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Abstract. A secret sharing scheme protects a secret (key) by distribut-
ing related information among a group of participants. This is done in
such a way that only certain pre-specified groups of these participants
(the access structure) can reconstruct the secret. In this paper we intro-
duce a new measure of the efficiency of a perfect secret sharing scheme
and examine methods of producing new secret sharing schemes from
existing ones. These constructions can be used to help determine the
optimal information rates for certain access structures.

1 Introduction

A secret sharing scheme is a system designed to share a special piece of infor-
mation or secret among a group of participanis in such a way that only specified
groups of participants may obtain access to the secret. This collection of groups
is referred to as the access structure of the secret sharing scheme. Secret sharing
schemes were first discussed by Blakley (3] and Shamir [9] . For a bibliography
of some of the existing published work in the subject, see Simmons [10).

Let P denote a finite set of participants and let I' C 2% be an access structure,
where 2 denotes the set of all subsets of set P. We say that I is monotone if for
all A, A’ C P such that A C A’, we have that A € I" implies A’ € I". We will only
consider monotone access structures in this paper as most applications have this
property as a natural requirement. We note that Beutelspacher [2] considered a
non-monotone situation where larger sets have a ‘veto’ facility over smaller sets.

The monotone access structure given by ' = {A C P l |A| > k}, where k is
a positive integer, is known as the (k, [P|) threskold access structure.

If set A € I' is such that A’ € I', A’ C A implies A’ = A, then we say that
A is minimalin I'. We denote the set of all minimal sets in I' by I'~ and it is
easy to see that I'™ uniquely determines I'.

Let P(I') = {p € P|p € A for some A € I'"}. We define the core, I'*, of I"
to be the monotone access structure defined on P(I') such that for A C P(I')
we have 4 € I'° if and only if A € I". A monotone access structure I' is said to
be connected if P(I') = P (and hence I'° = I'). If P(I') # P then none of the
participants of P \ P(I') lie in any minimal set and so they are in some sense
redundant to the scheme.

We now describe a useful method of representing a monotone access struc-
ture I'. This method was first discussed in Benaloh and Leichter [1). Let '™ =
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{C),Cs,...,C,} where C; C P, (1 < i < r). Consider the logical expression
I' = Cy + Ca + -+ C, where the participants of P are now considered to be
boolean variables, + represents logical OR and juxtaposition represents logical
AND. If A C P then we say that I' is true at A if the logical expression I i is
true when precisely the variables in A are set to true.

Lemmal. Let I' be a monolone access siruclure defined on pariicipant set P
and let I'" = {C,C,,...,C,}. For any A C P, the logical ezpression I' =
C1+Cy++--+C, istrueat Aifand onlyif A€ I.

Proof. A € I' if and only if C; C A for some C; € I'" and hence if and only if
I is true at A. n]

We note that in fact any valid representation of the logical expression I' =
Ci1 + Ca+ - -+ C, will also satisfy Lemma 1 and so, due to its convenience, we
will often refer to a monotone access structure in terms of an equivalent logical
expression.

Ezample 1. Let P = {a, b, c,d} and define a monotone access structure:
Ir= {{a! c}, {4, ¢}, {a,d}, {b, d}, {a: b, c}, {a,b,d}, {bv ¢,d}, {a,c,d},{a,b,¢c, d}}

Then I'" = {{a,c}, {b,c}, {a,d}, {b,d}}. Thus the following are three valid ways
of representing I'' I' = ac+bc+ad+bd, I' = (a+ b)c+ (a+ b)d and I =
(a + b)(c + d).

Our general model for secret sharing is to take the form of a matrix with
certain special properties. The model is based on the model for secret sharing
first proposed by Brickell and Davenport [5] . We begin by presenting some
notation and concepts that will be needed to describe the model. Let M be a
matrix with columns indexed from set W = {wo, wy,...,wn}. Let X C W and
let r be a row of M.

M(r, X) is the row r of M restricted to the columns of set X. Then we have

Sm(X) = {M(s, X) | s a row of M},
Match(r, X) = {s a row of M | M(s, X) = M(r, X)}.
For w € W and k € Sp(w) we have

KeyMatch(w, k, r, X) = {s € Match(r, X) | M(s, w) = k},
Key(w, r, X) = {M(s,w) | s € Match(r, X)}.
For w € W we write X => w if for any two rows ry,r3 of M with M(r, X) =
M(rz, X) it follows that M(ry, w) = M(r3, w), otherwise we write X # w. We

write Xz> w if for all rows r of M there exists a positive integer A such that
for all k € Sp(w) there are exactly A rows s of M such that

M(s, X) = M(r,X) and M(s,w) =k
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Now let po be the index of the first column of M and let the remaining
columns be indexed by a set P. Let I be a monotone access structure defined
on P. Then we define the security of M to be Sec(M) where

1 max |Keymatch(po, k, 7, Q)|
Sec(M) — " *Thegf (uR¥N T [Match(r, Q)]

We are now ready to present our general model for secret sharing.

Let I' be a monotone access structure defined on P and ¢ be a positive
integer. A secret sharing scheme SS(I',q) is a matrix M with |P|+ 1 columns
indexed from the set P U{po} such that column py contains entries from a set X
of cardinality g, column p (p € P) contains entries from a finite set Sa(p) and

1. if A € I' then A = pq;
2. if A¢ I then A % po;
3. Sec(M) > 1.

Further, M is defined to be perfect and is denoted PS(T,q) if 2. is replaced
by the stronger condition:

2.* if A¢ I' then Ax> po.

To set up the scheme a row r must first be chosen at random. Participant
p is then given M(r, p) and must not reveal this value to any other participant
or outsider to the scheme. The value of the secret is M(r,po). When the time
comes to try to reconstruct the secret, a group A of participants present their
values to form M(r, A) and then scan the matrix M in search of rows s with the
property that AMM(s, A) = M(r, A). The definition of the scheme ensures that A
can only uniquely determine the secret if A € I,

Ezample 2. Let I' = ab + bc + cd be defined on participant set {a, b, ¢,d}. The
following matrix M is a PS(T, 2).

Ppo ¢ b ¢ d
(ooooo\
0 001 1
0 1120
0 1131
M=11 0101
1 0110
1 1021
\1 10 3 0)

We define the securily of the scheme to be Sec(M). It can be easily shown
that for an SS(I,q), Sec(M) < ¢ and that Sec(M) = g precisely when M is
perfect.

Note that if A ¢ I' then we can deduce something slightly stronger than

A # po-
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Lemma2. Let M be an SS(I',q) and let A ¢ I'. Then for every row r of M
there ezists some row r' of M such that

M(r, A) = M(r', A) but M(r,po) # M(r', po).

Proof. Suppose that r is such that all rows ¢’ such that M(r’, 4) = M(r, A) also
have the property that M(r’,po) = M(r,po) = k, for some fixed k € Sp(po).

Then IKC%M::EI}::: ‘:;’;i"A)I = 1, and hence Sec(M) = 1 which contradicts the

definition of an SS(T', g). a

In the next section we discuss ways of measuring the efliciency of a perfect
secret sharing scheme in terms of the sizes of the shares in the scheme. We
introduce a new measure for assessing this efficiency. The remaining sections
describe constructions of new secret sharing schemes from existing ones. The
constructions in Section 3 all have the aim of increasing the security of existing
secret sharing schemes. In Section 4 we look at the internal structure of a secret
sharing scheme and identify schemes ‘contained in’ existing schemes. In Section
5 we build up large schemes from smaller ones and illustrate how to combine
reults from Sections 4 and 5 to help in the determining of optimal information
rates for monotone access structures.

2 Information Rates

Perfect secret sharing schemes are of particular interest to study since they have
the property that a group of participants not in the access structure can not gain
any information about the secret. In Ito et al [8) and Benaloh and Leichter [1] it
was first shown that any monotone access structure can be realised a by perfect
secret sharing scheme. Thus it would be useful to know how efficient a given
scheme for a particular monotone access structure is. One quantity that can be

* considered when assessing this is the sizes of the shares held by the participants.
The size of the share held by p € P is represented by |Sam{p)| and it is desirable
to try and keep this value small to reduce the amount of information that p
must hold. It can be shown that for M, a PS(I,q), we have |Sp(p)| > ¢ for
each p € P(I'). With this result in mind, Brickell and Stinson (6] proposed a
measure of the efficiency of a perfect secret sharing scheme M in terms of the
shares sizes of the participants. We call this quantity the worst-case information
rate of M and denote it by

5= logy ¢
maxpep log; |Sm(p)|

Thus g is such that 0 < p < 1 and has its value based on the largest share
that is held by any participant in the scheme. Consider now a scheme where
all but one of the participants hold small shares and the remaining participant
holds a very large share. This scheme will have a low value of 5 but might be
considered to be highly desirable by certain applications because the average
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share size will probably be low. Thus we propose a second measure called the
average information rate of M and denote it by

logy ¢ .
Bl Leer(r) 1082 |Sam(p)]

p=

We acknowledge here that a similar measure has been independently proposed
by Blundo [4]. It follows that for any PS(I',q) we have 0 < p < 5 < 1 and that
p=1ifand only if 5 = 1. As in [5] we will refer to a PS(I',q) with p =5 =1
as ideal. Note that these two measures of information rate both give different
information about the sizes of the shares in the scheme and the importance
placed on either measure will depend on the nature of the application under
consideration.

Let M be a PS(TI,q). We define the contribution vector (or convec) of M to
be u = (up)pep(r) Where for p € P(I') we have u, = log, |Sa(p)|. The convec
provides a convenient way of representing the share sizes in M and we can thus
describe the information rates as follows,

- 1 . |P()I
p=——, p=——.
maXpep(r) Up EpE‘P(I‘) Up

Thus M in Example 2 has convec u = (uq, 4, tt., 44) = (1,1,2,1) and hence
p= % and g = %.

For access structure I" we say that I" has optimal worst-case information rate
Pu if there exists a PS(I,q) (for some q) with worst-case information rate gy
but there does not exist any PS(I',q) (for any g) with worst-case information
rate p > p,. We define the optimal average information rate in an analagous
way.

3 Schemes with Enhanced Security

In this section we use existing SS(I', ¢)’s to construct schemes for the same access
structure I' but with greater security. This is a generalisation of a result in [6].
We show that if a perfect secret sharing scheme can be found for any security
g then a scheme can be constructed with arbitrarily high security and with
information rates the same as that of the original scheme.

Theorem 3. Lei M, be an SS(I',qy) and let M3 be an SS(T',q3). Then there
ezists M, an SS(T,q1qa). Further, Sec(M) > Sec(M;)Sec(M3;).

Proof. Define a new matrix M on columns po U P with Sp(p) = Su, (p) x
Sm,(p) for all p € po UP. For every row r; of M; and row r; of M; define a
row r of M by

M(")p) = (Ml(rhp)’ Mz("z:?)):

for each p € po U P. With the assistance of Lemma 2 it is routine to check that
M is an SS(I',q193) and that Sec(M) > Sec(M,)Sec(M;). D
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Note that we do not necessarily obtain equality in the bound on the security
of Theorem 3 since it is possible that My and Mj attain their maximum values

of 'Ke};ﬁzzzggrg)'l"ml for different sets Q ¢ I'. However this problem does not

arise when applying Theorem 3 with M; = M3 = M. Repeated applications of
this give the following:

Corollary 4. Let M be an SS(TI',q) with Sec(M) = w for some w > 2. Then
for every n > 1 there ezists M™, an SS(I',q"), with Sec(M™) = w™.

Hence the existence of an SS(I',q) ensures the existence of schemes with
access structure I' and arbitrarily high security. In the case where the original
schemes in Theorem 3 are both perfect it is straightforward to verify that we
obtain [6, Theorem 3.1].

Result 5. Let M; be a PS(I',q1) and M; be a PS(T,q;). Then there ezisis M
a PS(Fa 9192)‘

In [6] it was shown that if the schemes M; and Mj in Result 5 both have
worst-case information rate p then so too does the resulting Scheme M. If M,
and M; have average information rates g; and g3 respectively then, since for
each p € P(I') we have that Sam(p) = |Sm,(P)||Sm.(p)l, it can be verified that
the average information rate of M is given by

_logz g1 +logz g2
- logzgt +long, *
P I<]

Thus in the special case that 5; = §; then we see that the average information
rate of M is also left unchanged by the construction in Result 5. We also note
that in the event that gq; = g3 we can express the convec of M neatly in terms
of the convecs of M; and M. If M; and M; have convecs u = (up)pep(r)
and ¥ = (vp)pep(r) then the convec of M is given by w = (wp),ep(r) Where
wp = 3(up +vp) (p € P(T)).

Thus repeated applications of Result 5 give the following extension of [6,
Corollary 3.2]:

Corollary 6. Let M be a PS(I',q) with information rates p and 5. Then for
every n > 1 there ezists M™ a PS(TI',q"™) with information rates p and p.

4 Restrictions and Contractions

In this section we study the internal structure of a secret sharing scheme and look
at two constructions that produce schemes within existing schemes. These pro-
vide us with interesting information about constructing secret sharing schemes
and also have a number of useful applications. We will illustrate one of these,
which is to the determining of the optimal infromation rates of a monotone
access structure.
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Let I be a monotone access structure defined on set P and let Q C P. The
resiriction of I" at Q, I'|Q, and the contraction of I at Q, I'-@, are monotone
access structures defined on P \ Q such that for each 4 C P\ Q,

AelQ S A€l
Aelqe& AUuQel.

Thus the members of (I'|Q)~ are precisely the members of I~ that do not contain
any member of Q. If @ € I' then the only member of (I'. @)~ is the emptyset 9.
If @ ¢ I' then (I'-Q)~ comprises of all the minimal non empty sets of the form
AN(P\Q), where Ac I'".

Ezample 3. If I' is a monotone access structure defined on participant set P then

L(P\P(I)) =TI".

Ezample 4. Let I' be the (k,n) threshold access structure defined on participant
set P and let p € P. If k # n then I'lp is the (k,n — 1) threshold access structure
defined on P \ p and if k # 1 then I'-p is the (k — 1,n — 1) threshold access
structure defined on P \ p.

The next result is a generalisation of [6, Theorem 3.3).

Theorem 7. Let M be an SS(I',q) and Q C P. Then there ezists M|Q, an
SS(I'Q,q) with Sec(M|Q) > Sec(M).

Proof. Form a new matrix M|Q on columns po U(P\ Q) by deleting the columns
Q of M. It is easy to see that M)q is an SS(I'|q,q). Further, if A ¢ I'|¢ then
A ¢ I and thus Sec(M|Q) > Sec(M). ]

Corollary 8. Let M be ¢ PS(I',q) and Q C P. Then there ezists MjqQ, a
PS(T'|q,q).

Proof. Apply Theorem 7 to form M|Q. Since ¢ > Sec(M|Q) > Sec(M) = g, it
follows that Sec(M|Q) = ¢ and hence M|Q is perfect. D

Now we consider contractions of a monotone access structure.

Theorem 9. Let M be an SS(I',q) and let Q C P,Q ¢ I'. Then there ezists
M.Q, an SS(I'-Q,q') where Sec(M) < ¢' < q and Sec(M. Q) > Sec(M).

Proof. Form a new matrix M- Q on columns poU(P\ Q) in the following manner.
Let (a1,3,...,a)q)) € Sam(Q). Then for every row s of M such that M(s,Q) =
(e1,@3,...,a1q)), form a row r of M-Q such that M.q(r,c) = M(s,c) for all
¢ € poU(P\ Q). It is straightforward, with the assistance of Lemma 2 to see that
M.q is an SS(TI'-q,q’), where Sec(M) < ¢’ < g. Using the fact that A ¢ I'.q if
and only if AUQ ¢ TI', we can see that Sec(M. Q) > Sec(M). o

Note that we can thus produce |Si(Q)] matrices M.Q that have access
structure I'-Q by contracting on different members of Sas(Q). It is possible,
however, that some of these schemes may have different securities.
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Corollary 10. Let M be a PS(I',q) and let Q C P,Q ¢ I'. Then there ezists
M.Q, o PS(I'-q,q).

Proof. Apply Theorem 9 to form M- Q. Since g > Sec(M. Q) > Sec(M) = g, 1t
follows that Sec(M. Q) = ¢ and hence that M. q is perfect.

Suppose M a PS(I', q) has convec u = (u;)pep(r) and for @ C P, the partici-
pants of P(I'|Q) correspond to the first r entries in u. Then M)|q will have convec
v = (4p)pep(r|Q). We can also see that if the participants of P(I'-@) (Q ¢ I') cor-
respond to the first s entries in u then M. Q will have convec w = (w,,)Pep(p Q)
where wp < up (p € P(I'-qQ)). Thus both restrictions and contractions of ideal
schemes will themselves be ideal. We can use this information to obtain bounds
on the optimal information rates of certain access structures. We first recall the
following special case of a result from Capocelli et al [7).

Result 11. Let M be a PS(I,q) with convec u = (uq, s, Uc, uag) where I' =
ab+ bc+ cd. Then (up + uc) > 3.

Ezample 5. Let M be a PS(I', q) with convec u = (u,,...,u.) where I' = ab +
be + cde. Let M- be the PS(I'-¢,q) with convec v = (v,,...,vq) formed by
contracting M at e. Now I'.e = ab+bc +cd and by Result 11 the convec v must
be such that (v + vc) > 3. Hence we have that (u + uc) > 3 and thus that the
average information rate 5 of M must be such that 5 < 2. Since this result holds
for any PS(I', q) we have that the optimal average lnformatlon for I' is bounded
above by g—

Ezample 6. Let M be a PS(I',q) with convec u = (uq,..., %) where I' = ab +
bc + cd + ade. Since I'le = ab + bc + c¢d we can apply a similar argument to
Example 5 to show that the optimal average information rate for I" is bounded
above by 2.

In the next section we will construct perfect secret sharing schemes with the
access structures as in Examples 5 and 6 that have p = %. This will show that
£ is the optimal average information rate for both of these access structures.

5 Insertions, Sums and Products

In this section we present a useful general construction which allows us to start
. with ‘small’ perfect schemes on a few participants and build up to ‘large’ perfect
schemes on a greater number of participants. This provides us with a procedure
for constructing perfect secret sharing schemes for complex access structures.
We also show that there is a very simple description of the information rates of
schemes that are consructed using this procedure.

Let I'; and I'; be two monotone access structures defined on participant sets
Py and P; respectively (P, and P; not necessarily disjoint), and let z € P;. We

72



define the insertion of I'; at z in I, I(z — I3), to be the monotone access
structure defined on set (P; \ z) U P; such that for A C (P; \ z) UP; we have

ANPyel, or

AGFI(""F’)”{(AnPl)Uzer, and ANP; € Iy,

In other words, I'i(z — I'3) is the monotone access structure I'; with participant
z ‘replaced’ by the sets of I';.

Ezample 7. If I = ab+ be + de and I'; = df then I'(b — I3) = adf + dfc + de.

Theorem 12. Let It and I'; be monolone access siructures defined on partici-
pant sets Py and P; respectively, and let z € Py. Let M be a PS(I'y,q) and let
Mg be @ PS(Ia,|Spm,(2)|). Then there ezisis M, a PS(I'1(z — I3),q).

Proof. Without loss of generality let Sp,(z) = Sa,(po). First, pad out M,
and M3 to form matrices M} and M} by adding [P; \ P1| new columns to M,
labelled by P; \ P; and containing fixed entry z;, and adding |P; \ P3| new
columns to M3 labelled by P; \ P; and containing fixed entry z;. Now form a
new matrix M from M} and M, as follows. For any row r; of M/ and row r;
of M$ such that Mi(ry,2) = Mj(r3, po), form a row r;r3 of M such that

(Mi(r1,c), Mh(ra,c)), ifce(PLuPy)\z

M(rira, ) = { 1(r1, o), if ¢ = po.
It is routine to show that M is a PS(I'y(z — I3),q). n]

Ezample 8. Let I'y = ab+ ac and I'; = de and let M, and M; be the PS(I,2)
and PS(I3,2) given by

po a b ¢ po d e
0 00 O 0 0 0
0 111 0 1 1
Mi= 1y 100 M= |1 10
1 011 1 01

Then following the construction of Theorem 12, we produce M, a PS(Ij(b —
I3)) given by

p a d e ¢
(0 0000\
0 01 10
0 11 01
0 10 11
M= 1 1.0 00
1 1110
1 01 01
\1 00 1 1)
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There are many special cases of this general construction which are both
interesting and useful. We will consider just two of these here.

If I'y and I'; are defined on P; and P; respectively then we define the sum
I’y + I'; and the product I''I'; to be the monotone access structures defined on
Py UP; such that for A C P, UP;,

Aen+Ihy ©ANPelNor ANPy ey,
AeNi o ANnPyelnand ANP el

The following is a generalisation of [6, Theorem 3.4].

Theorem 13. Let M, be a PS(I'y, q) be defined on participant set Py and let M,
be a PS(I;,q) be defined on participant set P with convecs u = (up)pep,(r,) and
¥ = (vp)pep,(r,) Tespectively. Then there ezists M, a PS(I'y + I's, p, q) such that
if I+ I'§ s connected then the convec of M is given by W = (Wp)pep, (r,)uPa(rs)
where wy = u, if p € (Py(I1) \ Pa(I3)), wp = vp if p € (Pa(I2) \ P1(I1)), and
wp =up + v §f p € (P1(I) U Pa(13)).

Proof. Let I' = a + b be defined on {a, b}, where a,b are not in Py U P;. Let
N be the ideal PS(I',q) given by three identical columns each containing the
g distinct elements. Now produce a perfect scheme whose access structure is
I'(a — I') using the construction of Theorem 12 . Then use Theorem 12 once
more to construct a perfect scheme for the insertion of I'; at b in I'(a — I).
The result is a matrix M, a PS(I'1 + I3, q).

It is easy to verify that for p € Py \ P2 we have |Su(p)] = |Sm, (p)l, for
p € P2\ Py we have |Su(p)| = |Sm,(p)| and for p € Py NP, we have [Sum(p)| =
[Sat, (P)||Sa, ()| Thus M has convec w as stated. o

Note that we can describe the average infromation rate 5 of M constructed
as in Theorem 13 in terms of the average information rates g, and g3 of M; and

M3 repectively.
p- _ i'P:‘I’x.!U'P:‘PQ !l
PEP) (£1)UPa(ry) VP
= Py uPa(
Ere?,(r.)"’*ﬁ:e%(rz)"’
= Pu(I)UP (s (1)
;: + ;: .

The following corollary to Theorem 13 is worth stating because of its con-
nection with Corollary 8.

Corollary 14, Let P, and P; be disjoint participant seis. Then there ezist M,,
an ideal PS(I'1,q) and M3, an ideal PS(I3,q), on participant sets Py and P,
respectively, if and only if there ezists M, an ideal PS(I'y + I3, q).

Proof. Theorem 13 deals with the construction of M from M, and Mj. If M
is an ideal PS(I" + I';, g) then by Corollary 8 we see that M|»;\7, is a PS(I',q)
and M|P,\P, is a PS(I3, g). Since restrictions of ideal schemes are ideal the result
follows. s}
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We now present the analogous results for the product of two perfect secret
sharing schemes.

Theorem 15. Let M, be a PS(I'y,q) be defined on participant sei Py and let My
be a PS(I;, q) be defined on participant set P; with convecs u = (up)pep,(r,) and
¥ = (Yp)pep,(ry) Tespectively. Then there ezists M, a PS(I'I3,p,q) such that
if I{T§ is connected then the convec of M is given by w = (Wp)pep, I1)UPa(Ts)
where wy = up if p € (P1(1) \ Pa(I3)), wp = v, if p € (Pa(I3) \ P1(1})), and
Wp = up + v if p € (P1(I1) U Pa(I3)).

Proof. Let I' = ab be defined on {a, b}, where a, b are distinct from P; UP;. Let
N be the ideal PS(T', ) whose g2 rows are of the form z, y, z+y (mod g), where
z,y vary over all the ordered pairs defined on Z,. Now produce a perfect scheme
whose access structure is I'(a — I') using the construction of Theorem 12 .
Then use Theorem 12 once more to construct a perfect scheme for the insertion
of I'; at b in I'(a — I). The result is a matrix M, a PS(I'I3,q).

For p € P we can show that the values of [Saq(p)| are identical to those
calculated in the construction of Theorem 13. It then follows that if I'fI is
connected, the convec of M is as calculated in Theorem 13. D

Note that since the convec of M in Theorem 15 is the same as that produced
in Theorem 13 we can state the average information rate 5 of M in terms of the
average information rates of M; and M; as given by (1).

Corollary 16. Let P, and P, be disjoint participant sets. Then there ezist M,
an ideal PS(I'\,q) and M3, an ideal PS(I3,q), on participant sets Py and P,
respectively, if and only if there ezists M, an ideal PS(I' I, q).

Proof. Theorem 15 deals with the construction of AM from AM; and Mj. If M
is an ideal PS(I" I3, q) then by Corollary 10 we see that M.P,\7, is a PS(I,q)
and M-P,\P, is a PS(I3,q). Since contractions of ideal schemes are ideal the
result follows. ) n]

We now use Theorems 13 and 15 to illustrate combinatorially the general
construction method for producing a perfect secret sharing scheme for a given
monotone access structure of [1]. We show that the information rates for schemes
constructed in this way can be neatly described.

Define a logical expression to be admissable if it can be constructed from vari-
ables in such a way that it remains connected at every stage of its construction.
Further, we define the number of literals of a logical expression to be the total
number of occurences of variables in the expression. Then we have the following
result.

Theorem 17. Let I' be o monotone access structure defined on sei P thal can
be represented by an admissable logical ezpression involving N literals such that
the most frequently occurring literal appears ezactly M times in the ezpression,
and let g > 2. Then there ezists a PS(T, q) with average information rate p = l%l
and worst-case informaiion rate p = %
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Proof. First we note the following. Let Iy, I'; be connected monotone access
structures defined on P, P; respectively, and let M; and M3 be a PS(I1,q)
and a PS(I3, q) respectively, with 5, = LleTl and §3 = l&l where Ny, N3 denote
the the number of literals in admissable logical expressxons for I, I';. Then if
I'y + I'; is connected, by applying Theorem 13 we construct a PS(I + I3,q)

with p =, %ﬂ Similarly, if I'1I'; is connected then by applying Theorem 15

we can construct a PS(IN T3, q) with p = I%:—pﬁ’;l

We are now ready to construct our matrix M. For each p € P, form an
ideal PS(p, q) given by a ¢ x 2 matrix comprising of two identical columns each
containing distinct entries. Note that these schemes all have 5 = 1 which in
each case corresponds to the number of participants in their access structure
divided by the number of literals in an admissable logical expression for their
access structure (one divided by one). Then by taking the admissable logical
expression for I" and applying Theorem 13 and Theorem 15 where appropriate,
we can construct a perfect scheme with access structure I'. Since our logical
expression for I' was admissable, we see that the final average information rate
is p= I;;l. As T is gradually constructed the entry in the convec corresponding
to participant p icreases by one each time p occurs as a literal in the logical
expressicin for I'. Hence the worst-case information rate of the final matrix will
be p. = N ]

We now illustrate the use of Theorem 17.

Ezample 9. Writing I' = ab + be + cde in the form I' = b(a + ¢) + cde shows
that there must exist a PS(T, q) with convec (1,1,2,1,1),p = %— and 5= %. By
Example 5 we see that this scheme is optimal with respect to average information
rate.

Ezample 10. Writing I' = ab+bc+cd + ade in the form I = (b+d(c+e€)) (a+c)
shows that there must be a PS(I',g) with convec (1,1,2,1,1), = } and 5 =
%. By Example 6 we see that this scheme is optimal with respect to average
information rate.

Ezample 11. Consider I' = ab + bc + cd. Writing I' = b{a + ¢) + cd we produce
a PS(T, q) with convec (1,1,2,1) and writing I’ = ab + ¢(b + d) we produce a
PS(I,q) with convec (1,2,1,1). Comblmng these by the method of Corollary 5
produces the PS(I',¢%) with convec (1,3,3,1) constructed in [7, Remark 2.
All three of these schemes have average information rate equal to % § and hence
by Result 11 all have optimal average mformatxon rate. The first two scheme
have worst-case mformatlon rate equal to % 5 but the third scheme has worst-case
information rate 3. As observed in [7] the worst-case information rate of 2 is
optimal.

6 Conclusions

We have proposed a second type of information rate for use in assessing the
efficiency of a perfect secret sharing scheme. We have also presented a collec-
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tion of constructions that can be used to produce new secret sharing schemes
from existing schemes. The main application of these constructions is to the
determining of optimal information rates of monotone access structures. Some
examples of this have been given but more detailed results obtained using ex-
tensions of this technique will appear in a future paper. It should be noted that
although the lower bounds for optimal information rates obtained by the method
of Theorem 17 are adequate for many access structures, there is some room for
improvement in the general case. In [1] it was noted that the representing of a
monotone access structure simply as a logical expression featuring AND and OR
functions is not the most efficient way since, for example, threshold functions
could be introduced which made the description more concise an d lowered the
size of some of the shares in the corresponding secret sharing scheme. There are
many other functions (for example any function based on an access structure
which can be represented by an ideal scheme) which can be used in this way
to describe the access structure more concisely and hence lead to more efficient
general constructions. This is an area worthy of further study.
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