On the smallest (1, 2)-eulerian weight of graphs

Cheng Zhao

Department of Mathematics West Virginia University Morgantown, WV 26506 U. S. A.

Abstract. A weight $w: E(G) \to \{1,2\}$ is called a (1,2)-culerian weight of graph G if the total weight of each edge-cut is even. A (1,2)-culerian weight w of G is called smallest if the total weight w of G is minimum. In this note, we prove that if graph G is 2-connected and simple, and w_0 is a smallest (1,2)-culerian weight, then either $|E_{w_0=ven}| \leq |V(G)| - 3$ or $G = K_4$.

Let G = (V, E) be a graph with vertex set V and edge set E. All graphs considered here are 2-connected and simple. An even subgraph of G is a subgraph of G such that the degree of each vertex is even in this subgraph. It is clear that an even subgraph is a union of edge-disjoint cycles. The set of all neighbors of a vertex v is denoted by N(v). An edge-cut [S, V - S] is the set of all edges with one end in S and another end in V - S.

A closed walk passing through all edges of a graph is called a postman tour of the graph. The Chinese Postman Problem (abreviated to CPP) is to find a shortest postman tour of the graph (the optimum solution of CPP). A weight $w: E(G) \rightarrow \{1,2\}$ is called a (1,2)-eulerian weight of the graph G if the total weight of each edge-cut is even. If a graph G with a (1,2)-eulerian weight w has a family of even subgraphs such that each edge e of G is contained in exactly w(e) even subgraphs of the family, then this graph is said to be cycle w-covered by the family of even subgraphs. A graph is said to have the cycle cover property if G is cycle w-coverable with respect to every (1,2)-eulerian weight.

Denote

$$E_{w= \text{ even}} = \{e \in E(G) : w(e) \text{ is even}\}$$

$$E_{w= \text{ odd}} = \{e \in E(G) : w(e) \text{ is odd}\}$$

where w is a (1,2)-eulerian weight of G. It is trivial that $E_{w=\text{odd}}$ is an even subgraph of G. It is proved in this paper that if G is cycle w-coverable with respect to every (1,2)-eulerian weight such that $E_{w=\text{even}}$ is acyclic, then G has cycle covering property.

The shortest cycle covering problem (abbreviated to SCC) is to find a family of cycles F (or even subgraphs) in a graph G such that each edge of G is contained in some cycle(s) (or even subgraph(s)) of F and the total length of cycles in F is minimum.

Theorem 1. If w is a (1,2)-culerian weight of G, and C is a cycle of G, let w_1 be a (1,2)-weight of G such that $w_1(e) = w(e)$ if $e \notin C$, and $w_1(e) = 3 - w(e)$ if $e \in C$, then w_1 is a (1,2)-culerian weight of G.

Proof: In order to prove that w_1 is a (1,2)-eulerian weight of G, take any edgecut [S,V-S] of G. Because C is a cycle of G, the number of edges of C which are contained in the edge-cut [S,V-S] must be even. Therefore, |A|+|B| is even, where $A=\{e\in[S,V-S]:w(e)=1,e\in C\}$, and $B=\{e\in[S,V-S]:w(e)=2,e\in C\}$. Therefore, $|A|\equiv|B|\pmod{2}$. It follows that

$$\sum_{e \in R} 1 + \sum_{e \in A} 2 \equiv \sum_{e \in B} 2 + \sum_{e \in A} 1 \cdot \cdots \pmod{2}. \tag{1}$$

Also, we know that

$$\sum_{e \in [S,V-S]} w(e) = \sum_{e \in [S,V-S] \setminus A \cup B} w(e) + \sum_{e \in A} 1 + \sum_{e \in B} 2$$

$$\equiv \sum_{e \in [S,V-S] \setminus A \cup B} w_1(e) + \sum_{e \in A} 2 + \sum_{e \in B} 1 \cdots \pmod{2}$$

$$= \sum_{e \in [S,V-S]} w_1(e)$$

Then, w_1 is a (1,2)-eulerian weight of G. This completes the proof. As a consequence of Theorem 1, we have

Theorem 2. If a graph G is cycle w-coverable with respect to every (1,2)-eulerian weight w_T such that $G[E_{w=even}]$ is a forest, the graph G is cycle w-coverable with respect to any (1,2)-eulerian weight w.

Proof: Suppose that G is not cycle w-coverable with respect to every (1,2)-eulerian weight w. Choose a (1,2)-eulerian weight w of G such that

- (i) G is not cycle w-coverable,
- (ii) $|E_{w=\text{ even}}|$ is as small as possible.

By the assumption in the theorem, the subgraph induced by $E_{w=\text{ even}}$ is not a forest. Thus, let C be a cycle in $E_{w=\text{ even}}$. We construct a new (1,2)-eulerian weight as follows: $w_1(e) = w(e)$ if $e \notin E(C)$, and $w_1(e) = 3 - w(e)$ if $e \in E(C)$. By Theorem 1, we know that w_1 is a (1,2)-eulerian weight of G. By the inductive hypothesis, since $|E_{w=\text{ even}}| \geq |E_{w_1=\text{ even}}| + 1$ it follows that G is w_1 -cycle coverable by a family of cycles F. But $F + \{C\}$ is a cycle w-cover of G. This contradicts our assumption and completes the proof.

Let Q be the family of all the (1,2)-eulerian weights of G. An element w of Q is called smallest if the total weight w of G is minimum. Obviously, if w_0 is a smallest (1,2)-weight of G, the subgraph induced by E_{w_0} even is a forest.

Theorem 2 can be considered as a partial result towards the following conjecture:

Conjecture (Zhang [5]). Let $w_0 \in Q$ be such that $|E_{w_0=\text{even}}|$ is minimum. If G is cycle w_0 -coverable, then G is w-cycle coverable with respect to every (1,2)-eulerian weight w.

If w_0 is a smallest (1, 2)-eulerian weight of G, we have the following property.

Proposition. Let w_0 be a smallest (1,2) -eulerian weight of G. Then $|E_{w_0 = \text{even}}| + |E| = \text{the length of the optimum solution of CPP.}$

Proof: Let T be an optimum solution of CPP of G. Define a weight w_T by $w_T(e) = h$ if T passes through the edge e of G h times. Obviously, $1 \le h \le 2$, and it follows that w_T is a (1,2)-eulerian weight of G. Then, $|E_{w_T=\text{ even}}| \ge |E_{w_0=\text{ even}}|$.

Since $E_{w_0 = \text{odd}}$ is an even subgraph, and $E_{w_0 = \text{even}}$ is a forest, we form a new graph G^* from G by doubling each edge of $E_{w_0 = \text{even}}$. The new graph G^* is a eulerian graph (even graph). Then,

$$|E_{w_0} = \text{even}| \ge |E_{w_T} = \text{even}|.$$

Therefore,

$$|E_{w_T} = \text{even}| = |E_{w_0} = \text{even}|.$$

This completes the proof.

By H(w) we denote the subgraph $H(w) = (V(G), E_{w=even})$, where w is a (1,2)-eulerian weight of G. As another consequence of Theorem 1, we have

Theorem 3. Let G be 2-connected and w_0 be a smallest (1,2)-eulerian weight of G. Then

- (1) $H(w_0)$ is a forest with at least two components; and
- (2) $|E_{w_0=\text{ even}}| \leq |V| 2$; and
- (3) every edge of $E(G) E_{w_0 = \text{ even}}$ must be in the edge-cut between some components of $H(w_0)$.

Proof: Using contradiction, we may assume that $H(w_0)$ is a spanning tree of G. It follows that $E_{w_0 = \text{odd}}$ is the cotree of G. Then we know that there exists a cycle C which is contained in $H(w_0) + e$, where $e \in E_{w_0 = \text{odd}}$. Let $w_1(e) = w(e)$ if $e \notin C$, and $w_1(e) = 3 - w(e)$ if $e \in C$. By Theorem 1, w_1 is a (1,2)-eulerian weight, it is easy to see that

$$|E_{w_0=\text{ even}}| \ge |E_{w_1=\text{ even}}| + 1.$$

This contradiction shows that the subgraph induced by $E_{w_0=\text{ even}}$ is not a spanning tree of G. Note that $H(w_0)$ is a forest with at least two components. Then $|E_{w_0=\text{ even}}| \leq |V| - 2$. It is easy to see that the third conclusion is true. This completes the proof of Theorem 3.

Now we are in the position to prove our main result.

Theorem 4. Let G be a 2-connected graph and w_0 be a smallest element of Q. Then one of the following 2 statements holds:

- (1) The subgraph $H(w_0) = (V(G), E_{w_0 = \text{ even}})$ has at least 3 components implying that $|E_{w_0 = \text{ even}}| \le |V| 3$; or
- (2) $G = K_4$.

Proof: Let the subgraph $H(w_0)$ of G be G^* . If G^* contains at least three components, the theorem is done because the subgraph is a forest. By Theorem 3, we may assume that G^* contains exactly two components T_1, T_2 . Then $E(G) \setminus E(G^*)$ is exactly the edge cut between T_1 and T_2 . Let P_1 be a longest path of T_1 , and T_2 be a longest path of T_2 . Without loss of generality, let $|P_1| \leq |P_2|$.

We claim that $|P_i|$ is at least 1, i = 1 or 2. Assume that $|P_1| = 0$ and $G \neq K_4$. Thus, T_1 is a single vertex and T_2 must have at least 2 vertices. That is, $|P_2|$ is at least 1. Let v_1 , v_2 be the ends of P_2 . Note that v_i (i = 1, 2) is incident with precisely one edge of weight 2. Since w_0 is an eulerian-weight and G is 2-connected, v_i must be incident with at least 2 weight one edges in G. Thus, any end vertex v_i of T_i (i = 1, 2) must be incident with at least two weight 1 edges in G, say, $v_1u \in E(G)$ and $v_1u' \in E(G)$. But u, u' are different vertices of T_1 . This contradicts that $|P_1| = 0$.

We claim that $|P_i|$ is 1, i=1 or 2. Otherwise, without loss of generality, we assume that $|P_2| \ge 2$. Let v_1, v_2 be the ends of P_2 . As above, we can find two different vertices, $u_1 \in T_1$, $u_2 \in T_1$, such that $u_1v_1 \in E(G)$, $u_2v_2 \in E(G)$. Let P^* be a path between u_1 and u_2 in T_1 . Obviously, $|P^*| \ge 1$. Then, $v_1u_1P^*$ $u_2v_2P_2v_1$ is a cycle of G with length at least F. Let F be such a cycle. It is easy to see that

$$|\{e \in C: w_0 = 2\}| \ge |\{e \in C: w_0 = 1\}| + 1.$$
 (2)

Let $w_1(e) = w_0(e)$ if $e \notin C$; $w_1(e) = 3 - w_0(e)$ if $e \in C$. By Theorem 1, w_1 is a (1,2)-culerian weight of G, and

$$|E_{w_0=\text{ even}}| \ge |E_{w_1=\text{ even}}| + 1.$$

This contradicts the definition of w_0 .

Now we know that $|P_i|$ is 1. Because the end vertices of P_i have degree at least 3, and G is 2-connected, it is easy to see that G is K_4 .

This completes the proof.

Corollary 5. If G admits a nowhere zero 4-flow, other than K_4 , or contains no subdivision of the Petersen graph, then the total length ℓ of a shortest cycle cover satisfies $\ell \leq |E| + |V| - 3$.

Proof: In [5], it is shown that if G admits a nowhere zero 4 flow, then G has the circuit property. In [1], we know that if G contains no subdivision of Petersen graph, then G has the cycle cover property. In [5], it is also easy to prove that if G

has the circuit property, then the optimum solution of the CPP equals the solution of SCC. Then the corollary is true by our proposition and Theorem 4 above. This completes the proof.

In fact, we get the following stronger conclusion:

Corollary 6. If G has a cycle covering property, then either $G = K_4$ or G has a shortest cycle cover with total length at most |E| + |V| - 3.

Proof: The same as Corollary 5.

Acknowledgement

The author wishes to thank the referee and Dr. C.Q. Zhang for many helpful suggestions.

References

- 1. B. Alspach, L. Goddyn, and C.Q. Zhang, Cycle coverings of graphs and binary matroids, Transaction of the American Mathematics Society (to appear).
- 2. B. Alspach, and C.Q. Zhang, Cycle coverings of cubic multigraphs, Discrete Mathematics (to appear).
- 3. P.D. Seymour, *Sums of circuits*, in "Graph Theory and Related Topics", (ed. J.A. Bondy and U.S.R. Murty), Academic Press, New York, 1979, pp. 341–355.
- 4. P.D. Seymour, *Matroids and multicommodity flows*, European J. of Combinatorics (1981), p. 257.
- 5. C.Q. Zhang, Minimum cycle coverings and integer flows, J. Graph Theory 14, No.5 (1990), 537-546.