this with the bound » > 3s + k; in Table 2 gives a new
bound n > 3s + k2 where kz = 16.

Again using Lemma 2.5 with 4 = 15 and g = (s — 33)/8. We obtain a
(3s+2+2k,s)-IRSfor0 < k < 7[(g—1)/2 —5] since 33 € S. To show that
s € Sweneedtohave (g — 1)/2 —5 > 1, which is implied by g = (s — 33)/8
and s > 137. The proof is complete.

Lemma 3.5. s € S ifs > 59 except possibly if s € {89,105, 121}.

Proof: Takeg=7 and0 < u < 6 in Lemma 2.5. We obtaina (3s+ 2+ 2k, s)-
IRS for0 < k < 7[3 — [u/3]], where s = 8¢ + 2u + 3, Combining this with
the bound n > 3s + k; in Table 2 gives s € S for 59 < s < 71. From Table
2 we also have 73 € S. Furthertakeg = 9,11 and 0 < u <€ 6 in Lemma 2.5.
We obtain that s € S for 75 < s < 87 and 91 < s < 103. The conclusion then
follows from Therem 1.2 5) and Lemmas 3.1 - 34.

Lemma 3.6. A (3s+ k, s) -IRS exists for s = 105 and for aill even k > 14.

Proof: Apply Lemma 2.5 withg = 11 and u = 7. We obtain a (3 s + k, s)-IRS
for s = 105 and 14 < k < 20. Then the conclusion follows from Lemma 3.3.

‘We now treat some sporadic pairs (n, s).
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Lemma 3.7. There exists an (n, s) -IRS for (n,s) € E, where

E={(3u+6,u),(3v+10,v), 3w+ 14,w):
u=17,21,27,29,45,47,51;
v=19,27,49% w= 17,47}

Proof: Apply Lemma 2.8 with the parameters shown in Table 3. The required
frames of type mT come from the frames of type T in Lemma 2.6 and Lemma
2.7 with suitable m. The required (s; + a,a)-IRS are all known from Theorem
1.23).

Table 3
(n, s) T m (s; + a,a)-IRS
(57,17) 254! 4 (8+1,1)
(65,17) 44 4 (16+1,1)
(67,19) 44 4 (16+3,3)
(69,21) 44 4 (1645,5)
(87,27 44 5 (20+7,7)
(91,27) 446! 4 (16+3,3)
(93,29) 446! 4 (16+5,5)
(141,45) 44 8 (32+13,13)
(147,47) 254! 10 (20+7,7)
(155,47) 44 9 (36+11,11)
(157,49) 44 9 (36+13,13)
(159,51) 44 9 (36+15,15)

Lemma 3.8. There exists an (n, s) -IRS for (n,s) = (113,35),(155,49) and
(323,105).

Proof: The conclusion follows fom Lemma 2.9 and the following expressions:
113 =7x(11+5)+1,

155=7 x (15+7) + 1,
323 =7 x(31+15) + 1.

The required T D[4, v]—T D[4, w] and IRS come from Lemma 2.2 and Theorem
1.2, respectively.

Lemma 3.9. There exists an (3s+ 6,3) -IRS for s = 89,105 and 121.

Proof: InLemma2.5,let k = 2 and (g,u) € {(9,7),(11,7),(13,7)}. Since a
(57, 17)-IRS exists from Lemma 3.7, the conclusion then follows.
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Lemma 3.10. A (3s+ k, s)-IRS exists for s = 25 and forall even k > 10.

Proof: Apply the Remark of Lemma 2.3 withm =5, m'=6,t=10 anda = 5.
We obtain a (3s + &, 8)-IRS for s = 25 and 10 < & < 50. Then the conclusion
follows from Theorem 1.2 6).

We are now in a position to prove our main result.

Proof of Theorem 1.3: By Lemma 3.3, Lemmas 3.5-3.6 and Lemmas 3.8-3.9 we
have proved our conclusion for s > 59. By Lemma 3.3 and Theorem 1.2 we have
s € § for those s not in Table 1. For those s in Table 1 and s < 59 we compare
the bound # > 3 s+ k; shown in Table 2, Theorem 1.2 6) and Lemma 3.10 with
the exceptional pairs (3s + k, s) in Table 1. The gap between them is just filled
by Lemmas 3.7 -3.8, shown in Table 4, where the third column lists those k for
which a (33 + k, s)-IRS is known from Lemmas 3.7-3.8 and the last column lists
the unknown cases. The proof is complete.

Table 4
\  remaining
] k; k cases
17 16 6,14 48,10,12
19 12 10 46,8

21 8 6 4

25 10 - 46,8

27 16 6,10 481214
29 12 6 48,10

31 8 - 4,6

35 10 8 4,6

37 6 - 4

45 10 6 4.8

47 16 6,14 48,1012
49 12 8,10 46

51 8 6 4
55 10 - 4,6,8
57 6 — 4
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