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Abstract. The problem of task allocation in distributed systems has been studied by
many researchers. Several approaches have been used to model and study the problem
including integer programming, heuristic methods, and graph theoretic models. These
approaches considered only restricted forms of the general problem. In this paper, we
introduce a new model 1o represent the problem of allocating tasks on heterogeneous
distributed systems. The model consists of a complete split graph that represents the
communication cost among tasks as well as the execution cost of each task on the sys-
tem processors. This model allows the incorporation of various constraints into the
allocation problem. We show that the task allocation problem is equivalent to the prob-
lem of weighted clique partitioning in complete split graphs, which we proved to be
NP-complete. We present a clique partitioning algorithm that employs the properties
of split graphs for solving the problem in its general form. We show that the algorithm
generates optimal solutions in some cases, while performing fairly well in general.

1. Introduction.

The fast progress of large integration technology has made distributed comput-
ing systems economically attractive for many computer applications. Distributed
computing provides facility for remote computing resources and data access. Be-
sides their flexibility, reliability, and modularity, distributed systems can be used
for parallel processing. However, several problems have slowed down the wide-
spread use of distributed systems. A major problem is the degradation in the sys-
tem throughput caused by the saturation effect. In an ideal multiple processor en-
vironment, we expect the throughput to increase linearly as the number of proces-
sors increase. In practice, the throughput increases significantly only for the first
few additional processors but when the number of processors starts to increase, the
throughput does not increase accordingly. This saturation effect is usually caused
by excessive interprocessor communication by messages transferred from one task
to another residing on different processors. In order to minimize or avoid the sat-
uration effect, the cost of the interprocessor communication should be considered
in allocating system tasks to the processing elements [6].

In the assignment of tasks to processors there are two types of cost; the cost
of execution of a task on a processor and the cost of interprocessor communica-
tion. In order to improve the performance of a distributed system, two goals need
to be met: 1) interprocessor communication has to be minimized and 2) the ex-
ecution cost needs to be balanced among different processors. These two goals
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seem to conflict with one another. On one hand, having all tasks on one processor
will remove interprocessor communication cost but results in poor balance of the
execution load. On the other hand, an even distribution of tasks among proces-
sors will maximize the processor utilization but might also increase interprocessor
communication. Thus, the purpose of a task allocation technique is to find some
task assignment in which the total cost due to interprocessor communication and
task execution is minimized.

Several approaches to the problem of task assignment in distributed system have
been developed. They can be roughly classified into three categories, namely,
graph theoretic [3, 4, 12-14], mathematical programming [6, 7, 13] and heuris-
tic methods [5, 10-12]. The graph theoretic approach applies the max-fiow min-
cut algorithm on a graph that represents the problem to get task assignment with
minimum interprocessor communication. In the mathematical programming ap-
proach, the task assignment problem is formulated as an optimization problem
and mathematical programming techniques are used to provide a task assignment.
Since the graph theoretic approach employs the max-flow min-cut algorithm, the
graph models are effective when the distributed system consists of two processors
only. These models fail when the system has more than two processors. Also, this
approach uses a restricted objective function that considers only the interproces-
sor communication cost. Mathematical programming techniques imposes several
assumptions that limits their effectiveness and can not be applied to real world
systems.

In this paper, we introduce a graph theoretic approach that models the task al-
location problem in distributed systems with any number of processors. The new
approach allows the incorporation of various constraints into the task allocation
model. We also use several properties of split graphs to devise a weighted clique
partitioning heuristic for solving the task allocation problem. To justify solving
the problem heuristically, we show that the task allocation problem is equivalent to
the problem of partitioning a complete split graph into a set of maximum weighted
disjoint cliques, which we show to be NP-complete. This paper is organized as
follows. In Section 2, we give the necessary definitions of split graphs and dis-
tributed systems. The split graph model is introduced in Section 3. In Section 4,
we discuss the task allocation problem when the optimization criterion is to min-
imize the total execution cost plus the total communication cost. We also show
that the task allocation problem is equivalent to the problem of weighted clique
partitioning in complete split graphs which is NP-complete. Section 5 includes
the clique partitioning heuristic and its performance analysis. The experimental
results are given in Section 6. We summarize our conclusions in Section 7.

2. Preliminaries.

2.1 Split graphs
Anundirected graph G is defined by two sets; a set of nodes V' and a set of edges
E. A setof nodes U C V is called an independent (stable) set if its elements are
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pairwise non-adjacent, that is, there exists no edges between its nodes. Similarly, a
setof nodes U C V is said to be acomplete set (clique) if its elements are pairwise
adjacent, that is, there is an edge between every pair of its nodes.

An undirected graph G = (V, E) is defined to be split if there is a partition
V = Vi UV, of its vertex set into an independent set V; and a complete set V3.
There is no restriction on edges between vertices of V; and vertices of V3. A split
graph is said to be a complete split graph if there is an edge between every node in
V1 to every node in V. We use the term cross edge to denote an edge that connects
anode in V; to a node in V. The edges connecting nodes within the complete set
are denoted by complete edges. An example of a complete split graph is shown in
Figure 1 in which |Vj| = 3 and [V2| = 4.

Figure 1. Complete Split Graph

There are two main graph theoretic properties of split graphs. Since a stable set
of G is a complete set of the complement graph G and vice versa, the complement
of any split graph is also a split graph. Also, due to the fact that V; is a complete
set, a split graph can not contain any chordless cycles of size four or more. In
other words, split graphs form a special class of chordal (triangulated) graphs [9].
These two properties form another characterization of split graphs. A graph G is
a split graph if and only if it is chordal and its complement is also chordal.

2.2 Distributed systems

A distributed system is assumed to be made up of an arbitrary number m of het-
erogeneous processing elements. These processing elements are assumed to be
interconnected via a communication network. System load consists of n separate
cooperating and communicating modules called tasks. Each task requires a cer-
tain amount of computation expressed by its execution time. Since the processing
elements are heterogeneous, the execution time of the same task might differ from
one processing element to another. A pair of tasks might also need to exchange a
certain amount of information and, hence, allocating them on different processing
elements might result in a cost expressed by their communication cost.
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3. The split graph model.

The problem of allocating tasks to processors in distributed systems can be mod-

eled by split graphs. A set of processors in a distributed system can be modeled
by the independent set V; in the split graph G = (V; U 14, E). The set of tasks
can be represented by the complete set V3 in the graph. A complete edge (T3, T5)
is used to represent the intercommunication between tasks T; and T;. The weight
on the edge expresses the communication cost between the two tasks when they
are assigned to two different processors. The weight on a cross edge ( T}, Fe) rep-
resents the execution cost of task T} on processor P. A complete edge (T3, Tj)
with a weight of zero implies that there is no communication between the tasks
T; and Tj. It follows that a complete split graph is constructed in this process to
represent the distributed system as shown in Figure 2.

AN

Figure 2. Split Graph Model

Using this model, a task assignment corresponds to some graph partitioning of
the split graph. Each graph partition consists of a node p € V; from the indepen-
dent set and a set of nodes U C V5 from the complete set. The set U represents
the set of tasks assigned to the processor represented by the node p. It follows that
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each partition forms a complete set (clique) which implies that task allocation is
equivalent to partitioning the split graph into node-disjoint cliques, as shown in
Figure 3.

An optimization criterion is used to measure how good a task assignment is.
The objective function is a function of the weights on both cross and complete
edges of the resulted cliques. Possible optimization criteria include minimizing
completion time, minimizing the interprocessor communication cost, balancing
the overall load of the system or minimizing both the communication cost and ex-
ecution cost. Each objective function corresponds to finding a clique partitioning
of the split graph satisfying certain properties. For example, when the objective
is to minimize the communication cost, partitioning the graph into cliques with
maximum total weight of the complete edges will result in the optimal solution.

P1

Clique 1

e&—O

Clique 2

Clique m

Figure 3. Clique Partitioning in the Split Graph Model
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4. Minimizing the total cost.

One of the most common optimization criterion in task allocation in distributed
systems is to minimize the total cost. The total cost can be expressed as the sum-
mation of the total execution cost and the total interprocessor communication cost.
Using the split graph model introduced in the previous section, the total cost of
each task assignment can be obtained as follows. The total execution cost is equal
to the summation of the weights on all the cross edges that belong to any of the
cliques. Recall that each assignment corresponds to partitioning the split graph
into a set of cliques. Also, the communication cost can be measured by the sum-
mation of the weights on the complete edges that do not belong to any of the
cliques. ' : :

Suppose a task assignment corresponds to partitioning the split graph G =
(V, E) into a set of node-disjoint cliques {C,Ca, ... ,Cn} where m is the size
of the indépendent set V;, and each clique C; contains a node p; that represents a
processor in the system. For each task assignmentV = C, UC, U...UCp, let
us define the following:

o A cross edge (v,,p;) is called an active cross edge if v, € C; and inactive
cross edge otherwise.

o A complete edge (v,, v3) is called an active complete edge if both v,, vy €
the same clique C; and inactive complete edge otherwise.

Now, the total cost of the task assignment can be obtained as follows.

EC = sum of the weights of all active cross edges.
CC = sum of the weights of all inactive complete edges.
TC=EC+CC.

In order to minimize the total cost, the clique partitioning should be obtained in
such a way that maximizes the weights on the active complete edges while mini-
mizes the weights on the active cross edges. If we replace the weight on each cross
edge w(va, pi) by (8 — w(v,,p;)), where 8 is a large positive integer, then the
objective will be to maximize the weights on the active cross edges as well as the
weights on the active complete edges. It follows that the problem of minimizing
the total cost of task allocation in a distributed system is equivalent to the problem
of partitioning the corresponding split graph into cliques that contain the edges
with the maximum total weight, or the maximum weighted cliques partitioning
problem. The two problems can be defined as follows.

Task allocation in distributed systems:

GivenasetoftasksT = {t;,t2,... ,t.},asetof processors P = {p;,p2,--. ,Pm}»
communication matrix C, where C;; = cost of communication between ¢; and t;
if assigned to different processors, execution matrix X, where X;; = cost of exe-
cuting task ¢; on processor p;, and a positive integer A, is there an assignment of
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tasks T to processors P such that EC + CC < A, where EC = Z X;;, task t; is
assigned to processor p;, for1 < i< n,1 < j < mand CC = £Cjj, task ¢; and
task ¢; are assigned to different processors for1 <i<n, 1< j < n?

Weighted clique partitioning in complete split graphs:
Given a complete split graph G = (V, E), V = V1 U V,, where V] is an inde-
pendent set and V> is a complete set, weights £(e) € I, where [ is the set of
integers, for each e € E, and a positive integer B, is there a partition of V into
exactly m disjoint cliques Cy,C;,... ,Cm, m = |[Vi| such that )~ &(e) > B
forl <i<m?

The proof of the following lemma follows directly from the previous discussion.

Lemma 1. The problem of task allocation in distributed systems is equivalent to
the problem of weighted clique partitioning in complete split graphs.

In the following theorem, we prove that the weighted clique partiiioning in com-
plete split graphs is NP-complete which w111 imply that the task allocation problem
is also NP-complete [1].

Theorem 1. The weighted clique partitioning in complete split graphs problem
is NP-complete.

Proof: We prove the theorem using a transformation from the graph partitioning
problem. The graph partitioning problem can be described as follows

Graph partitioning ,
Given a graph H = (V', E'), weights w'(v) =1 foreachv € V', #(e) € Z*
for each e € E', and positive integers K and J, is there a partition of V' into
disjoint sets V{, V... , Vy such that 35 eyr w'(v) < K for 1 < < m' and if
E" C E'isthe setof edges that have their two end points in two different sets V/,
then) ", v €'(e) < J?

This problem is known to be NP-complete for any fixed K 2 3 even when
£(e) = 1V¥e € E' [8]. Given an instance of the graph partitioning problem (GPP),
we can construct an instance of the weighted clique problem (WCP) as follows:

e Vi isasetof independent nodes such that [V;| = (g).

e Vb=V,

o E=E UE UE;,where Ey = E,E; = {(u,v) 1 u,v€E V2,(u,v) ¢
E\}, B = {(u,v) :u€eWV,v eV},

o f(e) =¥(e)Ve € By,

e {(e) =0Ve € E,,

o {(e) € {1,a}Ve € Ej3, where « is a small negative integer < — (3 cp,
£(e) + n). The weights £(e), e = (u,v%),1 < 1 < n, where e € E;
are represented as a weight vector (wy,w;, ... ,w,), where w; € {1,a}
and £((u,v)) = w;. The tabulation given below shows the () weight
vectors for all the edges in E3. Notice that in each weight vector, there are
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exactly K 1’s and n— K «'s. This weight assignment guarantees that for
any set of nodes U C V3, |U| < K, there exists a node v € V; such that
(u,v))=1forallu e U.

—~ K —se—n-K—o

11...laa...... o
l1...1alax...... o
1 laal...... o
aa...... all...1

—n—K -« K —

e B=) g le)+n—J,orB=3 pfl(e)+n—J.

Now the claim is that a positive (negative) answer to the question of WCP
implies a positive (negative) answer to the question of GPP. A positive answer
to the question of WCP implies that there exists a partition of V into disjoint
cliques Ci,Cz,... ,Cm such that 3 . .., &(€) > B. Since B is a positive
integer and « is a very small negative integer, none of the cliques should con-
tain an active cross edge e, such that £(e) = a. Since there are exactly n edges
with weights equal one that are in the cliques and belong to Ej, it follows that
Yee wmyGiaegr; U€) > B —n Given that C; = (V(C)), E(C;)), we can use
V! = V(C;) — {v}, where v € V; , that is, each subgraph in the solution of GPP
is one of the cliques provided by the solution of WCP minus the node that belongs
to V; along with all the edges that belong to E, or E3;. Formally, each subgraph
is defined as G} = (V{, E}), where V] = V(C;) — {v},v € Vj,and E! = E(C;)
—(B; UEs). It follows that 3¢ ;g gaccrr £(€) > B — n. Since

D =)t~ 3 ),

ef any G} ecE ¢€ any G

it follows that

3 <Y 2(e)-(B-m.

ef any G ecE’
> Y L)<y l(e)- (EZ’(e) +n—J— n)
ef any G eclE eEE'
® Y, fegT
ef any G}
&Y fe) <.
€LY

22



Now it is left to prove that for each subgraph G}, E"EV; w'(v) < K. Since
al -n— Zee g &(e), it is guaranteed that none of the cliques contains an edge
e, such that£(e) = a. It follows that only the cross edges e, such that£(e) = 1 will
be included in the cliques. Since every clique includes a node in V; by definition
and that for each node in V; , there are exactly K incident edges with unit weight,
it follows that the number of nodes in each clique is always less than or equal to
K + 1. In other words, at most K nodes from V5, would belong to any clique. It
follows that at most K nodes would belong to any partition G;. Since w'(v) = 1
for all nodes in V', then for each partition G, the number of nodes is less than or
equal to K, or Euev,' w'(v) < K.

Clearly, it can be shown that a negative answer to the decision problem WCP
implies a negative answer to the decision problem GPP. Since the transformation
is polynomial, it follows that the WCP is NP-hard. Also, since a given solution
to the problem can be verified in polynomial time, it follows that the WCP is in
NP and hence is NP-complete. Since problem GPP remains NP-complete even
when £(e) = 1 Ve € E' [8], the WCP also remains NP-complete even when the
weights £((u,v)) € {0,1} Vu,vE V3. B

The complexity of the task allocation problem in distributed systems can be
determined from Lemma 1 and Theorem 1. It follows that the decision problem is
NP-complete and consequently the optimization problem is NP-hard even in the
case when the communication cost between tasks allocated on different processing
elements is either zero or one.

5. Clique partitioning heuristic.

Having shown that finding an optimal allocation, with the minimum total cost,
of tasks to processors of a given distributed system is NP-hard, we introduce a
heuristic that handles the general case of the problem. Given an instance of the
task allocation problem, we can construct an instance of the weighted clique par-
titioning problem as follows.

Vi=P, %=T

£(e) = Cy;, forany edge e = (v;,v;) and v;,v; € V3

£(e) = B — X;;, where e = (v;,v;) and v; € Va,v; € V1,8
is a large positive integer

Clearly, a solution for the clique partitioning problem will provide a solution for
the task allocation problem as shown in the previous section. Since it is required to
partition the set of nodes into exactly m disjoint cliques, each clique should contain
exactly one node that belongs to the independent set V; . It follows that each clique
C; contains one node p; € V; and z nodes that belong to V3,0 < z < n The cost
of assigning each pair of nodes to the same clique is evaluated and compared to the
cost of assigning them to different cliques. This comparison affects the decision
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whether each pair of nodes should be included in the same clique or not. For every
pair of nodes u, v € V2 and clique C;, we define the following cost function.

F(u,v, Cl) = {e(",P;) —E(u,p,-)} + {E(‘I), pb) —‘e(vrpl')}) where
e(usp]) 2 e(uxpl) and‘e(”,Pk) 2 z(v)pi)!
1 <8< m&pi,pj,pk,pe € V1, pi €C;

The function F(u,v,C;) gives an indication about the appropriateness of as-
signing nodes u and v to the clique C;. The larger the value of the function
F(u,v,C;), the less appropriate it will be to assign both u and v to the clique
C;. Having F = 0 implies that C; is the best clique to include both nodes u and
v, - , .

We divide the heuristic into two phases: preprocessing and clique partitioning.
In the preprocessing phase: 1) m disjoint cliques are initialized such that each
clique C; contains a node p; € V3, 2) the complete edges are sorted in descending
order according to their weights, and 3) for each edge (u,v) in the sorted list, the
function F'(u, v, G;) is evaluated for all values of 1 < i < m. In the clique parti-
tioning phase, the split graph is partitioned into a set of m cliques C;, C, soer s Cme
The sorted complete edges are processed one at a time until all edges have been
processed. For each complete edge (1, v), if the weight of the edge is greater than
or equal to the cost function F'(u, v, G;) of the two nodes u and v for any clique C;,
the algorithm then recommends the assignment of both nodes to the same clique,
the one with the smallest cost function. Similarly, if the weight of the edge (u, v)
is less than the cost function F' of the two nodes for all cliques, the heuristic will
suggests that node u (v) beassigned to the clique containing node p; (p;), where
£(4,p;) > €(u,pe) and £(v,pi) > &(v,pe), 1 < £ < m&pj, pe,pe € Vi

In general, the nodes might have been already assigned to one of the cliques,
and hence the algorithm compares the new suggestion with the old assignment.
There are four possibilities in this case, keeping the original assignment of both
nodes, move one of the nodes to another clique, or move both of them to a new
clique(s). The relative weight of these four cases are then evaluated and the max-
imum weight will decide which option is the best among the four cases. The
weight of these cases are denoted by wgt1, wgt2, wgt3, and wgt4 in the algo-
rithm. The algorithm keeps track of current assignment of each node u and store
itin cligue(u), which is initialized by zero for all nodes. It follows that at any
given instance, cligue(u) = 4 for all nodes u in the clique C;. If u is one of the
endpoints of the edge under processing, cligue(u) might change if the algorithm
decides to move u to another clique. Notice that this decision is not final, since
any of the nodes might be moved to another clique because of another complete
edge down in the sorted list. The details of algorithm Partition are given below.
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Algorithm Partition:

Input: A complete split graph G = (Vi U V3, Ex U E), where V is the
independent set, V3 is the complete set, Ex is the set of cross edges,
and Eg is the set of complete edges.

Output: Set of node disjoint cliques C;,C,, ... ,Cn.
Preprocessing and Initialization

{ Initialize all cliques }
Ci—{p}1<i<m, p€eW
Co—0

{ Sort complete edges }
Sort the complete edges E. in descending order according to the weight

{ Evaluate the function F for every pair of nodes in the complete set }
Evaluate F(u,v,C)V(u,v) €V2, 1<i<m

{ Initialization }

Let clique(u) —O0Vu e 1,

Let node(s) be a function that returns p; € V; that is assigned to C;
Let node(0) .« 0

(4,0) — ~ccVu eV,

Clique Partitioning

repeat
{ Process a complete package }
Let (u, v) be the unmarked edge with the maximum weight in E,

{ Comparing the weight on the complete edge and the function F }
if l(u,v) < F(u,v,C;),1 < i < m then begin
Pz « pi, where l(u,px > l(u,p;), 1 <i<m
Py < Dk» where l(”spk 2 l(v:pi)r 1 i<m
end
else begin
Pz « pi, where F(u,v,C¢ < F(u,v,G;), 1 <im
Dy & Dz '
end

{ What if u and v remain in their current cliques? }

wgtl « l(u,node(clique(u))) + I(v, node(clique(v)))+
> U(u,t)Vt € clique(u) + 3 I(v,t)Vt € clique(v)
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{ What if u moves to another clique and v does not? }
wgt2 «— l(u,p;) + I(v,node(clique(v)))+
Y U(u, )Vt € C: + Y (v, 1)Vt € clique(v)

{ What if v moves to another clique and u does not? }
wgt3 « l(u,clique(u)) + (v, py)+
3 I(u, )Vt € clique(u) + Y i(v,t)VEt € C,

{ What if both u and v move to other cliques? }
wgid — U(u,p;) + l(v,p,)+
Y Uu, )Vt € Co+ Y (v, t)Vt € C,

if maximum(wgtl, wgt2, wgt3, wgt4 ) = wgt2 or wgt4 then begin
{umovesto C; }
Remove u from its current clique
C; +— C;U{u}
clique(u) « z
end

if maximum(wgtl, wgr2, wgt3, wgtd ) = wgt3 or wgt4 then begin
{vmovestoC, }
Remove v from its current clique
Cy — CyU{v}
clique(v) « y

end

Mark the edge (u, v)

until all edges in E, are marked

Example.

In this example, we allocate a program consisting of four tasks on a distributed
system of two processors. The system tasks and the processing elements are rep-
resented using the split graph model shown in Figure 4. The system parameters
such as the task execution cost and the communication cost between any pair of
tasks are represented in the split graph model as well. For example, the execu-
tion cost of running task T} on p; and p, are 10 and 20, respectively. Also the
communication cost between T and Ty, if they are assigned to different process-
ing elements, is equal to 50. The step by step execution of the algorithm on this
example can be described as follows.



Figure 4. An Example of the Split Graph Model
for 4 Tasks on a 2-Processor System

First, we construct an instance of the clique partitioning problem as follows.

Vi = {p1,p2}
Va={, 2,73, T4}
£(e) = Cy, forany edge e = (T}, T})
£(e) = B—X;;, where e=(T;, P;) and T, €V;, P eV,
B is a large positive integer
Clearly the weights on the complete edges will remain the same, while the

weights on the cross edges will change. We choose 8 to be 200. The new weights
on the cross edges are: :

T1,;m) =190 £Ti,p) =180
&T2,p1) = 180 LT,p2) =170
LTs,p1) =125 LT3,p2) =185
£(Ts,p1) = 185 UTy,p2) = 185

After the preprocessing and initialization step, the complete edges are sorted
and the situation can be summarized as follows:

G ={p}, C2 = {;}
cligue(T1) = 0, cligue(T2) =0, clique(T3) =0, cligue(Ts) =0.
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F(T,72,C1)= 0
F(T,T73,C1) =60
F(Ty,T4,C)) = 0
F(1,73,C1) =60
F(,T4,C1)= 0
F(T3,T4,C1) =60

F(h,12,3) =20
F(T,T3,%) =10
F(N,Ts,C) =10
F(T2,T3,C2) = 10
F(T,Th, ) =10
F(T3,T4,C2)= 0

In the first iteration of the main loop, the edge (T, T4) is considered. The
weight of the edge is compared to the values of the cost function for each clique.
Since £(T1,Ty) is greater than both F(Ty, Ty, C1) and F(Ty,T4, C,),both nodes
Ty and T4 are assigned to the same clique; the one with the minimum cost function
(Cy). After this iteration, the situation can be summarized as follows:

Ci={n,N,Ts}, G ={p}
cligue(Ty) = 1, cligue(T2) = 0, cligue(T3) = 0, clique(Ty) = 1.

In the second iteration, the algorithm considers the edge (77,73 ). Again, since
&(T,T3) is greater than both F(T},T3,C;) and F(T,,T5,C:), the algorithm
initially recommends the assignment of both nodes to clique C, . Since cligue(T3)
initially equals zero, T3 is assigned to C, . Since cligue(T}) = 1, the total weight
when T remains in C; is compared to the total weight if 7 moves to C,. It turns
out that keeping T in C; will result in a higher total weight. The situation after
the second iteration is:

C ={p,N,Tu}, Co={p2, 13}
cligue(T) = 1, clique(T2) =0, cliqgue(T3) =2, cliqgue(Ty) = 1.

Similarly, in the third iteration, the values of F(T2,T3,Ci) and F(T3,T3,C3)
are compared with the weight (T3, T3) . Since, the value of F(T3,T3,C,) is the
minimum among the three, the algorithm recommends the assignment of both
nodes on C, . Because of the fact that cligue(T2) = 0 and cligue(T3) = 2, this
recommendation carries. The situation now is:

Ci={p,t, s}, C2 = {p, 15,72}
cligue(T1) = 1, cligue(T2) = 2, cligue(T3) = 2, clique(Ts) = 1.

It can be verified that the last three iterations of the algorithm will maintain the
above assignment. Figure 5 shows the task allocation of the original problem on
the two processors. Notice that the numbers next to the edges are the original
weights in the task allocation problem. In this case the allocation is optimal, when
the optimization criterion is to minimize the total execution and communication
costs.
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Figure 5. The Task Allocation for Split Graph Model of Figure 4

Lemma 2. The time complexity of algorithm Partition is of order O (v*(m + 7)) ,
where n is the size of the complete set and m is the size of the independent set in
the split graph.

Proof: In the preprocessing step, the order of sorting the complete edges is of
order O(n? log n), and the order of evaluating the cost function F is O(#*m).

In the clique partitioning step, the main loop is repeated n(n — 1) /2 times, that
is, the number of complete edges. In each iteration, obtaining p, and p, is done
in O(m) operations and evaluating the weight of the four cases is of order O(n).
This implies that the complexity of the clique partitioning step is O (n (m + n)) .
Since the complexity of the preprocessing step is O (nz(m +log n)) , it follows
that the complexity of algorithm Partition is of order O (n?(m + n)) . ]

Theorem 2. Algorithm Partition generates an optimal solution if F(u,v,C;)
is either equal to zero or greater than L0(u,v)Vu,v € 3 &1 < i < m, and
&(u,p;) ¥ &(u,p;), for any two nodes p;,p; € Vi,u € Va.

Proof: In this case, the weights on the cross edges dominates the weights on the
complete edges in determining the assignment of each node. Recall that F(u, v, C;)
= 0 implies that the clique C; is the best clique to contain the nodes v and v in
terms of the weights on the cross edges. Also, F(u,v,C;) > £(u,v) implies that
the weight of assigning both nodes to clique C; is lower than the weight on the
complete edge between the two nodes. We prove the theorem by induction on
the number of nodes n. If n equals one then algorithm Partition will assign the
only node u to the clique C; such that (u, p;) is maximum, which will provide an
optimal solution. If the algorithm provides an optimal solution for n — 1 nodes,
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we show that the optimality is preserved after assigning the nth node, u. There
are two cases to consider. In the first case, F(u,v,C;) > Z&(u,v)Vv € V3,
and Vp;,p; € V1,1 < i < m. In this case, u will be assigned to clique C; that
contains p; such that (u,p;) is maximum. The obtained assignment will have the
maximum total weight because if u is assigned to another clique Cj, then the total
weight will be decreased by F'(u, v, p;) and increased by at most Z£(u, v), for all
tasks in C;. Hence, assigning u to clique C; will result in a lower total weight. In
the second case, if F'(u, v, C;) is equal to zero for some clique C;, then algorithm
Partition will assign node u to clique C;. Clearly, assigning node u to any clique
other than C; will result in a lower total weight, since £(u,p;) # &(u,p;) =
F(u,v,C;) # 0, for any clique Cj. |

The above theorem shows that while the algorithm handles the general case of
the partitioning problem, it recognizes this restricted case and provides an optimal
partitioning. Although the above case is very restricted, it gives an indication that
the proposed heuristic performs better when the weights on the cross edges are
relatively high compared to the weights of the complete edges. In other words,
using algorithm Partition for solving the task allocation problem, it will perform
better when the average execution cost is relatively high compared to the average
communication cost. This observation is supported by the experimental results
given in Section 6.

6. Experimental results.

In this section, we present the results of a number of simulation experiments
designed to study the performance of the algorithm Partition to solve the task al-
location problem. The performance of algorithm Partition was compared to the
optimal, which was obtained using exhaustive search. The experimental results
suggest that the performance of algorithm Partition lies within a factor of 2 of the
optimal when the average execution cost is greater than the average communica-
tion cost. We define the following two performance measures:

total cost of assignment found by Partition

M= total cost of optimal assignment

_ average communication cost
average execution cost

‘We generated 400 complete split graphs with different number of tasks and pro-
cessing elements. The number of tasks ranged between 4 and 64 while the number
of processing elements ranged between 2 and 16. Task execution cost was ran-
domly generated using exponential distribution with an average cost in the range
[10, 1000] units of cost. The communication cost between tasks allocated to dif-
ferent processing elements was randomly generated using a uniform distribution
with an average cost in the range {0, 1000] units of cost. The experiments were
conducted on a Sequent symmetry with 14 processors.
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The detailed results of the simulation experiments are reported in [2]. The fol-
lowing table summarizes the relevant experimental results. The entries in the table
represent the percentages of the number of simulation runs for each value of A/
and R. For example, the first two entries in the table indicate that when R = 20,
in 45% of the runs, algorithm Partition provided an optimal assignment, while in
50% of the runs, it provided an assignment with the ratio between the cost found
by Partition and the optimal cost < 1.2.

Table 1
R M=1.0 <12 <14 <1.6 <18 <2.0
20 45% 50% 50% 75% 80% 85%
10 45% 50% 50% 75% 80% 85%
1 50% 50% 72% 80% 80% 95%
0.5 70% 83% 96% 96% 98% 100%
0.2 100% 100% 100% 100% 100% 100%
0.1 100% 100% 100% 100% 100% 100%

7. Conclusions.

In this paper, we introduced a new graph theoretic approach to model the problem

of task allocation on distributed systems. Our model is based on a special class
of graphs called split graphs. The split graph model represents the communica-
tion cost among tasks as well as the execution cost of each task on the processors.
There are several optimization criteria considered when allocating a set of tasks
to a distributed system. The objective function of the proposed algorithm is to
minimize the total cost which is the summation of the execution cost and the in-
terprocessor communication cost. We showed that the task allocation problem is
equivalent to the problem of weighted clique partitioning in complete split graphs
and hence is NP-complete. We also devised a new task allocation algorithm based
on the problem of weighted clique partitioning in split graphs. We showed that
the algorithm generates optimal solutions in some cases, while performing fairly
well in general.
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