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Abstract. Consider the problem of computing a stabber for polygonal objects. Given
a set of objects S, an object that intersects with all of them is called the stabber of
S. Polynomial time algorithms for constructing a line segment stabber for polygonal
objects, if one exists, have been reported in the literature. We introduce the problem
of stabbing polygonal objects by monotone chains. We show that a monotone chain
that stabs the maximum number of given obstacles can be computed in O(n? log 1)
time. We also prove that the maximum number of monotone chains required to stab all
polygons can be computed in O(n2-5) time. The main tool used in developing both
results is the construction of a directed acyclic graph induced by polygonal objects in
a given direction. These results have applications for planning collision-free disjoint
paths for several mobile robots in a manufacturing environment.

I. Introduction.

An important combinatorial problem having several applications in robotics and
computational geometry is the construction of a stabber for a given set of objects
[GS90, EM*82]. For example, algorithms for stabbing parallel line segments
with a convex polygon can be used for forming an image of parts moving in a
conveyor belt [GS90). In a typical setting of the problem we are given a set of
objects, and our goal is to construct, if possible, an object that intersects with all
objects in the set. Many solutions have been developed for specialized versions
of the problem. Edelsbrunner et al [EM*82] developed an O(nlog n) algorithm
for stabbing general line segments by a straight line. Algorithms for stabbing
polygonal objects by line segments have also been considered. Atallah and Bajaj
[AB87] have given a sub-quadratic algorithm that finds a straight line stabber for
a given set of polygonal objects. In general, it may not be possible to stab all given
objects by a stabber. In such situations a stabber that stabs the maximum number
of objects is defined. An O(nlog n) algorithm for computing a line that stabs the
maximum number of given line segments is reported in [EG86). A related result
is given in [JK90].

In this paper, we consider the problem of stabbing polygonal objects by mono-
tone chains. Note that a chain (simple path) is said to be monotone with respect to
a given line £ if lines orthogonal to £ intersect the chain in at most one point. The
first problem we consider is the problem of computing a monotone chain (with
respect to a given direction) that stabs the maximum number of polygons. The
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second problem is the computation of the minimum number of monotone chains
that can stab all polygons. One of the main motivations for considering these
problems is due to their applications for planning collision-free monotone paths
for mobile robots in a manufacturing environment [ACM89]. In section II, we
prove that a monotone chain that stabs the maximum number of polygons can be
computed in O( 7 log n) time. In section ITI, we show that the minimum number
of monotone chains required to stab all polygons can be computed in O(n?-)

time. We conclude by discussing extensions and applications of these problems.

II. Stabbing the maximum number of polygons.

Consider atwo dimensional scene consisting of disjoint polygons Py, P, , ... , Pp,.

Let n be the size of the scene. Here, by size of the scene we mean the total num-
ber of edges in all polygons. Let £; denote the left most point of P; (the point of
P; having the smallest x-coordinate). Similarly, the right most point r; of P; is
defined.

An x-monotone chain is a chain of line segments having monotonicity along
x-axis. An x-monotone chain C is called a stabber of the polygon P; if (i) C
enters P; from the point £; and leaves from the point r;, and (ii) the portion of C
between £; and r; lies wholly within O; (Figure 1).

Left most point Right. most point

Figure 1: Illustrating the Stabber of an Obstacle

We are interested in computing a x-monotone chain that stabs all polygons.
Such a stabber may not always exist. In Figure 2 only two polygons can be stabbed
by any x-monotone chain. We, therefore, define the maximal stabber to be an x-
monotone chain that stabs the maximum number of polygons. We call the problem
of computing such a stabber the maximal stabber problem (MSP).

Note that if a polygon is notconvex then no monotone chain may stab it. Hence,
in the sequel we assume that all polygons are convex.

Our approach to solve MSP is to convert an instance of MSP to an instance
of finding the longest path between two nodes in a directed acyclic graph. We
define two points in free space to be mono-connectable if they can be connected
by a collision-free x-monotone chain. The directed graph G(V, E) induced by
the collection of polygons is constructed as follows. The vertices in V correspond
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Figure 2: Illustrating Maximal Stabber

to each polygon in the scene (thatis, V = {v; | O; is an polygon}). Vertices v;
and v; are connected by a directed edge v;,v; (directed from v; to v;) if (i) the
x-coordinate of r; is less than the x-coordinate of £; and (ii) r; and £; are mono-
connectable. Figure 3 shows an example of such a construction.

Lemma 1. The directed graph G(V, E) induced by polygons (as defined above)
can be constructed in O(r? log n) time.

Proof: The left most points ¢;’s and the right most points 7;’s of each polygon
can be determined in O(#n) time by simply scanning the boundary of each poly-
gon. Collision-free x-monotone paths connecting a vertex of a polygon to all other
vertices can be found in O(nlog n) time by using the monotone path planning al-
gorithm given in [ACMS86]. Using this algorithm at most n times we can obtain
all edges of the DAG in O(#? log 7). ]

Lemma 2. The directed graph G(V, E) as constructed above is acyclic, that is,
it does not contain any cycle.

Proof: Assume to the contrary that a cycle exists in the graph. Consider monotone
chains C; and C;; comresponding to successive edges e; and e;., respectively,
{e; is the predecessor of e;.1) in the cycle. By construction, chain C;,; lies en-
tirely to the right of chain C;. Thus, the monotone chain C; corresponding to any
edge e; that can be encountered by following the directed path starting at C; must
entirely lie to the right of C;. If we traverse the cycle, starting at C;, we even-
tually encounter C;, which implies that C; lies entirely to the right of itself — a
contradiction. 1
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Figure 3: Illustrating the Construction of DAG

Two x-monotone stabbers are said to be equivalent if they stab the same set
of polygons in the same order. The following Lemma directly follows from the
construction of the directed graph.

Lemma 3. For each x-monotone stabber that stabs polygons in the order O;,,
0;,,...,0;, there is a corresponding directed path in the directed graph connect-
ing the vertices in the order v;,, vi;, ... ,vi,.

Observe that all equivalent stabbers are mapped to the same directed path in the
DAG. Hence, a maximal stabber corresponds to a longest path in the DAG (the

Iength of the path is the number of edges in the path).

Theorem 1. Anx-monotone chain that stabs the maximum number of given poly-
gons can be computed in O(n? log n) time.

Proof: The directed graph can be constructed in O(r? log n) time (by Lemma
1). Finding a longest path in a directed acyclic graph (DAG) is like topological
sorting and can be computed in O(|E| + |V|) time [AHU74]. [ |

II1. Stabbing all polygons.
Since it may not always be possible to stab all polygons by a single monotone
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chain we are motivated to define the following problem.

Stabber Cover Problem (SCP). Find the minimum number of disjoint x-monotone
chains to stab all polygons such that no polygon is stabbed by more than one chain.

A minimum path cover of the induced DAG gives the minimum number of x-
monotone chains that stab all polygons. Stabbing chains obtained in this way may
stab the same polygon more than once. We, therefore, have to make use of the
minimal vertex disjoint path cover of the induced DAG . In this way, we make
sure that every polygon is stabbed exactly once. Still, the chains may intersect in
the interior of their segments. If that happens we can introduce a new vertex at
each point of intersection and make the resulting chains disjoint. Consider chains
C) and C, whose intersecting segments are a,b and c,d. Let I be the point of
intersection. We modify these segments into two chains by introducing a new
vertex I; as shown in Figure 4. By modifying each intersection point in this way,
the required disjoint chains are obtained. Note that the total number of chains is
not altered by this construction. Figure 5 shows the construction of disjoint chains
from intersecting ones.

Theorem 2. The minimum number of disjoint x-monotone chains required to
stab all polygons can be obtained in O(n*3) time.

Proof: The DAG induced by the collection of polygons with respect to the x-axis
can be computed in O(+2 log n) (Lemma 1). A minimal vertex disjoint path cover
of any DAG can be computed by using bipartite matching in O(n?-) [BG77].
Intersecting chains can be modified to disjoint chains by sweeping the plane by
a vertical line in O(nlog n+ K) time [PS85], where K is the total number of
intersections between chains. [ |
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Figure 4: Modifying Crossing Segments

IV. Discussions.

‘We proved that a maximal stabber having monotonicity in a given direction can
be computed in O(n?) time. We also established that the minimum number of
monotone chains required to stab all obstacles can be computed in O(n2-).

Computation of collision-free paths has been an active area of research in robotics

[SY87). Recently, the importance of planning monotone collision-free paths has
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(a): Intersecting Chains

\ N

/

v{/\

_—
~N—"

(b): Disjoint Chains
Figure 5: Construction of Disjoint Chains from Intersecting Chains

been pointed out by several authors [ACM89, KS90]. Consider the cost of trav-
eling along a path. If the cost of travel is charged only in a given direction then
a path having monotonicity in that direction minimizes the total cost of the travel
[ACMB89]. In situations where we want to avoid turns, monotone paths are better
(monotone paths tend to have lesser number of tums). Monotone paths have also
applications in robotics for deciding the separability of polygonal objects [T85]).
Imagine a manufacturing environment consisting of several work-sites. Mobile
robots are required to visit the work-sites to perform the assigned tasks. Robots can
enter a work-site from a fixed entrance point and leave from a fixed exit point. If
polygons are used to model work-sites then a stabber of the polygons gives a path
to be followed by a robot to visit the sites. The first result of this paper (Theorem
1) can be used to plan collision-free paths so that a robot can be instructed to
perform tasks in the maximum number of sites and yet keep the path monotone.
The second result (Theorem 2) can be used to plan the motion of several robots
amidst the work-sites. If the paths are disjoint then the problem of scheduling and
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coordination is eliminated.

We showed how to compute a maximal stabber having monotonicity in a given
direction. More polygons may be stabbed if some other direction is considered
for monotonicity. It would be interesting to solve the problem by allowing the
stabbing chain to have monotonicity in any direction,
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