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Abstract. A weight w: E(G) — (1,2} is called a (1, 2) -eulerian weight of graph G
if the total weight of each edge-cut is even. A (1,2)-eulerian weight w of G is called
smallest if the total weight w of G is minimum. In this note, we prove that if graph
G is 2-connected and simple, and wy is a smallest ( 1,2)-eulerian weight, then either
|Ewp= ovea| < [V(G)| =3 o1 G = Ka.

Let G = (V, E) be a graph with vertex set V and edge set E. All graphs
considered here are 2-connected and simple. An even subgraph of G is a subgraph
of G such that the degree of each vertex is even in this subgraph. It is clear that
an even subgraph is a union of edge-disjoint cycles. The set of all neighbors of a
vertex v is denoted by N(v). Anedge-cut [ S,V — S] is the set of all edges with
oneend in S and anotherend in V — S.

A closed walk passing through all edges of a graph is called a postman tour of
the graph. The Chinese Postman Problem (abreviated to CPP) is to find a shortest
postman tour of the graph (the optimum solution of CPP). A weight w: E(G) —
{1,2} is called a (1,2)-culerian weight of the graph G if the total weight of
each edge-cut is even. If a graph G with a (1, 2)-eulerian weight w has a family
of even subgraphs such that each edge e of G is contained in exactly w(e) even
subgraphs of the family, then this graph is said to be cycle w-covered by the family
of even subgraphs. A graph is said to have the cycle cover property if G is cycle
w-coverable with respect to every (1,2)-eulerian weight.

Denote

Ey= even = {€ € E(G): w(e) is even}
EBy= oad = {e € E(G): w(e) is odd}

where w is a (1,2)-eulerian weight of G. It is trivial that E,,. 44 is an even
subgraph of G. It is proved in this paper that if G is cycle w-coverable with
respect to every (1, 2)-eulerian weight such that Ey,- cve, is acyclic, then G has
cycle covering property.

The shortest cycle covering problem (abbreviated to SCC) is to find a family of
cycles F (or even subgraphs) in a graph G such that each edge of G is contained
in some cycle(s) (or even subgraph(s)) of F' and the total length of cycles in F is
minimum,
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Theorem 1. If w is a (1, 2) -eulerian weight of G, and C is a cycle of G, let
w; be a (1,2)-weight of G such that wy(e) = w(e) ife ¢ C, and w(e) =
3 —w(e) if e € C, then w, is a (1,2)-eulerian weight of G.

Proof: In order to prove that w, is a (1, 2)-eulerian weight of G, take any edge-
cut[S,V — 8] of G. Because C is a cycle of G, the number of edges of C which
are contained in the edge-cut [ S,V — S] must be even. Therefore, |A| + |B| is
even,where A= {e € [S,V-S):w(e) =1,e€ C},and B={e € [S,V-S]:
w(e) = 2, e € C}. Therefore, |A| = |B| (mod 2). It follows that

El+22522+21--- (mod 2). )

e€EB e€A [313:] eEA
Also, we know that

E w(e) = E w(e)+21+22

e€[S,V-S] e€[S,V-SI\AUB ecA ecB
= Y, wi(ed+H 2+ 1. (mod 2)
e€[S,V-SI\AUB e€A eeB
= ) wie)
celS,V-5)
Then, w, is a (1, 2)-eulerian weight of G. This completes the proof. ]

As a consequence of Theorem 1, we have

Theorem 2. If a graph G is cycle w-coverable with respect to every (1,2)-
eulerian weight wr such that Gl Ey= even] is a forest, the graph G is cycle w-
coverable with respect to any (1, 2) -eulerian weight w.

Proof: Suppose that G is not cycle w-coverable with respect to every (1,2)-
eulerian weight w. Choose a (1, 2) -eulerian weight w of G such that

(i) G is not cycle w-coverable, :

(ii) |Ew= even| is as small as possible.

By the assumption in the theorem, the subgraph induced by Ey- even is nOt 2
forest. Thus, let C be a cycle in Ey= cven. We construct a new (1, 2)-eulerian
weight as follows: wi(e) = w(e) if e ¢ E(C), and w1(e) = 3 — w(e) if
e € E(C). By Theorem 1, we know that w; is a (1,2)-eulerian weight of G.
By the inductive hypothesis, since | Ey= even| > | Eun= eveal + 1 it follows that G is
w; -cycle coverable by a family of cycles F'. But F + {C} is a cycle w-cover of
G. This contradicts our assumption and completes the proof. 1

Let Q be the family of all the ( 1, 2)-eulerian weights of G. An element w of
Q is called smallest if the total weight w of G is minimum. Obviously, if wo is a
smallest ( 1, 2)-weight of G, the subgraph induced by Ey,= even is a forest.

Theorem 2 can be considered as a partial result towards the following conjec-
ture:
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Conjecture (Zhang [5]). Let wo € Q be such that |Eyye even| is minimum.
If G is cycle wo -coverable, then G is w-cycle coverable with respect to every
(1,2) -eulerian weight w.

If wo is a smallest (1, 2)-eulerian weight of G, we have the following property.

Proposition. Lef wo be asmallest (1,2) -eulerian weight of G. Then | Buwo= eveal
+|E| = the length of the optimum solution of CPP.

Proof: Let T' be an optimum solution of CPP of G. Define a weight wy by
wr(e) = hif T passes through the edge e of G h times. Obviously, 1 < h < 2,
and it follows that wr is a (1,2)-eulerian weight of G. Then, |Eypa oven| >
| B evenl-

Since Eyy= oad is an even subgraph, and Ey = cvea is a forest, we form a new
graph G* from G by doubling each edge of Ey,= cven. The new graph G* is a
eulerian graph (even graph). Then, ’

IEwg= Wﬂ‘ll 2 I-Eu.u"l= evea’-
Therefore,

|Eu'r= ovea| = |Evm= even|-

This completes the proof. |
By H(w) we denote the subgraph H(w) = (V(G), Eu= cven), Where w is a
(1,2)-eulerian weight of G. As another consequence of Theorem 1, we have

Theorem 3. Let G be 2-connected and wo be a smallest ( 1, 2) -eulerian weight
of G. Then
(1) H(wo) is a forest with at least two components; and
@) |Buye ovenl < |V| -2, and
(3) every edge of E(G) — Euy= ovea must be in the edge-cut between some
components of H(wp).

Proof: Using contradiction, we may assume that H(wyp) is a spanning tree of G.
It follows that Ey,,.. oaq is the cotree of G. Then we know that there exists a cycle
C which is contained in H(wyo) + e, where e € E,, - oaq. Let wy(e) = w(e) if
e & C,and wi(e) = 3 — w(e) if e € C. By Theorem 1, w; is a (1, 2)-eulerian
weight, it is easy to see that

|Bwo= even| 2> | Bun= evea] + 1.

This contradiction shows that the subgraph induced by Eyye cvea is nOt a span-

ning tree of G. Note that H(wp) is a forest with at least two components. Then

|Bup= evea| < |V| — 2. Itis easy to see that the third conclusion is true. This

completes the proof of Theorem 3. |
Now we are in the position to prove our main result.
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Theorem 4. Let G be a 2-connected graph and wo be a smallest element of Q.
Then one of the following 2 statements holds:

(1) The subgraph H(wo) = (V(G), Euy= cvea) has at least 3 components im-
plying that |Ewy= even| < [V| =3 0r
(2) G=K,.

Proof: Let the subgraph H(wo) of G be G*. If G* contains at least three compo-
nents, the theorem is done because the subgraph is a forest. By Theorem 3, we may
assume that G* contains exactly two components T}, T2 . Then E(G) \ E(G*) is
exactly the edge cut between T} and T3. Let P; be a longest path of T3, and P,
be a longest path of T>. Without loss of generality, let |P;| < |P|.

We claim that |P;| is atleast 1,1 = 1 or 2. Assume that |P,| =0 and G # Ka.
Thus, T} is a single vertex and 7> must have at least 2 vertices. That is, | P, |
is at least 1. Let vy, vo be the ends of P,. Note that v; (s = 1,2) is incident
with precisely one edge of weight 2. Since wp is an eulerian-weight and G is 2-
connected, v; must be incident with at least 2 weight one edges in G. Thus, any
end vertex v; of T; (¢ = 1, 2) must be incident with at least two weight 1 edges
in G, say, viu € E(QG) and v;u' € E(G). But u, u' are different vertices of T} .
This contradicts that |P;| = 0.

We claim that |P;| is 1, i = 1 or 2. Otherwise, without loss of generality, we
assume that || > 2. Let vy, vz be the ends of P,. As above, we can find two
different vertices, u; € Ti, u2 € T, such that u)v; € E(G), u2va € E(G).
Let P* be a path between u; and u3 in T}. Obviously, |P*| > 1. Then, vy uy P*
uyv2 P, v; is a cycle of G with length at least 5. Let C be such a cycle. It is easy
to see that

He€C:wo=2}>|{e€C:wp =1}|+ 1. (V3]

Let wi(e) = wo(e) ife € C; wi(e) =3 —wo(e) if e € C. By Theorem 1, w;
is a (1,2)-eulerian weight of G, and

lEWo=' evenl 2 Iwas: cvml + 1-

This contradicts the definition of wo.

Now we know that | P;| is 1. Because the end vertices of P; have degree at least
3, and G is 2-connected, it is easy to see that G is K4.

This completes the proof. |

Corollary 5. If G admits a nowhere zero 4-flow, other than K4, or contains no
subdivision of the Petersen graph, then the total length £ of a shortest cycle cover
satisfies £ < |E| + |[V]|—3.

Proof: In [5], it is shown that if G admits a nowhere zero 4 flow, then G has the
circuit property. In [1], we know that if G contains no subdivision of Petersen
graph, then G has the cycle cover property. In [5], itis also easy to prove that if G
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has the circuit property, then the optimum solution of the CPP equals the solution

of SCC. Then the corollary is true by our proposition and Theorem 4 above. This

completes the proof. |
In fact, we get the following stronger conclusion:

Corollary 6. If G has a cycle covering property, then either G = K4 orG has a
shortest cycle cover with total length at most |E| + V| — 3.

Proof: The same as Corollary 5. | |
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