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ABSTRACT

A set of blocks which is a subset of a unique t-(v, k, A;) design is called a
defining set of that design. Using known results, an algorithm for finding
smallest defining sets of any ¢-(v,k, ;) design is described. Then the
results of this algorithm as applied to the two 2-(13,3,1) designs are given.

1. Introduction

A block design is a set of b k-subsets (blocks) chosen from a set of v elements, such
that every element occurs in exactly r blocks. If every subset of ¢ elements belongs
to exactly A, blocks, the design is called a t-design and its parameters are indicated
as t-(v, k, ;). An example is the 2-(7,3,1) design F, with blocks

F = {124,235, 346,457, 561,672, 713} .

A 2-(v,3,1) design is called a Steiner triple system of order v. These exist for
all v = 1 or 3 (modulo 6); see for example Mathon, Phelps and Rosa [8]. The design
F given above is a Steiner triple system of order seven.

The following definitions were introduced by Gray [3].

Definition 1.1 A set of blocks which is a subset of a unique t-(v,k, ;) design is
said to be a defining set of the design, and will be denoted by d(¢-(v, k, ¢)). A min-
imal defining set, denoted by d,,(t-(v,k, A)), is a defining set, no proper subset of
which is a defining set. A smallest defining set, denoted by d,(t-(v,k, Ae)), is a
defining set such that no other defining set has smaller cardinality.

Every ¢-design has itself as a defining set and hence it must have a smallest defining
set. A d(t-(v, k, A;)) defining set consisting of blocks of a particular t-(v, k, A¢) design
D is abbreviated to dD.

The sét of blocks R = {457,713,672} is a subset of two 2-(7,3,1) designs. These
designs are F = RUT; and RU T;, where Ty = {124,235,346,156} and T; =
{125,234,356,146 }. Hence R is not a defining set of either design. But the set of
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blocks § = { 124,235,346 } can be completed to a 2-(7,3,1) design only by adjoining
the blocks { 457,561,672, 713 }. Hence S is a defining set of the design F.

Definition 1.2 A permutation of the elements of a design D which sends the set
of blocks of D to itself is called an automorphism of the design.

The set of all automorphisms of a design D is easily seen to be a group under com-
position which is denoted by Aut(D).

Definition 1.3 A single-transposition-free (STF) design is a t-(v, k, \;) design
whose automorphism group contains no single transposition (i j) of its elements.

The definition of an STF design was introduced by Gray [5]. It can be shown that
any i-(v,k,1) design with k& > ¢ is STF. A simple t-(v, k, A;) design is one with no
repeated blocks. Clearly any design with A; = 1 is simple.

In the remainder of this paper the known results on defining sets will be given,
followed by a description of a new algorithm which arranges the results of [2], [3],
[4], [5] into an implementable method which can be used to find the smallest defining
sets of any ¢-(v, k, A;) design. The results of applying this algorithm to the 2-(13,3,1)
designs will then be given. These designs are chosen to illustrate the algorithm as they
are highly unsymmetric and the number of isomorphism classes involved in the search
for their defining sets is extremely large. The problem of finding smallest defining sets
of these designs is one which would be virtually impossible to solve using anything
other than an implementable algorithm.

2. Background

In this section the background results are given which are needed to construct the
algorithm. The concept of a trade is very important in the search for defining sets.

Definition 2.1 A set of m blocks Ty taken from a t-(v,k, ) design is called a trade
if another set of m k-sets Ty can be found, conlaining ezactly the same t-subsets.
Often the sets Ty and T, together are said to form a trade. A minimal trade is e
trade, no proper subset of which is a trade.

The set of blocks Ty, T2 given above form a trade. Trades are also sometimes re-

ferred to as ‘mutually balanced sets’; see Rodger [10]. Suppose the set of blocks 7}

of the design D can be traded for the set of k-sets T;. Then the set T1p is a trade in

D, as it can be traded with the set Typ, for any p € Aut(D). The following results
are taken from [3], (4], [5].

Lemma 2.2 Every d(t-(v,k,\)) defining set S of a design D contains a block of
every possible trade Ty C D. 0]

Lemma 2.3 Suppose S is a particular defining set of a t-(v, k, A;) design D. Then:
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(i) Sp is a defining set of D for all p € Aut(D);
(i1) Aut(S) is a subgroup of Aut(D). 0

Lemma 2.4 Any d(t-(v, k, X)) defining set S of an STF design has at least v — 1
elements occurring in its blocks. 1}

Lemma 2.5 Suppose that in a d(t-(v,k, X)) defining set S of an STF design, el-
ements ¢, j each occur only once. Then i and j must occur in different blocks of S.0

Theorem 2.6 For every STF t-(v,k, ;) design D,
2(v-1) ,
>A7 k' = — k).
|dD| 2 R where min(k,v — k) 0
Corollary 2.7 If a d(t-(v, k, \;)) defining set S of an STF design consists of s blocks,
then

—-’(sk_z)ﬂst:s—’(k;l)ﬂ. 0

Theorem 2.8 Suppose S is a d(t-(v, k, X)) defining set of an STF design D, where
t<k<v—tand|S| =s. Then:

(k<2 and (v—k) <21,
(i) v £ 271 + k* < 2, where k* = min(k,v — k). a

Theorem 2.9 Suppose S is a d(2-(v, k,1)) defining set of an STF design D, where

|S| = s. Then
05(;)+3+l. 0

Theorem 2.10 Suppose S is a d(t-(v, k, X)) defining set of a simple STF design D.
Let n(S : D) denote the number of configurations of blocks in D isomorphic to S.
Then

. py = [Aut(D)|
n(S . D) — MT(‘S)'-

3. The Algorithm

The algorithm developed to find smallest defining sets of a given t-(v, k, A,) design
D is now described. It arranges the results of {2], [3], [4], [5] as described above into
an implementable method which can be used to find the smallest defining sets of any
t-(v,k,A) design.

It is assumed that the design D is both STF and simple, so the results of the previ-
ous section hold. First use Theorems 2.6, 2.8, 2.9 (if applicable) and Corollary 2.7 to
calculate the lower bound ng on the size of a defining set. We start by determining,
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for each (:o) set of no blocks of D, whether or not the set is a defining set. If there
are no defining sets of ng blocks, consider sets with ng + 1 blocks, and so on. The
first defining set found will be a smallest defining set: suppose it has n blocks. Work
through every (:) set of n blocks until a complete list of all smallest defining sets
is found, then stop. Note that this process will terminate, as every design possesses
smallest defining sets.

Suppose we have shown that no defining set of ng 4 1 blocks can exist, for
i=0,1,...,7 — 1, and we are now about to consider sets of ng + j = n. Arrange all
the (:) sets of n blocks of D into isomorphism classes: suppose there are m classes,
Cy,...,Cm. By Lemma 2.3(i), for each isomorphism class, either every set is a defin-
ing set or no set is a defining set. Hence it is enough to take a transversal of the
1somorphism classes, that is, a set { S;|S; € C;, i =1,...,m}, and decide, for each of
these sets, whether or not it is a defining set. The results of the previous section give
tests which can determine that a given set is not a defining set. These are applied to
each set in the transversal, applying the easiest tests first.

Let j; be |Ci|, the number of members of the i** class. Then j; = n(S; : D) in the
notation of Theorem 2.10. Let o; = |Aut(S;)| be the order of the automorphism group
of S;. Theorem 2.10 reworded states that if S; is a defining set then j; x o; = |Aut(D)].
Hence the reworded contrapositive states that if j; x o; # |Aut(D)], then S; cannot
be a defining set. Even more simply, if j; is not a factor of |Aut(D)| then, since o;
must be an integer, Theorem 2.10 implies S; is not a defining set. Next, if S; contains
less than v — 1 elements within its blocks, then by Lemma 2.4 the set S; cannot be
a defining set. The next step requires the construction of the group Aut(S;): if the
group Aut(S;) is not a subgroup of Aut(D) then by Lemma 2.3(ii) S; is not a defining
set of D. This test can be carried out by the software package Cayley [1]. If the set S;
passes all these tests, then the class C; is called feasible, if not it is called infeasible.

If any feasible classes still remain, a list of trades must be generated. In some cases
it is easy to find small trades by hand. The structure of small trades is described in
Hwang [7]. A trade in a t-design must contain at least 2¢ blocks. Once any trade
is found, several other trades can be generated from it simply by applying automor-
phisms of the design to it. By Lemma 2.2, if any trade found is disjoint from S;, then
S; is not a defining set. If the small trades found do not rule out all classes, then the
last step is to find all the t-(v, k, A;) designs containing S; for every feasible class C;,
a process known as completion of S;. If S; can only be completed to one design,
then by definition S; is a defining set, and d,(D) = n. However, suppose S; can be
completed to two or more designs. The set of blocks D \ §; is a trade disjoint from
S;, which contains a minimal trade T. Then T can generate more trades, using the
automorphisms. Continue in this manner, accumulating trades.

When all the m sets of the transversal have been considered, we will be faced with one
of two possibilities: either n = d,(D) and all the smallest defining sets of D have been
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found, or d,(D) > n. If n = d,(D) then we also know how many isomorphism classes
the smallest defining sets fall into, the size of each class and the automorphism groups
of elements of the class. If d,(D) > n then start the process again for n = n + 1.
The entire algorithm is given in Figure .1 in pseudocode. Note that new trades can
be added to the list of trades at any stage.

The information produced by the algorithm is presented in table form, with a standard
format. The table headings, left to right, are ‘class number #’, ‘blocks of §;’, ‘size
Ji', ‘group order o;’ and the final column headed ‘trade number’ if a list of trades
was used, and ‘feasible 7’ if no trades were used. The symbols S;, j;, o; are as
defined above. All blocks of the design will have been numbered 1,...,b and the
block numbers, not the blocks, appear in the column labelled ‘blocks of §;’. The
entries are ordered first by increasing size j;, then by increasing group order o;, and
finally by lexicographical ordering on the block numbers of S;. The entries in the
‘class number ¢’ column merely associate the numbers 1,...m to the ordered entries.
If the size j; does not divide |Aui(D)|, then the entry in the ‘group order o;’ column
(and in the ‘trade number’ column, if present) will be a “*. If j; divides |Aut(D)|
but j; x 0; # |Aut(D)| then the entry in the ‘trade number’ column (if present) will
be “**¥'. Number all the trades in the list of known trades. If the set S; is disjoint
from trade number p then the number p will be placed in the ‘trade number’ column.
Those sets which contain a block from every trade in the list will have an entry ‘“***’
in the ‘trade number’ column, indicating that they are possible defining sets. If there
is no ‘trade number’ column then the ‘feasible 7’ column will have entry ‘yes’ in the
ith row if j; x o; = |Aut(D)|, and entry ‘no’ otherwise. Hence classes with a “***’
entry in the ‘trade number’ column, or a ‘yes’ entry in the ‘feasible ?” column are
feasible, all other classes are not. The representatives of the feasible classes need to
be completed by hand to determine whether they are defining sets.

4. The 2-(13,3,1) designs

It is well known (see Mathon, Phelps and Rosa [8]) that there are only two non-
isomorphic 2-(13,3,1) designs, or Steiner triple systems of order 13. The details of
the search for smallest defining sets for the two 2-(13,3,1) designs is now given. Some
designs are quite symmetric, and their defining sets could perhaps be found using
some other method. However, consider the 2-(13,3,1) design D;,. The number of
different isomorphism classes that need to be investigated to find defining sets of D,
is extremely large. For instance, the (2:2 = 3124550 different sets of nine blocks of D,
fall into 30376 isomorphism classes. Clearly, the problem of determining whether a
representative of each class is a defining set is one which would be virtually impossible
to solve using anything other than an implementable algorithm.

Two non-isomorphic 2-(13,3,1) designs are given in Tables 1, 2. For notational
convenience the numbers 10, 11, 12 and 13 are represented in the design by the
letters a, b, ¢ and d respectively. Design D, in Table 1 is cyclic, with starter blocks
125 and 139. The design D; in Table 2 is obtained from D, by trading a set of four
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Algorithm .1

input
D : design with b blocks;

begin
n := lower bound; (* given by Theorems 2.6, 2.8, 2.9, Corollary 2.7 *}
found := false;
find initial irades;
use Aut(D) io generaile more irades;
while not found do
begin
arrange all (:) sets of n blocks of D into m isomorphism classes;
fori:= 1to mdo
begin
ji := size of isomorphism class i;
if j; divides |Aut(D)| then
begin
S; := a represenialive of isomorphism class i;
Aut(S;) := the aulomorphism group of S;;
0; := |Aut(S;)|;
if o; x j; = |Aut(D)} then
if S; contains at least v — 1 elements then
if Aut(S;) is a subgroup of Aut(D) then
if S; contains a block of every trade then
if S; completes uniguely to design D then
begin
class i is a class of defining sets;
found := irue;
end
else
begin
class i is not a class of defining sets; (* by definition *)
find & new minimum trade;
use Aut(D) to generate more trades;

end
else
class i is not a class of defining sets; (* by Lemma 2.2 %)
else
class i is not o class of defining sets; (* by Lemma 2.9 *)
else
class i is not a class of defining sets; {* by Lemma 2.4 *)
else
class i is not a class of defining sets; (* by Theorem 2.10 *)
end
else
class ¢ is not a class of defining sets; (* by Theorem 2.10 *)
end
n:=n+1l;
end

end.

Figure 1: The general algorithm - pseudocode



blocks. The trade consists of blocks

T = {125,458,d14,d28 } (1)
from design D; and blocks

T, = {12d,4d8, 514,528 }

from design D,.

block number block block number block
1 125 14 139
2 236 15 24a
3 347 16 35
4 458 17 46¢
5 569 18 57d
6 67a 19 681
7 785 20 792
8 89c 21 8a3
9 9ad 22 9h4
10 abl 23 ach
11 bc2 24 bdb
12 cd3 25 cl7
13 dl4 26 d28

Table 1: The cyclic 2-(13,3,1) design D,

The automorphism groups of the two 2-(13,3,1) designs are well known, see for
example [8]. For these particular designs they were conveniently found using nauty
[9]. The order of the automorphism group of D is 39. The group is generated by the
permutations

(123456789abcd),
(244)(376)(5dB)(89¢).

¥
¢

The order of the automorphism group of D, is 6. This group is generated by the
permutations

It

I

w

X

(29)(3d)(45)(6a)(80),
(14)(25)(38)(67)(9 d).

il

By an earlier remark both of these designs are STF, so the results of Section 2 give
bounds on the size of possible defining sets. The result of Theorem 2.6 shows that

213-1) _
14(2-(13,3, 1)) 2 =557~ = 6.

45



block number block block number block
1 12d 14 139
2 236 15 24a
3 347 16 35b
4 448 17 46¢
5 569 18 57d
6 67a 19 681
7 78b 20 792
8 89c 21 8a3
9 9ad 22 9b4
10 abl 23 ach
11 bc2 24 bd6
12 cd3 25 cl?
13 514 26 528

Table 2: The non-cyclic 2-(13,3,1) design D,

So a defining set must contain at least six blocks. Using Corollary 2.7 a design with
a defining set of 6 blocks must satisfy
5 6(3-2) 6(3+1) ., _
§—ﬁ+lsvs——2—+]—l3.
Since here v = 13 satisfies both inequalities, this result does not rule out the possibility
of a defining set of six blocks. Similarly the results of Theorems 2.8 and 2.9 do
not disallow a defining set of six blocks, as the equations k¥ < 32, v~ k < 32,
v<32+k <64andv< (§)+6+1all hold whenv =13 and k= k" =3.
However the following argument shows that in fact no defining set of six blocks
can exist.
Lemma 4.1 There is no 2-(13,3,1) defining set consisting of siz blocks.

Proof. Suppose § is a 2-(13,3,1) defining set which consists of only six blocks. By
Lemma 2.4 there are at least 12 elements appearing in the blocks of S. By Lemma
2.5, at most six elements can appear precisely once each. The only possibility is for
six elements to occur once each and six elements to occur twice each. Take elements
1,...,6 in one block each and let elements 7,8,9, a,, c occur twice. Without loss of
generality the blocks may be completed to

178, 289, 39—, 4~ -, 5—- —, 6 — —.

Now the third block may be completed in two ways, by adding the element 7 or a
new element. If the element 7 is added then the completed set of blocks is

178, 289, 379, 4ab, 5bc, 6ca.
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On the other hand, if a new element is added (the element a for instance) then the
completed set of blocks is

178, 289, 39a, 4ab, 5bc, 6¢7.

But the orders of the automorphism groups of these sets are 72 and 12 respectively.
By Lemma 2.3(ii), the order of the automorphism group of a defining set must divide
the order of the automorphism group of the design. Since neither 72 nor 12 is a factor
of either 39 or 6, there is no 2-(13,3,1) defining set consisting of six blocks. 0

5. The cyclic 2-(13,3,1) design D,

Before starting the search for defining sets, some trades were found. There is the
trade Ty of volume four defined in (1), which was used to go from the cyclic design
D, to the non-cyclic design D;. Some automorphisms of D, were applied to T to
give the first ten trades in Table 3. The next eight trades in Table 3 were obtained
by applying automorphisms to the set of blocks

Uy = {347, 3cd, 38a, 458, 57d, 5ac}
which can be traded with the set of blocks
U, = {348, 37d, 3ac, 457, 58a, 5¢cd } .

Each trade T in the table is also displayed as either Tip or U, p, where p is a product
of the generators 1, ¢ of the group Aut(D;).

These 18 trades were enough to rule out all sets of seven or eight blocks, but in
order to handle sets of nine blocks, many trades were nceded. Table 4 shows 24 non-
isomorphic trades. Using the automorphisms of D;, each trade in this table yields a
set of 39 trades. The 24 x 39 = 936 trades formed in this way are enough to rule out
all infeasible sets of nine blocks (in fact less than 100 of them are actually needed).
The trades in Table 4 are numbered using Roman numerals to emphasise the fact that
they are non-isomorphic generating trades, and that the entire list of trades used is
obtained by applying the automorphisms of the design to these trades.

The lower bound on the size of defining sets of 2-(13,3,1) designs is seven, as shown
by Lemma 4.1. The (’.,62 = 657800 sets of seven blocks of the design D, fall into 1186
isomorphism classes. There are 31 classes satisfying j; divides 39, five have size j; = 13
and the rest have size j; = 39. The information about these classes is given in Table
5. Clearly, none of the sets in the omitted classes can be a defining set, and similarly
none of the sets shown in Table 5 is a defining set.

Next consider all the f) = 1562275 sets of eight blocks from the design D;. These
sets fall into 6776 isomorphism classes. Of these classes, 899 have a size j; which is a
factor of 39. There are 11 classes with size j; = 13, and the information about these
classes is given in Table 6. The remaining 888 classes have size j; = 39, and of these
classes, a total of 169 classes have automorphism group order o; = 1. The information
about these classes is given in Tables 7 - 11. None of these sets is a defining set of
D,.
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Finally, the (’:) = 3124550 sets of nine blocks of D, fall into 30376 isomorphism
classes. A total of 11418 of these classes satisfy j; divides 39; 14 classes have size
Ji = 13 and the information about these classes is given in Table 12. These sets are
not feasible. The remaining 11404 classes have size j; = 39, and of these classes a
total of 6834 classes also have o; = 1. All but 17 of these classes are disjoint from
a trade generated by the trades in Table 4. The information about these 17 classes
and a few other sample classes is given in Table 13, where the trade numbers referred
to are those given in Table 3. The representatives S; of the feasible classes are listed
below. They all have only the trivial automorphism, and there are 39 isomorphic
copies of each S; in the design D,.

S, = {125, 236, 347, 458, 67a, 89c, 9ad, bc2, 35b},

S, = {125, 236, 347, 458, 67a, 89c, 9ad, 35b, bd6 },
Sy = {125, 236, 347, 458, 67a, 89c, cd3, 944, bd6 },
Sy = {125, 236, 347, 458, 89c, 9ad, abl, 35b, 46c},
Ss = {125, 236, 347, 67a, 89c, 57d, 9b4, ach, bd6 },
Sg = {125, 236, 347, 78b, 9ad, abl, 46¢c, 681, 9b4 },
S; = {125, 236, 347, 78b, 9ad, 46¢, 944, ac5, d28},
Sg = {125, 236, 347, 89c, 9ad, bc2, 46¢, 57d, 681},
Sy = {125, 236, 347, 89c¢, 9ad, 35b, 46¢, 57d, 681},
Sy0 = {125, 236, 347, 89¢, 9ad, 46¢, 57d, 681, 9b4},
Sy, = {125, 236, 347, 89c¢, abl, 35b, 57d, 94, d28},
512 = {125, 236, 347, 89¢, abl, 46¢, 572, 944, bd6 },
S = {125, 236, 347, 89¢, abl, 57d, 792, ac5, bd6 },
514 = {125, 236, 78b, 9ad, 24a, 46¢, 57d, 681, c17},
Sys = {125, 236, 78b, 9ad, 46c, 57d, 681, 9b4, c17},
Sy6 = { 125, 236, 78b, 9ad, 46c, 681, 8a3, 944, cl7},
Sy7 = {125, 236, 78b, 9ad, 46c, 8a3, 954, c17, d28} .
All of these sets are defining sets. The proof of this assertion is only given for the

set Syp. For a full account with all proofs, see [6].

Lemma 5.1 The set of blocks
Si0 = {125, 236, 347, 89c, 9ad, 46c, 57d, 681, 954 }
is a 2-(13,3,1) defining set.

Proof. Element 9 must be in three more blocks, with the elements 1, 2, 3, 5, 6,
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7. Blocks 125, 236 and the pair 16 have all occurred, forcing blocks 139, 279, 569.
Now 6 must appear twice more, with the elements 7, a, b, d. Pairs ad, 7d force blocks
67a, 6bd. Now 7 must occur in two more blocks, with the elements 1, 8, b, c. Pairs
18, 8c force blocks 78b, 17c. Element 1 must be in two more blocks, with elements
4, a, b, d. Pairs ad, bd force blocks 14d, lab. Next, b is in two more blocks, with
elements 2, 3, 5, c. Pairs 23, 25 force blocks 2b¢c, 355. Element 2 must appear twice
more, with elements 4, 8, a, d. Pairs 4d, ad force blocks 28d, 24a. Now element 4
must be in block 458, 5 in block 5ac, 8 in the block 38e and the last block must be
3cd. Hence the set Sy completes uniquely to the 2-(13,3,1) design Dy and so it is a
defining set. ' o

Theorem 5.2 There are, up to isomorphism, ezactly 17 smallest defining sets for
the cyclic 2-(13,3,1) design Dy. Each consists of nine blocks and has no non-trivial
automorphisms, and the number of isomorphic copies of each is lﬂgﬂ)_l = 39. Hence
there are ezactly 663 distinct smallest defining sets of Dy.

Proof. Lemma 4.1 shows that there are no defining sets of D, of six blocks. Tables
14 - 11 show that there are no defining sets of D, with seven or eight blocks. Tables 12
and 13 show that there are exactly 17 feasible classes of sets of nine blocks. Lemmas
similar to Lemma 5.1 show that representatives of these classes are defining sets of
D,. Hence they are smallest defining sets of Dy, and |d,(D,)| = 9. 0

6. The non-cyclic 2-(13,3,1) design D,

The lower bound on defining sets of 2-(13,3,1) designs was shown to be seven blocks,
by Lemma 4.1. The 275 = 657800 sets of seven blocks of D; form exactly 1259
isomorphism classes. Of these classes, all but four are infeasible as the size of the
class j; is not a factor of 6, the order of the automorphism group of D;. The remaining
four classes are shown in Table 14, and clearly none of these sets is a defining set.
Finally, consider all (2:) = 1562275 sets of eight blocks of D;. The sets fall into
7843 isomorphism classes. A total of 54 of these classes satisfy j; divides 6. The
information about these classes is given in Tables 15, 16. Exactly two of these classes
are feasible, classes 13 and 14.
The set of blocks

S, = {12d, 347, 78b, 9ad, 24a, 35b, 5ac, 6bd}

belongs to isomorphism class number 13. The order of its automorphism group is 1
and there are six isomorphic copies of S; in the design D,.

The set of blocks
Sy = {124, 569, 89c, 1ab, 3cd, 145, 24a, 46¢}

belongs to isomorphism class number 14. The order of its automorphism group is 1
and there are six isomorphic copies of S; in the design D,.
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trade number blocks automorphism

1 2, 3, 6, 15 Ty
2 3, 4,7 16 Tyy?
3 4,5, 8, 17 Tyt
4 5, 6,9, 18 Tyy*
5 6, 7, 10, 19 Tyt
6 7, 8, 11, 20 Ty’
7 8, 9, 12, 21 Tyt
8 9, 10, 13, 22 Tyy®

9 2, 11, 12, 24 Tyt
10 3,12, 13, 25 T2
11| 3, 4, 12, 18, 21, 23 | U,

12| 4, 5, 13, 19, 22, 24 | Uy

13| 4, 8,9, 15, 23, 26 | UyyS
14| 5,9, 10, 14, 16, 24 | U;y®
15 | 6, 10, 11, 15, 17, 25 | U7
16 | 7, 11, 12, 16, 18, 26 | Uyy®
17| 5,6, 8, 19, 23, 25 | U %
18| 6, 7,09, 20, 24, 26 | Uy ¢y

Table 3: The 18 trades which rule out n = 7, n = 8 for the design D,

The next lemma shows that S5, is a defining set of the design D;. For the proof
that S is also a defining set of D;, see [6).

Lemma 6.1 The set of blocks
Sy = {12d, 347, 78b, 9ad, 24a, 355, Sac, 6bd }
is a 2-(13,3,1) defining set.

Proof. Now element a must occur in three more blocks, with elements 1, 3, 6,
7, 8, b. The block 78b and pairs 37, 3b, 6 have all occurred, forcing completion of the
three blocks to 67a,38a,1ab. The element d must occur in three more blocks, with
elements 3, 4, 5, 7, 8, c. The block 347 and pairs 78, 38, 35 have all appeared, forcing
blocks 3cd, 48d,57d. The element 3 occurs twice more, with elements 1, 2, 6, 9. The
pair 12 is present, so there are two cases:

Case a: The blocks containing 3 are 136, 239.

Now element 7 must occur in two more blocks, with elements 1, 2, 9, ¢. Pairs 12, 29
force blocks 179,27¢c. Now element b must occur twice more, with elements 2, 4, 9, c.
But pairs 24, 29, 2¢ are all already present, so Case a is impossible.

Case f: The blocks containing 3 are 139, 236.
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trade number | blocks

112,3,6, 15

ii| 3, 4, 12, 18, 21, 23

ii| 4, 5, 8, 12, 13, 14, 18, 19, 20, 26

iv | 4, 6, 10, 11, 15, 18, 23, 24, 25, 26

v |4, 10, 11, 14, 15, 16, 20, 21, 22, 25

vi|5, 7,9, 14, 18, 19, 20, 21, 24, 26

vii | 5, 10, 11, 14, 16, 17, 20, 22, 23, 25

viii | 8, 10, 11, 12, 13, 14, 15, 19, 24, 26

ix | 8, 10, 11, 12, 13, 14, 15, 20, 25, 26

x |4, 5 8, 12, 13, 14, 15, 19, 21, 23, 26

xi |4, 8, 10, 12, 13, 14, 15, 16, 21, 22, 26

xii | 4, §, 6, 7, 10, 11, 16, 20, 21, 22, 23, 25

xiii | 4, 5, 6, 8, 10, 11, 14, 16, 20, 22, 23, 25

xiv | 4, 5, 10, 12, 13, 14, 16, 17, 19, 21, 22, 23

xv |4, 5 9,12, 14, 15, 18, 19, 20, 21, 23, 26

xvi | 4, 5, 10, 11, 12, 14, 15, 16, 19, 21, 23, 26
xvii | 4, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25
xviii | 6, 7, 9, 11, 14, 15, 17, 19, 20, 21, 25, 26

xix | 4, 5, 7, 11, 12, 13, 17, 18, 20, 21, 22, 23, 25, 26
xx | 4, 5, 9, 10, 11, 13, 14, 15, 18, 19, 20, 21, 25, 26
xxi | 4, 7, 10, 11, 12, 13, 14, 15, 16, 20, 22, 23, 25, 26
xxii | 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 20, 21, 24, 25
xxiii | 3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 24
xxiv | 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 23, 24, 26

Table 4: The 24 trades which generate all trades needed forn =9

Now element 7 must occur twice more, with elements 1, 2, 9, ¢. Pairs 12, 19 force
blocks 17¢,279. Now element b must be in two more blocks, with elements 2, 4, 9, c.
Pairs 24, 29 have occurred, forcing blocks 2bc, 49b. Element 4 occurs twice more, with
elements 1, 5, 6, c. Pairs lc, 5¢c force blocks 145,46¢c. Element ¢ must occur in block
89c¢, element 9 must occur in block 569, element 1 must occur in block 168 and the
last block must be block 258. Hence the set S) completes uniquely to the 2-(13,3,1)
design D, and so it is a defining set. 0

Theorem 6.2 There are, up to isomorphism, ezactly two smallest defining seis of
the 2-(13,3,1) design D,, both of these sets consist of eight blocks. Each has no non-
trivial automorphisms, end the number of isomorphic copies of each is JA"‘_gﬂl! =6.
Thus the total number of distinct smallest defining sets of D, is 12.

Proof. Lemma 4.1 shows that a defining set of D, must have at least seven blocks.
But only four isomorphism classes of sets of seven blocks of D; have a size which is
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class number 2 blocks of S; | size j; | group order o; | feasible ?
1 1,2,5,17, 15,17, 23 13 36 no
2 1, 3, 8, 14, 20, 24, 25 13 36 no
3 1,2, 5, 14, 15, 17, 23 13 144 no
4 1,29 11,17, 19, 25 13 144 no
5 1, 2, 5, 14, 16, 19, 20 13 576 no
6 1,2, 6,19, 21, 22, 26 39 6 no
71 1,3, 14,15, 20, 24, 25 39 6 no
8 1,2,9,17, 18,19, 21 39 8 no
9| 1,2, 19,21, 22, 24, 26 39 8 no
10} 1,3, 14, 16, 17, 22, 26 39 8 no
11| 1,315 16,18,19,24 | 39 8 no
12] 1, 3, 15, 16, 19, 20, 22 39 8 no
13| 1,3, 16, 17,19, 20, 22 39 8 no
14| 1,27, 16,24, 25, 26 39 12 no
15| 1,2,19,21,23, 24,26 | 39 12 1o
16 1,2,5,17, 14, 18, 21 39 16 no
17 1,2, 6, 14, 15, 16, 17 39 16 no
18 1,2, 7, 15,17, 22, 24 39 16 no
19 1, 3, 8, 16, 17, 18, 24 39 16 no
20} 1,3, 16,19, 22, 23, 26 39 16 no
21| 1,3,17,19,20,21,23 | 39 16 no
22| 1, 17, 18, 20, 21, 22, 24 39 24 no
23 1,2,3,4,517 14| 39 48 no
24 1,23,6,8,15,18 39 48 no
25 1,2,3,6, 8, 15, 24 39 48 no
26 1,2,3,8,10, 18, 24 39 48 no
27 1, 2, 6, 18, 19, 22, 23 39 48 no
28 1,2,4,8, 14,17, 19 39 96 no
29 1, 2,5, 17,14, 16, 19 39 192 no
30 1,2,3,5,6, 14, 15 39 288 no
31 1,2, 4,15, 19, 21, 26 39 288 no

Table 5: The classes of sets of seven blocks of D, for which j; divides 39
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class number ¢ blocks of S; | size j; | group order o; | feasible ?
1 1,2,3,7,9 10,12, 17 13 6 no
211, 14,17, 21, 22, 23, 24, 26 13 12 no
3 1, 2, 6, 12, 19, 21, 22, 26 13 18 no
4 1,23,4,7,9,11, 16 13 36 no
5 1, 2,57, 14, 15,17, 23 13 36 no
6 1,2,5,7, 14, 18, 24, 26 13 36 no
7| 1,2,6 12 18,2223,25| 13 36 1o
8| 1,2911161719,25] 13 36 1o
91,17, 18, 20, 21, 22, 24, 25 13 36 no
10| 1,2 4,10,15, 16,19, 21 13 288 no
11 1,2, 5,7, 14, 16, 19, 20 13 576 no

Table 6: The classes of sets of eight blocks of D, for which j; = 13

a factor of |Aut(D,)| = 6. These four are shown in Table 14 and they are infeasible.
Hence there are no defining sets of seven blocks. The information given in Tables 15,
16 shows that there are only two feasible classes of sets of eight blocks. Lemma 6.1
and a similar lemma for S, show that representatives of these classes are defining sets
of D,. Hence they are smallest defining sets of D;, and |d,(D.)| = 8. o
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class blocks trade| | class blocks trade
num- of S; num- | | num- of S; num-
ber i ber ber § ber
1 1,2,3,4,7, 9,22,26 15 40 | 1, 2, 3, 10, 16, 18, 22, 26 3
2 1,23,5,7,8, 9,23 15 41 | 1, 2, 3, 10, 18, 20, 22, 26 3
3 1, 2, 3, 5, 7,21,24,25 8 42 | 1, 2, 3, 10, 19, 20, 22, 26 3
4 1,2, 3, 6, 8,19,22,26 14 43 | 1,2, 3, 11, 16, 19, 22, 26 3
5 1, 2, 3, 6,16,19,22,26 3 44 | 1, 2, 3, 16, 19, 21, 22, 26 3
6 1, 2, 3,7, 8, 9,20,23 12 45 | 1, 2, 3, 16, 19, 22, 25, 26 3
7 1, 2,3,7, 8, 9,22,23 15 46 | 1, 2, 3, 18, 22, 23, 24, 25 3
8 1, 23,7, 9,10,17,22 17 47 | 1, 2, 3, 19, 21, 22, 24, 26 3
9 1, 2,3,7, 9,16,22,26 3 48 1, 2,4,6,12, 21, 22, 24 6
10 1,2, 3,7, 9,19,22,26 3 49 1,2, 4,6, 12, 22, 23, 24 6
11 1,2,3,7,9, 22, 23, 26 3 50 1, 2,4,6, 16, 19, 22, 25 6
12 1,23,7 10, 12, 17, 21 4 51 1, 24,6, 16, 22, 24, 25 6
13 1,2,3,7,10, 12, 14, 17 4 52 1, 2, 4, 8, 10, 21, 23, 24 4
14 1,238,710, 12, 17, 19 4 53 1,2, 4,9, 19, 23, 24, 25 6
15 1, 23,7, 10, 18, 22, 26 3 54 1, 2,4,9, 22, 23, 24, 25 5
16 1, 2, 3,7, 10, 19, 22, 26 3 85 | 1, 2,4, 12, 14, 15, 23, 24 4
17 1,2,3,7 17, 19, 22, 23 4 56 | 1, 2,4, 12, 14, 17, 20, 23 4
18 1, 2,3,8,9, 15, 16, 25 5 57 1 1,2 4,12, 15,21, 22,24 4
19 1,2,3,8,9, 15, 19, 25 16 58 | 1,2, 4, 14, 17, 20, 23, 26 4
20 1,2,3,8,9, 19, 22, 23 15 59 | 1,2, 4, 18, 22, 23, 24, 25 5
21 1, 2,3, 8, 10, 14, 20, 23 4 60 | 1, 2, 4, 21, 22, 23, 24, 25 4
22 1, 2,3, 8,10, 17, 18, 22 18 61 1, 2,5,7, 15, 17, 18, 22 7
23 1,23,8,16,17, 18, 19 8 62 1, 2, 6, 8, 15, 16, 19, 22 10
24 1, 2, 3, 8, 16, 19, 22, 26 4 63 1,2, 6, 8, 17, 18, 22, 26 2
25 1, 2,3, 8, 17, 18, 22, 26 5 64 1,2,7,8, 15, 17, 18, 22 10
26 1, 2, 3,9, 10, 16, 17, 26 6 65 1,2,7,8, 15, 19, 23, 24 4
27 1, 2,3,9, 10, 16, 22, 26 3 66 1,2,7,8, 17, 18, 21, 22 10
28 1, 2,39, 11, 18, 19, 22 3 67 1,2,7,8, 17, 18, 22, 26 10
29 1, 2,3,9, 14, 18, 19, 23 3 68 1,2,7,9, 14, 24, 25, 26 3
30 1,2,3,9, 16, 19, 22, 26 3 69 1,2,7,9, 15, 17, 18, 19 10
31 1, 2,3, 9,17, 18, 19, 21 6 70 1,2,7,9, 17, 18, 22, 26 10
32 1,2,3,9,17, 19, 22, 23 6 71 1,2,7,9, 17, 22, 24, 25 11
33 1,2,3,9, 19, 20, 22, 23 3 72 1,2,7,9, 18, 19, 22, 26 3
34 1,239 19, 21, 22, 26 3 73 1,2,7,9, 19, 22, 23, 26 3
35 1, 2, 3, 9, 19, 22, 23, 26 3 74 1,2,7,9,19, 22, 25, 26 3
36 {1, 2, 3,10, 11, 18, 22, 26 3 75 1,2,7,9, 19, 23, 24, 26 3
371 1,2 310,11, 19, 22, 26 3 76 | 1, 2,7, 14, 15, 17, 18, 22 7
38 11,2 310,12, 19, 20, 23 3 77 | 1, 2,7, 14, 17, 18, 21, 25 8
391 1,2 3,10, 12, 21, 22, 26 3 78 { 1,2,7, 14, 17, 18, 22, 26 7

Table 7: Sets of eight blocks of D; with size j; = 39, group order o; = 1:
classes 40..78
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class blocks trade| | class blocks trade
nume- of S; num- num- of S; num-
ber ¢ ber ber i ber
79 | 1,27, 14, 17, 22, 24, 26 4 118 | 1, 2, 14, 18, 22, 23, 24, 25 2
80 | 1,27, 14, 22, 24, 25, 26 3 119 | 1, 2, 15, 18, 19, 21, 22, 24 2
81 ] 1,27, 15,16, 17, 18, 19 7 120 1,3,8, 14, 17, 18, 19, 21 8
821 1,2,7,15, 186,17, 18, 20 7 121 | 1, 2, 17, 18, 22, 23, 24, 25 2
831 1,217,185, 16, 17, 18, 22 7 122 1, 3, 8, 14, 18, 19, 22, 23 9
84 | 1,217,015, 16, 17, 18, 25 7 123 1, 3, 8, 14, 18, 22, 23, 24 5
851 1,27,15,17, 18, 21, 22 10 124 1, 3, 8,15, 16, 19, 22, 24 4
8 | 1,27, 15,17, 18, 22, 23 7 125 1, 3,9, 14, 15, 17, 23, 24 5
87 11,27, 15,17, 18, 22, 24 7 126 1, 3,9, 14, 16, 19, 22, 26 3
88 11,2715, 18, 19, 22, 24 3 127 1, 3,9, 16, 19, 22, 25, 26 3
89| 1,27, 15, 18, 19, 23, 24 3 128 | 1, 3, 14, 15, 16, 19, 22, 26 3
90 | 1, 2,7, 15, 19, 20, 23, 24 3 129 | 1, 3, 14, 15, 18, 22, 23, 24 3
91} 1, 2,7, 15, 19, 23, 24, 26 3 130 | 1, 3, 14, 16, 17, 19, 22, 26 4
92 | 1, 2,7, 17, 18, 21, 22, 25 13 131 | 1, 3, 14, 17, 18, 19, 22, 23 6
93 | 1, 2, 8, 14, 17, 18, 22, 26 2 132 | 1, 3, 14, 17, 18, 22, 23, 26 S
94 | 1, 2,8, 14, 18, 19, 21, 24 2 133 | 1, 3, 14, 17, 20, 24, 25, 26 4
95 | 1,2, 8, 15, 16, 19, 22, 25 4 134 | 1, 3, 14, 17, 21, 22, 24, 26 4
96 | 1,2, 8,15, 17, 18, 22, 26 2 135 | 1, 3, 14, 17, 22, 23, 24, 25 4
97 | 1, 2, 8, 16, 17, 20, 21, 25 4 136 | 1, 3, 14, 18, 22, 23, 24, 25 3
98 | 1, 2, 8, 16, 18, 19, 22, 26 10 137 | 1, 3, 15, 16, 18, 19, 20, 24 3
99 | 1, 2, 8, 16, 18, 20, 21, 25 5 138 | 1, 3, 15, 16, 18, 19, 22, 24 3
100 | 1, 2, 8, 16, 18, 22, 25, 26 5 139 | 1, 3, 15, 16, 19, 20, 22, 24 3
101 | 1, 2, 8, 16, 20, 21, 24, 25 4 140 | 1, 3, 15, 16, 19, 20, 23, 24 3
102 | 1, 2, 8, 17, 18, 19, 22, 26 2 141 | 1, 3, 15, 16, 19, 20, 24, 25 3
103 | 1, 2, 8, 17, 18, 20, 22, 26 2 142 | 1, 3, 15, 16, 19, 22, 25, 26 3
104 | 1, 2, 8, 17, 18, 22, 25, 26 2 143 | 1, 3, 15, 18, 19, 21, 22, 24 3
105 | 1, 2, 8, 18, 22, 23, 24, 25 2 144 | 1, 3, 15, 19, 21, 22, 24, 26 3
106 | 1,2,9, 11, 14, 15, 17, 18 2 145 | 1, 3, 16, 17, 18, 19, 20, 21 8
107 { 1, 2,9, 11, 17, 18, 19, 21 2 146 | 1, 3, 16, 17, 18, 19, 20, 22 7
108 | 1, 2,9, 14, 15, 18, 21, 25 2 147 | 1, 3, 16, 17, 19, 20, 21, 22 4
109 | 1, 2,915, 17, 18, 21, 25 2 148 | 1, 3, 16, 17, 19, 22, 24, 25 4
110 | 1, 2, 9, 15, 17, 19, 22, 23 2 149 | 1, 3, 18, 17, 19, 22, 25, 26 4
111 | 1, 2,9, 17, 19, 22, 23, 25 2 150 | 1, 3, 16, 18, 19, 22, 25, 26 3
112 | 1, 2, 9, 17, 19, 22, 23, 26 2 151 | 1, 3, 16, 19, 20, 22, 24, 25 3
113 11, 2,9, 17, 21, 22, 25, 26 2 152 | 1, 3, 16, 19, 22, 24, 25, 26 3
114 | 1, 2, 9, 18, 22, 23, 24, 25 2 153 | 1, 3, 17, 18, 19, 20, 21, 24 8
115 | 1, 2, 9, 19, 22, 23, 24, 26 2 154 | 1, 3, 17, 18, 19, 20, 22, 23 7
116 | 1, 2, 9, 19, 23, 24, 25, 26 2 185 | 1, 3, 17, 18, 19, 22, 23, 24 6
117 | 1, 2, 9, 22, 23, 24, 25, 26 2 156 | 1, 3, 17, 19, 21, 22, 24, 26 4

Table 8: Sets of eight blocks of D, with size j; = 39, group order o; = 1:
classes 79..156
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class blocks trade |} class blocks trade
num- of S; num- || num- of S; num-
ber i ber || beri ber

157 1, 3, 17, 21, 22, 23, 24, 26 4 164 | 1, 14, 17, 18, 22,23, 24, 26 1

158 1, 3, 18, 19, 22, 23, 24, 25 3 165 | 1, 15, 16, 17, 18, 19, 20, 22 7

159 1, 3, 18, 21, 22, 23, 24, 25 3 166 | 1, 15, 16, 17, 18, 19, 20, 24 7

160 | 1, 14, 15, 17, 18, 22, 23, 26 2 167 | 1, 15, 16, 17, 18, 19, 22, 24 6

161 | 1, 14, 17, 18, 20, 22, 23, 26 1 168 | 1, 15, 16, 17, 18, 21, 22, 25 5

162 | 1, 14, 17, 18, 20, 24, 25, 26 1 169 { 1, 15, 16, 17, 20, 21, 24, 25 4

163 | 1, 14, 17, 18, 21, 22, 23, 24 1

Table 9: Sets of eight blocks of D; with size j; = 39, group order o; = 1:
classes 157..169

class uumbc

“blocks of S,

size J; | group order o

1,2,5,15,17,21,723,23, 96 | 131 7~ 7737
1,2,3,4,7, 11,18, 21, 22 13 6
1,2,3,7,09,12, 18, 20, 26 13 6
1,2,3,7,9, 12, 19, 22, 23 13 6
1,2,5, 15, 16, 17, 19, 20, 23 13 6
1,3,8,16, 17, 18, 19, 22, 26 13 6
1,3,9,16,17, 19, 21, 23, 24 13 6
1,2,3,58, 10, 21, 22, 25 13 12
1,3,9, 14, 15, 17, 18, 19, 24 13 12
1,2, 5,16, 18, 19, 20, 24, 26 13 18
1,3, 8, 14, 15, 20, 21, 23, 25 13 18
1,2, 3,58 10, 18, 24, 26 13 24
1,2,4,6,8,9,14,17, 18 13 36
1,2,3,5,6,9, 14, 15, 18 13 72

tradc numbcr

25
te
%4
o
o
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o
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% -
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L
LT
(3]
(1]

Table 10: The classes of sets of nine blocks of D, for which j; =13
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class number 1 blocks of S; | size 7; | group order o; | trade number
o 1 1,2, 3,4,6, 8, 9, 1, 16 30 1 ¥
2 1,2, 3,4,6,8, 9,16, 24 39 1 Ml
3 1, 2,3, 4,6, 8 12, 22, 24 39 1 ree
4 1, 2, 3, 4, 8§ 9, 10, 16, 17 39 1 e
5 1, 2,3, 4,9, 10, 15, 16, 24 39 1 6
6 1, 2, 3,5, 8,16, 20, 24, 25 39 1 5
7 1, 2, 3,6, 8, 18,22, 23, 24 39 1 vee
8 1,2, 3,7 8,18, 22, 23, 24 39 1 15
9 1, 2, 3,79, 10, 17, 19, 22 39 1 tae
10 1,238,179 17, 22, 23, 26 39 1 ks
1 1,2 3, 8 9,11, 17, 18, 19 39 1 e
12 1,2 3, 8,9 16, 17, 18, 19 39 1 Koy
13 1,2, 3,8,9, 16, 22, 23, 25 39 1 5
14 1,2 3,89, 17, 18, 19, 22 39 1 e
15 1, 2, 3, 8, 10, 16, 18, 22, 26 39 1 see
16 1, 2, 3, 8, 10, 17, 18, 22, 24 39 1 Hes
17 1, 2, 3, 8, 10, 18, 20, 23, 24 39 1 pas
18 1, 2,3, 9, 14, 15, 18, 22, 23 39 1 3
194 1, 2,3, 12, 17, 18, 22, 23, 24 39 1 3
20 1, 2, 4, 8, 10, 15, 21, 23, 24 39 1 4
2L 1, 2, 4, 17, 20, 21, 22, 24, 26 39 1 4
2| 1,278, 15, 19, 22, 23, 24 39 1 4
23 1,2, 7,9, 15 17, 18, 19, 25 39 1 yes
24 1, 2,7,9, 17, 18, 19, 22, 25 39 1 s
25 1,2, 7,9, 17, 19, 21, 22, 25 39 1 vee
26 1, 2,7, 9, 17, 21, 22, 25, 26 39 1 shs
27( 1, 2,7, 15, 17, 18, 19, 23, 24 39 1 7
281 1, 2,9, 14, 16, 17, 20, 23, 26 39 1 5
291, 2, 16, 19, 20, 21, 22, 24, 25 39 1 3
30 1, 3, 15, 16, 19, 20, 21, 22, 2§ 19 1 3

Table 11: Some classes of sets of nine blocks of D; for which j; = 39

class number @ blocks of S; | size j; | group order o; | feasible ?
1| 1, 4,6, 8,11, 14, 16 6 48 no
2( 1, 26, 8, 10, 15, 24 6 36 no
311,3,09, 10, 11, 19, 24 6 36 no
4] 2,3,6, 8,13, 15, 24 6 192 no

Table 12: The classes of sets of seven blocks of Ds for which j; divides 6
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class number ¢

blocks of S;

group order o;

feasible ?

O 0O ~J O WG W W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

[

12, 13, 18, 19
11, 12, 14, 16
11, 13, 14, 16
17, 21, 22, 25
12, 18, 21, 22
14, 17, 20, 23
11, 13, 19, 23
12, 13, 15, 24
15, 16, 18, 24
12, 13, 20, 24
13, 21, 22, 23
13, 15, 22, 23
15, 16, 23, 24
12, 13, 15, 17
10, 11, 13, 15
14, 21, 24, 26
10, 13, 17, 24
12, 13, 15, 21
11, 13, 15, 17
12, 15, 22, 25

, 6, 7,9, 15, 16
1, 2, 5, 6, 8, 10, 13, 15
1, 3, 4, 6, 8, 11, 14, 16
1, 3, 5, 9, 10, 11, 13, 17
1, 3, 8, 10, 16, 17, 18, 24
1, 5, 6,9, 11, 13, 21, 25

1, 5, 8, 10, 13, 15, 17, 24

AN DD W WL MWWWWWWwWWwewW

4
12
12
16
16
16
16
16
24
24
64

192

B R W R B W DD DD DD DD DD D e

no
no
no
no
no
no
no
no
no
no
no
no
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no
no

Table 13: Sets of eight blocks of D, for which j; divides 6: classes 1..27
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class number 3 blocks of S; | size j; | group order o; | feasible ?
28 |1, 5, 10, 11, 15, 18, 21, 22 6 4 no
29 1, 5,7, 8,10, 12, 13, 15 6 6 no
30 1,2,6,7, 9 12, 13, 14 6 8 no
31 1, 3, 5, 8, 10, 13, 15, 24 6 8 no
32| 1, 3,5, 11, 14, 19, 21, 26 6 8 no
33| 1,3, 8,10, 12, 13, 17, 18 6 8 no
34| 1,578 11,12, 14, 15 6 8 no
35( 1, 5, 8, 10, 12, 15, 18, 22 6 8 no
36 1,257,912, 14, 15 6 12 no
37 1, 2, 6, 8, 10, 13, 15, 24 6 12 no
38 1, 2, 4, 8, 10, 13, 18, 26 6 16 no
39 (1, 8, 10, 13, 16, 17, 18, 24 6 16 no
40| 1,5, 7, 10, 11, 12, 15, 25 6 18 no
a1 1,2, 79 13, 14, 17, 23 6 24 1o
42 1, 2, 6, 8, 11, 12, 16, 24 6 32 no
43 2,351,915, 18, 25 6 32 no
44 1,2, 3,6, 8,10, 13, 15 6 36 no
45 1, 2, 3, 6, 8 10, 15, 24 6 36 no
461 1,3, 4,5, 10,11,21, 25 6 36 no
47 1, 3,8,9 10, 11, 19, 24 6 36 no
4814 1, 3, 8, 10, 13, 16, 18, 24 6 36 no
49 1, 5, 6, 9, 10, 11, 18, 25 6 36 no
50( 23,6, 8,13, 15, 17, 24 6 64 no
51 1, 2,9, 10, 14, 19, 21, 24 6 96 no
52 |1, 3, 12, 13, 14, 18, 20, 25 6 96 10
53 2,3,5 6,9, 15, 18, 20 6 96 no
54| 1,2, 4,12, 15, 17, 19, 21 6 288 no

Table 14: Sets of eight blocks of D, for which Ji divides 6: classes 28..54
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