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Abstract. We define the class of hereditary clique-Helly graphs or HCH graphs. It
consists of those graphs, where the cliques of every induced subgraph obey the so-called
‘Helly-property’, namely, the total intersection of every family of pairwise intersecting
cliques is nonempty. Several characterizations and an O(|V|?|E|) recognition algo-
rithm for HCH graphs G = (V, E) are given. Itis shown that the clique graph of every
HCH graph is a HCH graph, and that conversely every HCH graph is the clique graph
of some HCH graph. Finally, it is shown that HCH graphs G = (V, E) have at most
|E| cliques, whence a maximum cardinality clique can be found in time O(|V||E[?)
in such a HCH graph.

1. Introduction.

All graphs in this note are finite. By cligues we always mean maximal complete
subgraphs of a graph. A clique-Helly graph is a graph whose cliques obey the
so-called ‘Helly-property’: For any set of pairwise intersecting cliques, the total
intersection of these cliques is nonempty [2]. They had been introduced in connec-
tion with clique graphs in [5] and [3]. It turns out that this graph class is not closed
under induced subgraphs. For instance, the graph K; % H, constructed from the
graph H by adding some new vertex and joining it to all ‘old’ vertices by edges,
is a clique-Helly graph for every graph H. For me it seems that this is the reason
why there is no polynomial recognition algorithm known for clique-Helly graphs
up to now. Thus, it seems promising to consider the biggest hereditary subclass:
A hereditary clique-Helly graph or HCH graph is defined by the property that
every induced subgraph (including the graph itself) is a clique-Helly graph.

2, Characterizations.
In this section, we are going to give some characterizations of HCH graphs.

Theorem 2.1. A graph is a HCH graph if and only if it contains none of the four
graphs of Figure 1 as induced subgraph.
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Proof: None of the four graphs in Figure 1 is a clique-Helly graph, whence the
necessity of the condition. Let conversely G be a graph without the graphs of
Figure 1 as induced subgraphs. Assume G is no HCH graph, then some induced
subgraph F of G is no clique-Helly graph. Let C;,i € {1,2,... , k}, be pairwise
intersecting cliques of F' with empty total intersection, and let k be minimal with
this property for F'. Then each one of the intersections C; NCsN .. .NCk, CINC3 N
-« NC, C1NC2NCaN. . .NC; is nonempty. We choose vertices z; , z2 , 73 in these
three sets, respectively. The three sets are disjoint, since Nf,, C; = #, whence
z1,%2, 73 are distinct. By the same reason, C, and C; N ... N C; are disjoint.
There is some vertex y; in C; not adjacent to z;, because of the maximality of the
clique C). In the same way we can find vertices y», y3 in C;, C3, respectively, not
adjacentto 72 and x3, respectively. Wehavey, & V(C:UC:),y2 € V(CIUG,),
¥ € V(C1UC,), soall the six vertices are distinct. They induce one of the graphs
in Figure 1 in F, and, thus, in G also, a contradiction. [ |

The set of cliques of a graph obeys the strong Helly-property, if for all cliques
C;, i € I, of the graph there holds:

=min{|V(C;) NV(Cy|/i#j € I}.
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Corollary 2.2. HCH graphs are exactly the graphs whose cliques obey the strong-
Helly property.

Proof: In [7] it was shown that the clique set of a graph obeys the strong-Helly

property if and only if the graph contains none of the four graphs in Figure 1 as

induced subgraph. []
Let us reformulate Theorem 2.1 slightly:

Corollary 2.3. A graph is 2 HCH graph if and only for every m'anglé there is
some edge such that any common neighbor of the vertices of the edge is also
adjacent to the third vertex of the triangle.

Such edges are called ‘good’ for the triangle. The corollary directly yields
an O(n? m)-time recognition algorithm for HCH graphs with n vertices and m
edges.

Algorithm 2.4. Input: A graph G = (V, E)

1. Compute all triangles of G; (* in time O(nm) *)
2. FOR every triangle T" of G DO
e M:= E(T); (* the candidates for ‘good’ edges *)
eFORveV{z,y,2} DOFOR e€ E(T) DOIF Ng(v)NV(T)=V(e)
THEN M:=M\{e} (* e is not ‘good’ *); OD;
o IF M =9 THEN ( PRINT(‘no HCH graph’) ; STOP ) ;
¢ OD;
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3. PRINT(‘G is a HCH graph’); STOP; END.

Now I give one more characterization, using hypergraph terminology. A par-
tial hypergraph of a hypergraph H = (V,(51,82,...,8:)) is any hypergraph
we can obtain by deleting hyperedges and vertices, that is, any hypergraph P =
(W, (WnS;/jeT)),whereW C VandJ C {1,2,...,t}. The underlying
graph U( H) of the hypergraph has the same vertex set as H , and two distinct ver-
tices are adjacent in U ( H) if they lie in some common hyperedge. A hypergraph
is conformal , if the hyperedges of the dual obey the Helly property.

Theorem 2.5. Let © denote the class of all conformal hypergraphs without Cs as
partial hypergraph. Then the underlying graphs of the members of © are exactly
the HCH graphs.

Proof: 1fQ1,Q2,... ,Q: areall cliques of a graph G = (V, E), then its clique hy-
pergraph is defined by x(G) = (V,{V(Q1),V(Q2),...,V(Qn}). Itis well-
known that a hypergraph H is conformal if and only if the partial hypergraph
R(H) generated by the inclusion-maximal hyperedges is the clique-hypergraph
of some graph, namely, of its underlying graph U( H). So if C; is a partial hy-
pergraph of H, then there are 3 vertices z;,2,z3 and three cliques Q1,Q2,Qs
of U( H) such that each Q; does not contain z;, but the other two vertices, for
j € {1,2,3}. Then the three cliques hurt the strong Helly property, whence
U( H) is no HCH graph by Corollary 2.2, Conversely, if U( H) is no HCH graph,
it must contain some triangle {z;, 22,23} with no ‘good’ edge, see 2.3. Then
there must be cliques Q;,Q2,Qs in U(H) with z; € V(Q;), but z; € V(Q;),
fork # j € {1,2,3}. V(Q1), V(Q2),V(Q3) are hyperedges in H, since H
is conformal. Then these three vertices induce in these three hyperedges a partial
hypergraph isomorphic to C;. 1

3. Subclasses and superclasses.

By definition every HCH graph is a clique-Helly graph. But there is another
superclass, the class of irreducible graphs. It contains those graphs where every
clique contains some edge that lies in no other clique. In [7] it has been shown
that every graph without induced subgraphs as in Figure 1 must be irreducible.
From 2.1 there follows, since none of the graphs in Figure 1 is irreducible, when
we define hereditary irreducible graphs analogously as those graphs where every
induced subgraph is irreducible:

Corollary 3.1. The class of HCH graphs is exactly the class of hereditary irre-
ducible graphs.

The next result is immediate (it follows from 2.1, for example).
Remark 3.2: (K4e)-free graphs (and in particular triangle-free graphs) are HCH
graphs.
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Corollary 3.3. Every strongly chordal graph (and in particular every interval
graph and every block graph) is a HCH graph.

Proof: Strongly chordal graphs are exactly the underlying graphs of totally bal-
anced hypergraphs, see [1], which are defined as hypergraphs without graph cycles
as partial hypergraphs. But C; is a graph cycle, and we use Theorem 2.5. [ ]

Finally, we can state a common neighborhood condition for HCH graphs. Triv-
ially perfect graphs [4] do not contain any induced subgraph isomorphic to the
path P, or cycle Cs with 4 vertices.

Proposition 3.4. The common neighborhood of any two distance 2 vertices in
an HCH graph induces a trivially perfect graph.

Proof: Let z and y be two vertices of distance 2 in the HCH graph G. If their
common neighborhood contains some induced Cy, then z, g, and this C, induces
the octahedron 3K, the last graph of Figure 1. If their common neighborhood
contains some induced 4-vertex path P, then z, y, induce together with this Py
the third graph of Figure 1. But both these graphs are forbidden induced subgraphs
of G by Theorem 2.1, a contradiction. [ |

4. Cliques.

The cligue graph C(G) of a graph G is the intersection graph of the set of all
cliques of G. That is, C(G) has all the cliques of G as vertices, and two distinct
vertices are adjacent whenever they have nonempty intersection. In [2] there has
been shown that certain classes I of graphs (including the class of clique-Helly
graphs) are fixed under C. This means, that the clique graph of every graph in I
also lies in I", and every graph of I is the clique graph of another graph of I".

Corollary 4.1. The class of HCH graphs is fixed under C.

Proof: The proof is straightforward by Theorem 2.5 and Lemma 3.1in [2]. §

Clique-Helly graphs (though they are in a sense very restricted) may have an
exponential number of cliques, measured in the vertex number. Choose any graph
H with Q(2™) cliques, for instance tK3. Then the clique-Helly graph K, x H
has as many cliques as H, but only one vertex more. Contrary to this, we get by
3.1 for HCH graphs:

Corollary 4.2. No connected HCH graph has more cliques than edges.

Corollary 4.3. The cardinality of a maximum clique can be computed in time
O(nm?) for every HCH graph with n vertices and m edges.

Proof: The algorithm of [6] generates all the cliques of a graph in time O(nmc),
where ¢ denotes the number of cliques. 1
Surely the last two results even hold for irreducible graphs.
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