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Abstract. In this paper we prove that a (v, u; {4 }, 3)-IPBD exists when v, u = 2 or3
(mod 4) andv > 3u+ 1, and then solve the problem of the existence of (v, u; {4}, ))-
IPBD completely, which generalizes the result of [7].

1. Introduction

We assume that the reader is familiar with the basic concepts in design theory such
as pairwise balanced design (PBD), group divisible design (GDD), transversal
design (TD), parallel classes of blocks, resolvability, etc. For general information
and notatons see [1] and [8]. We begin with the definition of PBD missing one
sub-PBD, called an incomplete PBD, adapted from [7].

Anincomplete PBD (or IPBD) is a triple (X, Y, A), where X is a set of points,
Y C X and A is a set of blocks which satisfies the following properties:

(1) foranyA€ A,|JANY|< 1;and
(2) every pair of points {z, y}, where {z,y} € X x X\Y x Y, occurs in exactly
X blocks.

We say that (X, Y, A) isa (v, u; K, A)-IPBDif | X|=v,|Y|=uand|A| € K
for every A € A.

In this paper, we study the existence of (v, u; {4 },))-IPBD. The necessary
conditions of the existence of such designs are easily seen to be as follows:

(1) M(v—=1)=0 (mod 3);

(2) Mv—1u) =0 (mod 3);

B3) Mv? —u?—v+u)=0 (mod 12); and ™
4 v>3u+1l.

The interesting problem is whether the necessary conditions (*) are sufficient.
When X\ = 1,2 and 6 this problem is solved. The following three theorems are
from Rees and Stinson [7], Rees and Rodger [6] and Kong and Zhu [3], respec-
tively.
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Theorem 1.1. A (v, u; {4},1)-IPBDexistsifandonly if u,v = 1,4 (mod 12),
v,v=7 or 10 (mod 12),and v > 3u+ 1.

Theorem 1.2. A (v,u; {4},2)-IPBDexistsifandonlyif v=u =1 (mod 3)
and v >3u+ 1. ,

Theorem 1.3. A (v,u; {4},6)-IPBDexistsifandonlyifu > 1andv > 3u+1.

When ) = 3, (¥ reducestov,u=0or1 (mod 4) orv,u=2or3 (mod 4)
and v > 3u + 1. Wei [8] proved the following theorem.

Theorem 14. A (v,u;{4},3)-IPBD exists if v,u = 0 or 1 (mod 4) and
v>3u+ 1.

In this paper we discuss the case X = 3,v,u = 2 or 3 (mod 4) andv >
3u+1. We will first prove the following theorem and then obtain the min theorem,
Theorem 1.6.

Theorem 1.5. A (v,u; {4},3)-IPBD exists if v,u = 2 or 3 (mod 4) and
v>3u+ 1.

Theorem 1.6. A (v,u,{4},))-IPBD exists if and only if the triple (v,u, )
satisfies (*).

‘We use the following notations in this paper.

By = {(v,u) :v,u=2o0r3 (mod 4) andv > 3u+ 1}.
Az = {(v,u) : thereexists a (v,u; {4},3) — IPBD}.

2, Constructions use incomplete designs

A design with a missing subdesign is called an incomplete design. In this paper
we need some other incomplete designs besides IPBD.

A sub-GDD(Y,G’, A") of aGDD( X, G, A) is a GDD whose points and blocks
are respectively points and blocks of the GDD(X, G, A) and whose every group
is contained in some group of the latter. When the sub-GDD is missing, then it
becomes an incomplete GDD, or IGDD, and denoted by (X,Y, G, A\ A'). Some-
times we denote it by IGDD[ K, ] when |A| € K for every A € A\A', and
define its group type to be the multiset of ordered pairs {|G|, |GNY]) : G € G}.

A design which is obtained by deleting all blocks of a TD( k, u) froma TD(k, v)
is called an incomplete array denoted by I1A;_z (v, u).

We also employ PBDs which have two subdesigns deleted. These designs are
referred to as ¢-IPBDs (see [7]). ¢-IPBD is a quadruple (X, Y;,Y>,.A4), where
Y1 C X,Y2 C X, and A is a set of blocks such that every pair of points {z, y}
occurs in exactly A blocks, unless {z,y} C Y) or {z,y} C Yz, in which case
the pair occurs in no block. We denote it by (v; wy, wa; ws; K, \)-Q-IPBD if
IX| = v, Y| = w1, [Y2| = w2, [Y1 NY2| = w3 and |A| € K forevery A € A.
When Y, = § the O-IPBD is an IPBD.
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The following construction provides a way to obtain an IPBD from an IGDD
and some $-IPBD (see [3], [7]).
Construction 2.1 (Filling in groups): Let K be a set of positive integers, and let
b > a > 0. Suppose that the following designs exist:

1) anIGDD[ K, )] of type {(s1,t1),(s2,%2),...,(sn,ta) };

2) an(s;+ b;t;+ a,b;a; K,))-O-IPBD,for1 < i< n-—1;and

3) an(s, + b,t, + a; K,))-IPBD.
Then there exists an (s+b, t+a; K,))-IPBD, wheres = Y 1, s;andt = Y 1., ¢;.

To employ this construction we need some IGDDs to start with, which can be
obtained by weighting (see also [3], [7]).

Construction 2.2: Suppose (X,G,.A) isaGDD withindex ), and lets,t : X —
Z* U {0} be functions such that t(z) < s(z), for every z € X. For every block
A € A, suppose that we have an IGDD[ K, ] of type {(s(z),t(z)) : = € A}.
Then there exists a IGDD[ K, A] of type {(3.cc 8(2), Y .cqt(2)): G € G}.

The following two constructions are the special cases of Construction 2.1 which
will be used in this paper.
Construction 2.3: Let K be a set of positive integers and a > 0. Suppose that
the following designs exist:

1) anIGDD[ K, )] of type {(s1,%1),(s2,%2),...,(84,¢a) }s and

2) an(s;+a,t;+a; K,))-IPBD,forl < i< n
Then there exists an (s+a,t+a; K,))-IPBD,wheres = Y7, s;andt = Y 1, ¢;.
Construction 2.4: Let K be a set of positive integers and a > 0. Suppose that
the following designs exist:

1) aGDD[K,\] of type {t1,%2,...,t,}; and

2) a(t;i+a,a; K,))-IPBD,for1l <i<n—1.
Then there exists a (t + a,ts + a; K,))-IPBD, where t = "7 ; ¢;.

3. Constructions of IPBDs

In this section we list the constructions of IPBDs used in this paper. The main
recursive constructions of this paper are the following two lemmas, Lemma 3.1
and Lemma 3.3.

Lemma 3.1. Let m,n,r,e and b be positive integers, where 2 < n < m,
In<r<3m+nm¢ {2,3,6,10}. Suppose there exista (3m + b;m +
a,b;a;{4},3)0-IPBDand an (r + b,n+ a; {4 },3) -IPBD. Then there exists a
(v,u;{4},3)-IPBD, wherev=12m+ r+ b,u=4m+a+a.

Proof: Form ¢ {2,3,6,10} there exists a TD(5,m) (see [2]). Let X be the
points set of the TD, Partition one group of this TD into Yj UY> suchthat [Y;| = n,
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|[Y2| = m — n. Define s,t : X — Z* U {0} such that:
(3,)or(4,1) ifzel,
(s(z),¥(z)) = { (3,0) 0r(0,0) ifzeYs,
(3,1 otherwise.
Applying Construction 2.2 by filling in blocks of IGDD[{4 },3] of type (3, )3,
(3,144, (3,1)* or (3,1)4(3,0)! (see [8, Lemma 2.9]), we obtain an

IGDDI[ {4}, 3] of type (3m,m)*(r,n)'. Further applying Construction 2.1 we
obtaina (v,u; {4},3)-IPBD,wherev=12m+r+ b,u=4m+ n+a.

We need some GDDs for use which we listed in the following lemma.
Lemma 3.2, There exist GDD([{4},3) of the following types: 18,17, 182!,
1731,1831,173121,1732,
Proof: The designs of type 1%, 1° come from (8,4 ,3)-BIBDand (9,4, 3)-BIBD.
The designs of type 1821, 1831, 173! come from Appendix A. The designs of
types 173121, 1732 are constructed in Appendix B.
Lemma 3.3. (sec [8]) Suppose there exist (w + t1,t1;{4},1)-IPBD and (w +
t2,t2; {4},2)-IPBD, wheret, > t; andt; —t, =0 (mod 3). Then there exists
a(w+ty + (81 —12) /3,2 + (41 — t2)/3; {4 },3)-IPBD.

Lemma34. If (v,u) € Bs and v< 3u+ 5, then(v,u) € As.
Proof: For (v,u) € {11,2),(11,3)}, see [8). For (v,u) € {(10,2),(23,6)},
see Appendix C. The other designs are listed in Appendix A.

The proof of the following lemma is trivial and is omitted.
Lemma 3.5. If {(v,w),(w,u)} C A3, then(v,u) € As.
Lemma 3.6. If (v,2) € By andv < 23, then (v,2) € As.
Proof: Forv = 7,10 and 11, see Lemma 3.4. For v = 14, see Table 1. For
v = 15 or 19, see Appendix C. Delete two points of one group of a TD(5,4) to
obtain a GDD[{4,5}, 1] of type 442! and use Construction 2.4 witha = 0, we

obtain (18,2) € A;. Since (v,7) € As for v = 22 and 23 (see Lemma 3.4) and
(7,2) € A3, (v,2) € A; by Lemma 3.5,

v 8 w 4 2 v v w t1 2
14 2 12 4 1 12n+3,8>2 6 12n-3 10 4
18 3 15 7 1 12n+6,2>2 6 12q 10 4
27 3 24 7 1 50 11 39 19 7
30 3 27 7 1 62 11 51 19 7
47 11 36 13 10 198 27 171 31 25

Table 1. Applications of Lemma 3.3

In Table 1, the existence of (w + t1,t1; {4}, 1)-IPBD and (w+t2,t2; {4 },2)-
IPBD comes from Theorem 1.1 and 1.2.
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Lemma 3.7. If (v,3) € Bs and v < 19, then (v,3) € As.

Proof: Forv = 10,11 and 14, see Lemma 3.4. For v = 15, see Appendix C. For
v = 18, see Table 1. For v = 19, see [8].

Lemma 3.8. Suppose that there exist a TD(9,m), an (m + a,q; {4 },3) -IPBD
and an (r + a,a;{4},3)-IPBD where a > 0 and 0 < r < 3m. Then (8m +
2n+r+a,m+2n+a) € A3, where 0 < n < m. Moreover, if there also
exists an (m + 2n+ a,a;{4},3)-IPBD, then {(8m + 2n+ r + a,m + a),
(8m+2n+r+a,r+0a)} C As.

Proof: Construct a TD(9,m) on point set X with groups G;,G>,...,Gy. Par-
tition group G into Y; UY> suchthat |Y;| = n, [Y2| = m —n. Defines : X —
Z* U {0} such that:

3 ifreY,
s(z)={0,l,2or3 ifz€Qy,
1 otherwise.

Apply Construction 2.2 by letting {(z) = 0. Filling in blocks of the GDDs given
in Lemma 3.2, we obtain a GDD[ {4 }, 3] of type m’t!r!, where ¢t = m + 2n.
Further applying Construction 2.4, we complete the proof.

u=2 (mod 4),v—u=0,1 (mod 4) =3 (mod 4), v—-u=0,3 (mod 4)
v-u u m a v-u u m a
56-80 10-24 8 0 56-80 11-23 8 1
61-77 10-26 8 2 63-90 11-27 9 0
77-110 14-34 1 1 72-90 15-31 9 4
88-110 18-38 11 5 91-130 15-39 13 0
112-160 18-46 16 0 100-130 19-43 13 4
133-190 22-58 19 1 119-170 19-51 17 0
144-190 26-62 19 5 128-170 23-55 17 -4
161-230 26-70 23 1 136-170 27-59 17 8
189-270 30-82 27 1 175-250 27-75 25 0
217-310 34-94 31 1 203-290 31-87 29 0
224-320 34-96 32 0 224-320 35-95 32 1
241-320 42-104 32 8 231-330 35-99 33 0
301-430 46-130 43 1 259-370 39-111 37 0
320470 50-142 47 1 287-410 43-123 41 0
56k-80k  8k-24k 8k 0 343-490 51-147 49 0
(k>7) 371-530 55-159 53 0
56k-80k 8k+1-24k+1 8k 1

(k>7)

Table 2. Applications of Lemma 3.8
In Table 2, the existence of (m + 6,a; {4 },3)-IPBD and (7 + a, a; {4 }, 3)-[PBD
come from Theorem 1.4 and Lemma 3.6.

The following construction depends on the existence of RBIBD of block size 4
which is proved in [4].
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Lemma39. If v—u=4 (mod 12) andv > 4u+ 1, then (v,u) € As.

Proof: Add u new points into a (v — u,4, 1)-RBIBD such that each new point
is added to all the blocks of one parallel class of the RBIBD. Then we obtain a
(v,u;{4,5},1)-IPBD. As (4,4,3)-BIBD and (5,4, 3)-BIBD exist, we know
that (v,u) € As.

Lemma3.10. Letm >4 anda > 0, wherem ¢ {6,10}. If (m+a,a) € As,
then (4m + r+ a,r+ a) ¢ Az for 0 < r < m. Moreover, zf(r+a a) € As,
then {(dm+r+a,m+a),(4m+r+a,0)} C A;.

Proof. For each m there exists a TD(S5, m). Delete some points of one group of
the TD to obtain a GDD[ {4,5},1] of type m*r!. Then the concluslon follows
from Construction 2.4.

vV u m r a v u m r a
18 2 4 2 0 59 1m 12 1n o
38 6 8 6 O 55 m i 10 1
S0 6 11 5 1 54 14 11 7 3
27 7 5 5 2 5562 14 12 5-12 2
39 7 8 7 0 50 14 12 0 2
51 7 11 6 1 54 15 13 0 2
3 7 1770 58 15 12 7 3
38 10 7 7 3 5967 15 13 5-13 2
39 10 8 5 2 70-71 18 15 7-8 3
42 10 8 8 2 70 19 17 0 2
54 10 11 9 1 74 19 16 7 3
2 11 8 7 3 8 2 20 0 6
43 11 8 8 3 8 27 20 0 7

Table 3. Applications of Lemma 3.10

In Table 3, the existence of (m + a,e; {4},3)-IPBDs comes from Appendix C
(m =20 and a = 6), Theorem 1.4 (a = 0 or 1), Lemma 3.6 and 3.7 (a = 2 or
3) and this table (m = 20 anda = 7).

4. Existence of IPBDs for u = 2,3,6,7 and 10

In this section we prove the existence of (v, u; {4 },3)-IPBDs foru = 2,3,6,7
and 10. The main results of this paper are based on these designs by recursive
constructions.

« Lemmad4.l. Let (v,u) € B3. If u=2 (mod 4) and (v,u) € A3 for3u+
1<v<3u+12,then (v,u) €E A3 forv> 12u+47. If u=3 (mod 4) and
(v,u) € Ay for3u+ 1< v<3u+ 10, then (v,u) € A forv > 12u + 38.

Proof: For a given value of v, we select a suitable w such that v — w = 4
(mod 12), v > 4w+ 1 and (w,u) € Aj, then the conclusion comes from
Lemma 3.5 and 3.9. We list the details in Table 4, where m > 0.
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u v w u v w
442 481+35+12m 12147 4143 48:+50+12m 121+10
481+50+12m  12t+10 481451+12m  121+11
481+51+12m  121+11 481466+12m  121+14
481+66+12m  121+14 481+67+12m 121415
481+67+12m  121+15 481+82+12m 121+18
481+82+12m  121+18 481+83+12m  121+19

Table 4. Proof of Lemma 4.1
Proposition 4.2, If (v,6) € Bs, then (v,6) € As.

Proof: Forv = 19,22 and 23 seeLemma 3.4. Whenv = 10 (mod 12) andv >
34, we havev — 6 =4 (mod 12), so the conclusion follows from Lemma 3.9.
Whenv = 3 or6 (mod 12) and v > 27, see Table 1. So we need only con-
sider the case v = 2,7 or 11 (mod 12) and v > 26. For v = 26,35 and 55
see Appendix C. Delete two points of one group of a TD(6,5) and give weight
2 to each of the remaining three points of this group. As a GDD[{4},3] of
type 132! and 1° exist (type 1°2! is given in Appendix A and 1° is trivial),
we obtain a GDD[{4},3] of type 5°6'. So we can use Construction 2.4 to
contruct a (31,6; {4}, 3)-IPBD. For v = 43, use Construction 2.1 by starting
from an IGDD[ {4 }, 3] of type (9,1)*(6,1)! which comes from the existence
of TD(5,9). As(10;2,1;1; {4},3)-0-IPBDand (7,2; {4}, 3)-IPBD exist, we
may use Construction 2.1 by letting a = b = 1 to show that (43,6) € As. For
v = 47, use Construction 2.3 with ¢ = 2 by starting from an IGDD[ {4}, 3]
of type (9,1)4(9,0)! (see [7]). As (11,3;{4},3)-IPBD and (11,2;{4},3)-
IPBD exist, it shows that (47,6) € As. For v = 38 and 50, see Table 3. For
67 <v<119andv =7 (mod 12),let w = (v — 1)/3, then (v,w) € A3
by Lemma 3.4. Since 22 < w < 38, (w,6) € As, and so (v,6) € As by
Lemma3.8. For59 < v< 119andv=110or2 (mod 12),letw = (v —2)/3
orw = (v — 5)/3, then it is easy to see that (v,6) € A in a similar way. For
v > 119, the conclusion comes from Lemma 4.1.

Lemmad.3. If v € {42,50,54,62,63,66}, then (v,7) € As.

Proof: Delete one block from a TD(6,m) to obtain an IGDD[{6}, 1] of type
(m,1)¢. Denote its groups as (G;, H;), 1 < i < 6. Define weight s(z) as

follows: . s
l lfx e Ui=l Gi
s(x) = { 2 ifx € Hg

0 or2 otherwise.

Then an IGDD[{4},3] of type (m,1)°(27,2)!, where 1 < r < m — 1, is
obtained since there exist GDD[ {4 },3] of type 1° and 152}, Letm = 8,7= 1,5
or 7. Use Construction 2.3 by letting a = 0, this shows that {(42,7), (50,7),
(54,7} C As.Forv=63,letm =9, r =9 and use Construction 2.3 by letting
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a=0. Forv =62 and 66, let m = 11, r = 3 or 5 and use Construction 2.1 by
letting o = 0 and b = 1. This completes the proof.

Proposition 4.4. If (v,7) € Bs, then (v,7) € As.

Proof: Forv = 22,23 and 26 see Lemma 3.4. Whenv =7 or 10 (mod 12) the
conclusion comes from Theorem 1.1. Whenv = 11 (mod 12) and v > 35, the
conclusion follows from Lemma 3.9. Now we consider the case v = 2,3 or 6
(mod 12) and v > 27. For v = 30 and 38, see Appendix C. For v = 27,39, 51
and 75, see Table 3. For v = 42, 50, 54, 62, 63, and 66, see Lemma 4.3. From
Lemma 3.4 we know that (74,23) € As,so(74,7) € A; by Lemma 3.5. For
78 < v £ 114, (v,22) € A; by Table 2,50 (v,7) € A3 by Lemma 3.5. For
v > 122, the conclusion follows from Lemma 4.1.

Proposition 4.5, If (v,10) € Bs, then (v,10) € As.

Proof: Forv = 31,34 and 35, see Lemma 3.4. For v = 38,39,42 and 54, see
Table 3. For v = 47, use Construction 2.3 by starting from an IGDD[ {4 }, 3]
of type (10,2)4(7,2)! which is obtained by deleting 3 points of an 1A3(10,2)
(see [9]). Leta = 0, as the (10,2; {4}, 3)-IPBD and (7, 2; {4}, 3)-IPBD exist
by Lemma 3.4, this shows (47,10) € A3. For v = 51, use a similar method
by starting from an IGDD[ {4 }, 3] of type (11,2)4(7,2)! which comes from an
1A3(11,2). For v = 59, add 3 points to every groups of a TD(8,7) and filling
in groups of (10, 3; {4}, 3)-IPBD. For v = 63, see Appendix C. Whenv = 7
or 10 (mod 12), the conclusion comes from Theorem 1.1. When v > 50 and
v = 2 (mod 12), the conclusion comes from Lemma 3.9. Now consider the
casev > 66 andv = 3,6 or 11 (mod 12). For 66 < v < 90, see Table 2.
For9S <v<107,letm=7,n=3,a=0,b=1and10 < r < 22 in
Lemma 3.1. This shows that (v,31) € A3, so (v,10) € A3 by Lemma 3.5. For
111 < v £ 167, (v,31) € A3 by Table 2,50 (v, 10) € A3 by Lemma 3.5. For
v > 169, the conlusion follows from Lemma 4.1.

Proposition 4.6. If (v,2) € Bs, then (v,2) € As.

Proof: Forv < 23, see Lemma 3.6. For v > 26, (v,7) € A3 by Proposition 4.4,
s0(v,2) € A3 by Lemma 3.5.

Proposition 4.7. If (v,3) € Bs, then (v,3) € A;.

Proof: For v < 19, see Lemma 3.7. For v = 22 and 26 see Appendix C. For
* v = 23 see [8]. For v = 27 and 30, see Table 1. For v > 31, (v, 10) € A; by
Proposition 4.5, so (v,3) € A; by Lemma 3.5.

5. Recursive Constructions

In this section we use recursive constructions to obtain the main result except
some small ¢ which will be proved in the next section.
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Lemma 5.1, Let (v,u) € Bs. Then (v,u) € As if (v,u) satisfies one of the
following conditions.

1) u>18,u=2,6 or14 (mod 16) and v<3u+3(u—2)/4 -3;

2) u>19,u=3,70r15 (mod 16) and v < 3u+3(u—-3)/4 - 5;

3) u>42,u=10 (mod 16) and v < 3u+ 3(u—6)/4 —11;0r

4) u>43,u=11 (mod 16) and v < 3u+3(u-7)/4 — 13.

Proof: Forcase1),letm=(u—-2)/4,n=2,a=0andb=1inLemma3.l.
The needed (3m + 1;m,1;0; {4},3)-0-IPBDisa (3m + 1,m; {4},3)-IPBD
and the (r + 1,2; {4}, 3)-IPBD comes from Proposition 4.6. Similarly, for the
other cases,leta = 0,b=1andletm = (u~3)/4,(u—6)/4 or (v —7) /4,

n= 3,6 or7 in Lemma 3.1 respectively, the needed IPBDsarengen in section 4.

The proof is complete.

Lemma 5.2, Let (v,u) € B3, then (v,u) € Aj if (v,u) satisfies one of the
following conditions.
1) u>18,u=20r6 (mod 16) and 3u+ (1 —2)/4 <v<4u—-6;
2) u>19,u=3,70r15 (mod 16) and3u+ (4 —3)/4 <v<4u-9;
3) u>42,u=10 (mod 16) and 3u+ (u—6)/4 < v <4u—18;
4) u>43,u=11 (mod 16) and 3u+(u—-7)/4 <v<4u—-21,0r
5) u>62,u=14 (mod 16) and 3u+ (v —10)/4 < v < 4u—30.

Proof: If m = 0 or1 (mod 4) and m > 4, there is a TD(4, m), so there is a
(4m;m,m;0;{4},3)-0-IPBD.If m = 3 (mod 4) and m > 7, add one new
point to every group of a TD(4,m), thena(4m+ 1;m+1,m+ 1;1; {4},3)-0-
IPBD is obtained easily. Now we can use Lemma 3.1 to prove this Lemma. For
case 1),3),4)or 5),letm = (u—2)/4,(v—-6)/4,(u—T7)/4 or(u—10) /4,
n=2,6,70r10,a=0andb=minLemma3.l. Foru =3 or7 (mod 16),let
m=(u—3)/4,n=3,a=0 andb=minLemma3.1. Foru = 15 (mod 16),
letm=(u—3)/4,n=2,a=1andb=m+ 1 inLemma3.1.

By Lemmas 5.1 and 5.2 we can obtain the following lemma.

Lemma 5.3, Let (v,u) € Bs, then (v,u) € As if (v,u) satisfies one of the
following conditions.

1) u>18,u=20r6 (mod 16) and3u+1<v<4u—6;
2) u>19,u=3,70r15 (mod 16) and3u+1<v<4u—-9;
3) u>42,u=10 (mod 16) and 3u+1 < v<4u—18;

4) u>43,u=11 (mod 16) and 3u+1< v <4u—21;0r

5) u.>62 u=14 (mod 16) and 3u+ 1 < v < 4u—30.

Lemma§ 4 Suppose that there exists a rcsolvable GDD[{4},1] of type t® then
thereexists an IGDD([ {4 }, 3] of type (3¢, t)3(r,m)!, where2 <n<t(s—1)/3
and3n<r<t(s—1)+mn.
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Proof: Add t(s — 1)/3 new points to the resolvable GDD of type t3 to obtain a
GDD{[ {5}, 1] of type t>(t(s — 1)/3)". Denote the group of size t(s — 1) /3 by
G.LetG' C G such that |G'] = n. Define weight ((s(z),t(z)) as follows:

‘ 3,1 z ¢G,
(s(z),U(z)) = { 3,Dor(4,1) zed,
(0,0) or (3,00 z€G\G'.

Applying Construction 2.2 in a manner similar to what was done in the proof of
Lemma 3.1, completes the proof,

LemmaS5.5. If ve {151}U{v >163:v=2 or3 (mod 4)}, then (v,42) €
A;.

Proof: From a resolvable GDD[{4 }, 1] of type 4'° (in fact it is a (40,4,1)-
RBIBD, see [4]), we have an IGDD[{4},3] of type (12,4)1°(30,2)! by
Lemma 5.4. Using Construction 2.1 by letting a = 0 and b = 1, then a (151,42;
{4},3)-IPBD is obtained. By deleting some points from an IA3(4 k,9), where
k>9 (see [9]) we caneasily constructan IGDD( {4,5}, 1] of type (4 k, 9)*(r, 6) !,
where 19 <r<4k—-3andr=2 or3 (mod 4). As {(4%,9),(r,6)} C A3,
we can use Construction 2.3 by letting a = 0 to show that when (v,42) € Bs
and 16k+ 19 <v<20k—5ie. v>163,v #178 andv =2 or3 (mod 4),
(v,42) € A;. But from Lemma 3.9 we know that (178,42) € As.

In Table 2 the case u = 3 (mod 4), v — u = 171 and 172 are not covered, so
we need the following lemma.

Lemma5.6. If u=3 (mod 4) and 31 < u < 59, then {(171+ u,u),(172+
u,u)} C As.

Proof: Since 172 = 4 (mod 12), (172 + u,u) € A3z when 31 < u < 59 by
Lemma3.9. Letm = 43,a = 19 and r = 40 in Lemma 3.10, as (62,19) € As
by Lemma 5.2, then (172 + 59,59) € As. For u = 31,43 and 55 (171 +
u,u) € A3 by Theorem 1.1. From 1A3(49,8), IA3(45,8) (see [9]), we may
obtain IGDD[ {4 },3] of type (49,8)*(10,3)" and (45,8)*(30,7)!. So(171+
u,u) € A for u = 35 and 39 by Construction 2.3. From a TD(5,44) we obtain
aGDD[{4},3] of type 44439, Use Construction 2.4 by letting a = 3,7 or 15.
This shows that (171 + u,u) € A3 foru € {47,51,59}.

Now we are in a position to prove the main result of this section.

Proposition 5.7. If (v,u) € Bs,u=22o0ru > 31 and v < Su+ 4, then
(v»u') EA3-

Proof: For (v,u) € B3,u=220r31 <u < 1llandv < 9u + 4, we use
Lemmas 5.1-5.6 and Table 2 to prove the conclusion. The details are listed in
Table 5. When u > 114, Lemma 5.3 shows that for 3u+ 1 < v < 4u — 30,
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(v,u) € As. Since the maximum distance between two successive values of
m in Table 2, when m > 43, is at most 8, we can choose m in Table 2 such that
max{43,u/3} < m < (3u—-30)/7,ie.,m+2 < u<3mand7m < 3u—-30.
On the other hand, we can choose another m in Table 2 such that (8u + 4) /10 <
m< u-2,ie.,m+2 < u < 3m,and8u+4 < 10m. Note thatin Table 2, when
m+ 2 < u < 3m,wherem > 43, thenitshows (v,u) € Az forTm<v—u<
10m. Also note that in Table 2, the values of v — u fill all the positive integers
greater than 174, So Table 2 shows that whenu > 114 and4u—3 < v < 9u+4,
(v,u) € Aj. For the same reason, when v > 70 we have not listed the upper
bound of v from Table 2. The conclusion follows.

u v u v
L.5.15.2 Table 2 L.5.1,52 Table 2
22 67-82 78-212 n 214275 246-
31 94-115 103-201,206-321 74 223-278 263-
34 103-130 111-354 75 226279 250-
35 106-131 126-205,210-365 78 235-282 267~
38 115-146 126-358 79 238-307 282-
39 118-147 130-209,214-409 82 247-322 271-
42 127-150 154-362 83 250-323 286~
43 130-151 143-213,218-453 86 259-338 303-
46 139-168 158-476 87 262-339 290~
47 142-179 166-217,222-457 90 271-342 307-
50 151-194 183-520 91 274-343 315-
51 154-195 170-221,226-541 94 283-346 311-
54 163-210 187-524 95 286-371 319-
55 166-211 183-225,230-585 98 295-386 339~
58 175-214 191-618 9 298-387 330-
59 178-215 195-229,234-619 102 307-402 343-
62 187-218 206-622 103 310403 362-
63 190-243 238-623 106 319-406 407-
66 199-258 227-706 107 322407 366-
67 202-259 242-706 110 331410 411-
70 211-274 231- 111 334435 370-

Table 5. Proof of Proposition 5.7

6. Proof of Theorem 1.5 and Theorem 1.6

In this section, we first prove that when u € {11, 14,15,18,19,23,26,27,30}
and (v,u) € Bj, then (v,u) € Aj;. From which we complete the proof of
Theorem 1.5. Then we give the proof of Theorem 1.6.

Lemma 6.1. If there exists a TD(6,m), then there exists a GDD[{4},3] of
type m3(27)!, where 0 < r < m.

Proof: Give r points of one group of a TD(6,m) weight 2 and the remainders
weight 0. Give the points of other 5 groups weight 1. As there exist GDD[{4 }, 3]
of type 15 and 152!, the conclusion follows from Construction 2.2.
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Lemma 6.2. If there exists a TD(6,m), then there exists a GDD[{4},3] of
type m*(2m) (m+ 1)}, where 0 < r < m.

Proof: Give r points of one group of a TD( 6, m) weight 2. Give another group of
the TD weight 2 and the others of this TD weight 1. As there exist GDD[ {4 }, 3]
of type 152! and 1422 (see Appendix B), the conclusion follows from Construc-
tion 2.2

Proposition 6.3. If (v,11) € B; and 34 < v < 102, then (v,11) € A;.

Proof: For 34 < v < 38, see Lemma 3.4. A (39,11; {4},3)-IPBD is con-
structed in [8). Forv € {42,43,55,59}, see Table 3. For v € {47,50,62},
see Table 1. Use Lemma 6.1 by letting r = 4 and m = 7, 8 or 11 to obtain a
GDD[{4},3] of type m>8. Make use of Construction 2.4 from these GDDs by
letting @ = 3. This shows (v,11) € A; forv € {46,51,66}. (63,11) € A;
comes from Lemma 3.9. For v € {54,58}, see Appendix C. For 67 < v < 101
see Table 2. Letm = 9,6 = 2,n= 2 and r = 24 in Lemma 3.8. This shows
(102, 11) € As.

Proposition 6.4. If (v,14) € B; and 43 < v < 129, then (v, 14) € A;.

Proof: For43 < v < 47, see Lemma 34. For 50 < v < 62 and v # 51,
see Table 2. For v € {51, 67}, see Appendix C. Give 2 points of one group of a
TD(8,7) weight 3 and the others of this TD weight 1 and use the GDD[ {4 }, 3]
of type 1%, 173, to obtain a GDD[ {4 },3] of type 7711}, Now witha = 3 in
Construction 2.4 we obtain (63, 14) € As. Forv € {66,126}, the conclusion
comes from Lemma 3.9. Letm = 11,a = 3,n= 2 and » = 32 in Lemma 3.8,
then (127, 14) € As. For 70 < v < 124, see Table 2.

Proposition 6.5. If (v,15) € B; and 46 < v < 138, then (v, 15) € A;.

Proof: For46 < v < 50, see Lemma 3.4. Letm = 7 andr = 1 in Lemma 6.2,
then a GDD of type 7414 '8! is obtained. Use Construction 2.4 by lettinga = 1,
then (51,15) € As. For54 < v < 67,v # 55,sec Table 3. Letm = 8
or 11, r = 7 in Lemma 6.1 to obtain GDDs of type 814! or 11514!. Use
Construction 2.4 with these GDDs by letting a = 1. This shows (v, 15) € A3 for
v € {55,70}. For71 < v < 138, see Table 2.

Proposition 6.6. If (v,18) € By and 55 < v < 165, then (v, 18) € As.

Proof: For 55 < v £ 66, the conclusion comes from Lemmas 5.3. Let m = 9
and » = 4 in Lemma 6.2 to obtain a GDD of type 9418!13!. Use of Con-
struction 2.4 with this GDD and with a = 0 shows that (67,18) € As. For
v € {70,71}, see Table 3. For 74 < v < 165, see Table 2.

Proposition 6.7. If (v,19) € B; and 58 < v < 174, then (v,19) € A;.

Proof: For 58 < v < 67, the conclusion comes from Lemma 5.3. Forv €
{70,74}, see Table 3. For v = 71, use Lemma 3.5 by letting m = r = 13 and
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a=6.As(19,6; {4}, 3)-IPBD exists, (71,19) € A3. For75 < v < 174, see
Table 2.

Proposition 6.8. If (v,23) € By and 70 < v < 210, then (v,23) € As.

Proof: For70 < v < 83, the conclusion comes from Lemma 5.3. For 83 < v <
191,sec Table 2. Letm = 17,6 =6,n= 16 and 20 < r < 36 inLemma 3.8 to
show (v,23) € A3 for 194 < v < 210.

Proposition 6.9. If (v,26) € B3 and 79 < v < 237, then (v,26) € A;.

Proof: For 79 < v £ 83, see Lemma 3.4. For v = 86 see Table 3. For 87 <
v < 237, see Table 2.

Proposition 6.10, If (v,27) € B; and 82 < v < 246, then (v,27) € As.

Proof: For 82 < v < 86, see Lemma 3.4, For v = 87, see Table 3. For 90 <
v < 195 and 202 < v < 246, see Table 2. For v = 198 see Table 1. From
Lemma 3.9, we know that (199,27) € As.

Proposition 6.11. If (v,30) € B3 and 91 < v < 273, then (v,30) € As.

Proof: If91 < v < 108, then (v,30) € Az from Lemma 5.1. For 107 < v <
273, sec Table 1.

Now we are in the position to prove the main results of this paper. We restate
the theorems here for the readers convenience.

Theorem 1.5. A (v,u; {4},3)-IPBD exists if v,u = 2 or 3 (mod 4) and
v>3u+1l,

Proof: In section 4, we have proved that for u € {2,3,6,7,10} the conclusion
is true. From Propositions 6.3-6.11, we know that when v € {11, 14, 15, 18,
19, 23, 26, 27,30} and v < 9u + 4, (v,u) € A;. Combining the results of
section 5 we obtain that if (v,u) € Bz andv < 9u + 4, then (v, u) € A3. Now
ifv >9u+4,wecanchoose u',u' =2 or3 (mod 4) withu' > 3u+ 1,such
that3u' < v < Qu+4,then(v,v') € A3. Ifu' < 9u+ 4, then (v,u) € A3 by
Lemma3.5. If u' "> 9u + 4, we can choose u” with u” > 3u + 1 and such that
3u"+1 < v < 9u"”+ 4,50 (v, u") € Az and then (v, u") € As. Following
this method we can prove that (v, u) € Aj; after finite steps. This completes the
proof.

Theorem 1.6. A (v,u, {4}, )\)-IPBD exists if and only if the triple (v,u,))
satisfies (*).
Proof: The condition (x) can be simplified according to the congruences of mod-
ulo 6. In addition to v > 3u + 1 the conditions are:

1) Ifx=1o0r5 (mod 6),thenv,u=10r4 (mod 12) orv,u =7 or 10
(mod 12);
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2) fA=2o0r4 (mod 6),thenv,u=1 (mod 3);

3) IfX = 3 (mod 6), thenv,u = 0 orl (mod 4) orv,u = 2 or 3
(mod 4);

4) IfA =0 (mod 6),thenv > 4.

In the above four classes, A = 1, 2, 3 and 6 are the smallest cases and are al-
ready proved. For other cases we may prove the conclusion by repeating blocks.
For example, when A = 2 or 4 (mod 6) and A > 2, repeat each block of
a (v,u;{4},2)-IPBD )\/2 times to obtain a (v, u; {4 },\)-IPBD. The proof is
completed.
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Appendix A: Some classes of IPBDs

(12t +7,41 + 2; {4),3)-PBD
points: Zgees U{ooi: 1 <5< 4L +2)
blocks: {{00;,0,5,21+2}:1 < i< 4i}
{004¢+1,0,1,2} {004842,0,2,4t+3} mod8t+ S

(12t +10,4¢+ 2; {4},3)-IPBD

points: Zgpg U{oo;j: 1 << 4t +2}

blocks: {{0,2t+2,4t+ 4,6t + 6} : rcpeat 3 times}
{{00:,0,5,2i+ 1} : 1 <1< 2t} {{00:,0,5,24}:2t+3<i<3t+1)
{{00:,0,1,2¢+2}:3t+3 << 4t+ 1} {002¢41,0,2¢+ 1,48+ 5}
{002¢42,0,3t + 2,3t + 3} {o031+2,0,3t+ 2,32+ 4}
{o00at+2,0,4t+2,4t+3} mod8t+8

(12t + 11,4¢ + 2; (4},3)-IPBD

points: Zggo Uf{ooi:1 <1< 4t+2})

blocks: {0,2¢t+2,4t+4,6t+6}
{{00,0,8,2i+ 1} : 1 i< 4t +2,i£t+2,2¢+1,2¢+2,3t+3)
{00t42,0,t+ 2,8+ 3} {002441,0,2¢+ 1,6t + 4}
{002¢42,0,4t+3,8t+ 7} {o031+3,0,3t+3,3t+ 4} mod 8¢ + 9

(12¢+10,4¢+ 3; (4},3)-IPBD

points: Zge7 U{ooi: 1 <i<4t+3)

blocks: {{00;,0,1,2i+2}:1<i<4t+ 1} {o04+2,0,1,2}
{004¢43,0,2,4t+4} mod8t+7

(12t + 11,4t + 3; {4},3)-IPBD

points: Zgrg U{oo;: 1 <3< 4t+3})

blocks: {0,2t+2,4t+4,6¢t+6} {{00;,0,5,2i+1}:1< i< 2t}
{{004;0,5,20} : 2t +3 < i< 3t+ 1}
{{00:,0,1,2+2}:3t+3 <i<4t+1} {002441,0,2¢+ 1,4t +5)
{002¢42,0,3t+ 2,3t + 3} {003442,0,3t+ 2,3t + 4}
{004442,0,4t+ 2,48+ 3} {004243,0,2¢+ 2,4¢+ 4} mod 8¢+ 8

(12t + 14,4¢ + 3; {4),3)-IPBD

points:  Zgienn U{oo;: 1 <3< 48+ 3}
blocks: {0,1,2,4t+6} {{o0:,0,8,2¢+1}:1<Li<4t+3} mod 8¢ + 11
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Appendix B: Some CDD[{4},3]

Type 173121

groups: {a1,a2} {b1,b2,b3} {{i}: 0 < i< 6}

blocks: {0,1,3,6}{0,2,4,5} {a1,1,4,5) {02,2,3,6} {b1,a1,0,2}
{b1,01,4,6} {blp0213v4} {61111214} {blnal'315} {611021112}
{berZroys}{blrorlr6}{6113»516}{b2taln016}{b2'021034}
{52,0,2,5}{62,01,1,4}{b2,02,2,6}(52,1,5,6}{51,61,1,3}
{b;,az,3,5}(bz,2,3,4}{b;,a;,O,S}{b;,az,O,l}{63,0,3,4}
{53,01,52,66}}{63,02,4,6}{63,1,2,3}{63,01,2,5}{53,02,1,5}
{b3n4v ]

Type 1732

groups: {a1,a2,a3} {b1,b2,53} {{5}: 0 <7 <6}

blocks: {1,3,5,6) {2,3,4,5} {1,2,,6) {a1,0,1,4) {a2,0,2,5}
{0310t316} {bllor]:z} {b2:013:4}{b300n5’6}{bh“11015}
{51,02,0,6}{61,63,1,5} (h.alvlnz}{ha‘uyo:,}{52103:012}
{b1,a1,2,3} {b1,02,1,3} {b1,03,2,4} {52,01,4,5} {b2,02,2,3}
(521039116} {blp“ln4:6} {b1,02,4,s) {blta3t316} {hnalnsxs}
{62|327416}{52p°373)5} {53,01,0,3}{63,02,3,4}{63,03,0,4}
{b3,01,1,3} {b3,02,2,6} {b3,03,2,5} {b3,01,2,6} {b3,62,1,5}
{b3,03,1,4}

Type 1422
groups: {4,a} {5,b} {{}: 0 < i< 3}

blocks: {0,1,2,3} {b,4,0,1} {b,6,2,3} {$,4,1,2} {b,,3,0} {b,4,2,3}
{b,a,O,l} {514»032} {Sta'ltz} {5:4r0v3} {sf“:lv3} {5'4:|n3}
{5,4,0,2}
Appendix C: Some IPBDs

(10,2; {4},3)-IPBD
points: ZgU{oo;:1 <i<2}
blocks: {0,1,4,5}{0,2,4,6}{0,1,3,001} {0,1,3,002} mod8

(15,2; {4},3)-IPBD
points: Z13U{o0i:1 <12}
blocks: {0,1,3,6}{0,1,4,6}{0,1,5,00} {0,2,6,00,} mod13

(19,2; {4},3)-IPBD
points: Z17U{o0i:1<i<2}

blocks: {0,1,5,8}{0,1,4,6}{0,2,5,9} {0,1,7,001} {0,2,8,002} mod17

(15,3; {4},3)-IPBD
points: Zj3 Ufoo;: 1 <1< 3}

blocks: {0,3,6,9} {0,1,3,6} {{0,1,5,00;} :i=1,2}{0,2,4,003} mod 12
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(22,3;{4},3)-IPBD

points: ZygU{oo;:1 i< 3}

blocks: {0,1,5,8}{0,2,6,11} {0,2,5,9} {0,6,13,00;} {0,1,3,002}
{0,1,9, 003} mod 19

(26,3; {4),3)-IPBD

points:  Zx3 U{oo;: 1 <1< 3)

blocks: {0,2,5,9} {0,4, 11,21} {0,6, 14,18} {0,7,10,15} {0,1,2, 001}
{0,1,11,00,} {0,3,9003}  mod 23

(23,6;{4},3)-IPBD

points: Zj7U{oo;: 1 <1< 6}

blocks: {0,1,3,7)} {0,1,2 ool}{0,2,7,ooz}{0 3,8,003} {0,4,9,004)
{0,3,9,005} {0,4,10,006)  mod 17

(26,6; (4),3)-IPBD

points: Zzo U{oo;: 1 <1< 6}

blocks: {0,5,15,10} repeat 3 times
{0,2,3,9) {0,4,12,001} {0,2,11,002} {0, 6, 14,003} {{0,3,7, 00} :
i=4,5}{0,1,2,006) mod20

(35,6;{4},3)-IPBD

points:  Zzg U {oo; 11 < i < 6}

blocks: {{0,1,6,14} : repeat 2 imes} {{0,2,9,12} : repeat 2 times}
{0,1,6,00,} {0,2,13,002} {0,3,12,003} {0,4,14,004 } {0,7, 18,005}
{0,4,8,006} mod29

(55,6; {4},3)-IPBD

points:  Zs9 U{oo;:1 < i< 6}

blocks: {0,1,10,21} {0,2,6,19} {0,5,8,12} {0,2,16,34} {0,1,23,47}
{0,5,11 35) {0,7,19 40} {0,8,18,41} {0,9,22,32} {0,1,13,00; }
{0,4,11,00,} {0,3,18, 003) {0, 5,29, 004 } {0, 6,28, 005 }
{0,14,34,005})  mod 49

(30,7, {4},3)-IPBD

points:  Zp3 U{oo;: 1 <1< 7}

blocks: {0,1,3,11} {0,4,9,15} {0,7,26,001} {0,2,5,002} {0,4, 10, 003}
{0,1,2,004} {0,3, 11,005} {0,4,9,006} {0,6,16,007}  mod 23

(38,7;{4},3)-IPBD

points:  Z3; U{oo;: 1 <1< 7)

blocks: {0,1,7,15} {0,2,15,13} {0,4,13,25} {0,1,3,15} {0,1,10, 00}
{0,4,9,002) {0,2, 14,003} {0,3, 13,004} {0, 5, 11,003} {0,7, 15, 006}
{0,4,11,001)  mod 31
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(63,10; {4},3)-1?31)

points: ZszU{o0i:1<i <

blocks: {0,1,11,23} {0,2,1
{0,7,16,21} {0,8,
{0, 20 23 oos}{o s

1004 } {
{0.6,21,008}{0 24,009} {

f}'nng

20} {0,4,22,25) {0,6,13,18)

28} {0, 13,29, 001} {0,4,22,00, }
1121m5} {0,2,10,&5} {0a4191w7}
26,0010} mod 53

(54,11; {4},3)-IPBD

points: Z33 Ufoo;: 1 <1< 11}

blocks: {0,1,10,21}{0,2,6,19} {0,5,8,12} {0,3,15,33} {0,7,21,23}
{0,11,27,001} {0,2,23,002} {0,9,19,003} {0,1,13,004 } {0,1,15,005}
{0,3,7,06} {0,5,11,007} {0,5,19,008} {0,6,15,009}
{{0,8,26,00;} : 4 = 10,11} mod 43

(58,11; {4}, 3)-IPBD

points: Ziy U {ooi: 1 <1< 11}

blocks: {0,1,12,22} {0,2,15,23} {0,3,9,27} {0,4,7,13} {(0,7,11,25}
{0,14,19,31} {0,1,15,00,} {0,1,17,002 } {0,7,28,003} {0, 11,31, 004}
{0,3,8,005} {0,2,10,006 } {0,6,18,007} {0,9,22,008 } {0,4,27, 009}
{0,2,19,0010} {0,5,15,0011} mod 47

(51,14; {4},3)-IPBD

points:  Z37 U {oo; : 1 <1< 14}

blocks: {0,1,7,18} repeat 2 times
{0,1,7,001} {0,2,17,002} {0,3,13,003} {0,4,8,004 } {0,4,9,005}
{0,8,16,006} {0,9,18,007} {0,11,25,008} {{0,2,14,00;} : 1= 9,10}
{{0,3,16,00;} : §= 11,12} {{0,5,15,00;} : 1= 13,14}  mod 37

(67,14; {4},3)-IPBD

points: ZszsU{oos:1 <1< 14}

blocks: {0,1,11,23} {0,2,15,29} {0,3,19,20} {0,4,22,25} {0,5,9,17}
{0,6,19,21} {0,5,11,001} {0,7,27,002} {0,8,24,003} {0,9,23,004 }
{0,7,25,005} {0,10,20,006} {0,1,7,007} {0,2,19,008} {0,3,11,009 }
{0,4,29,0010} {0,5,23,0011} {0,9,21,0012} {0,13,27,0013} {0, 15,31, 0014 }
mod 53
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