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Abstract. Let C(n, p) denote the set of all subsets of {1,2,... ,n} whose sum is p,
and let C(n, k, p) denote the k element sets of C(n,p). We show that the elements
of C(n, p) and C(n, k, p) can be generated efficiently by simple recursive algorithms.
The subsets are represented by characteristic bitstrings and by lists of elements. These
representations can be generated in time that is proportional to the number of subsets
generated.

1. Introduction.

A subject dear to the heart of every computational combinatorist is that of gen-
erating combinatorial objects. Subsets of an n-set and k-subsets of an n-set, or
combinations, are of fundamental importance and much has been written about
generating them (see, for example, [2], [3], [4], [8], [11]). A natural restriction of
the problem of generating all subsets is the problem of generating all subsets of
{1,2,...,n} whose sum is, say, p.

The study of algorithms for generating combinatorial objects often leads to
a deeper understanding of the objects themselves. Thus, our motivations are
twofold. First, we add to the catalog of elementary combinatorial objects that
can be efficiently generated. Secondly, we gain a little more insight into the com-
binatorics of subsets with a given sum.

Of course, we want our algorithms to be efficient. In the context of combi-
natorial generation, our goal is to come up with algorithms that run in constant
amortized time . This means that the total amount of computation is proportional
to the number of objects generated. Typically there are two parameters of interest:
n, the size of the representation of an individual object and N, the total number of
objects. An algorithm has constant amortized time complexity if its running time
is O(n+ N); the term = is necessary to account for initialization. We also want
the algorithm to use O(n) space.

The algorithms that we develop are recursive, have no loops, and have no dead-
ends. This means that the total amount of computation used in generating the
objects is proportional to the number of recursive calls that are made.

There is a simple principle, which we call the CAT (for Constant Amortized
Time) principle, that can be used to show that certain of these recursive generation
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algorithms run in constant amortized time. The degree of a call of a recursive
algorithm is the number of “immediate” recursive calls initiated by the current
call. For instance, the degree of a call of mergesort is either 2 or 0 and the degree
of a call of binary search is either 1 or 0.

The CAT principle is given below. A precursor may be found in [9] as Theorem
2.1. The principle may be proven by considering the underlying computation tree.

A recursive generation algorithm with the following three properties runs in
constant amortized time.
1. Every call results in the output of at least one object.
2. Excluding the computation done by recursive calls, the amount of com-
putation of any call is proportional to the degree of a call.
3. The number of calls of degree one is O(N).

Let C(n, p) denote the set of all subsets of {1,2, ... ,7n} whose sum is p, and
letC(n, k,p) denote the set of all k element subsets of {1,2,... ,n} whose sum
is p. For example, C(5, 6) contains the three sets {1,5}, {2,4}, and {1,2,3}.
An alternative perspective is that C(n, k, p) is the number of partitions of p into
k distinct parts each of which is less than n.

There are two common ways to represent subsets. One representation is simply
to list the elements of the subset in increasing order. Another representation is
the characteristic bitstring in which the ith bit is 0 or 1 depending on whether { is
in the subset or not. The subsets of our example of the last paragraph would be
represented as (1, 5), (2,4),and (1,2, 3), or 10001, 01010, and 11100.

As is frequently the case, the particular representation that is used will influ-
ence the complexity of the algorithms. In Section 2 we develop algorithms for
generating the elements of C(n, p) and C(n, k, p), as represented by bitstrings,
in time that appears experimentally to be constant amortized time. In Section 3
we develop an algorithm for generating the elements of C(#, p), as represented
by lists of elements, in constant amortized time.

We introduce the notation s,, for the sum of the first n positive integers.

sp=14+2+...+n=n(n+1)/2.

Clearly, C(n,p) is non-empty if and only if 0 < p < s,, and C(n, k,p) is
non-empty if and only if 3y < p < 8, — 3.

There is no closed form formula for C(n,p) or C(n,k,p), as far as we are
aware, but there is a simple generating function whose coefficients give these num-
bers. Let f(z,y) be the ordinary generating function defined below.

fz,9) = JJ(1 + z).

j=1
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01 2 3 456 7 8 9 10 11 12 13 14 15 16
011
1j1 1
2|11 1 1
3]t 11 2 1 11
411 1 1 2 2 2 2 2 11 1
Ssjf1 1122 33333 3 2 2 1 1 1
6]1 1 1 2 2 3 4 4 45 5 5 5 4 4 4 3
711 11 2 2 3 4556 7 7 8 8 8 8 8
811 1 1 2 2 3 45 6 7 8 9 10 11 12 13 13
911 1 1 2 2 3 4 5 6 8 9 10 12 13 15 17 18
1I0]1 1 1 2 2 3 4 56 8 10 11 13 15 17 20 22

Table 1: The numbers C(n, p).

Then C(n, k,p) = (z*y?) f(z,y) and C(n,p) = {y*) f(1,y). Furthermore,
there are some simple recurrence relations that these numbers satisfy. These re-
currence relations are not stated in their simplest form, but rather are presented in a
manner consistent with the recursive programs to be presented in the next section.

1 ifn=p=1
C(n-1,p) ifp<n
= 1
Cnp) C(n—1,p—n) ifp> sp1 W

C(n—-1,p)+C(n—-1,p—mn) ifn<p<su.

Note that C(n+ 1,n) = C(n,7) for i > 0 and that C(n,n) is the number of
partitions of = into distinct parts (which is the same as the number of partitions of
n into odd parts). We now give a recurrence relation for C(n, k, p).

1 ifn:p: 1 -

C(n-1,k,p) ifp<n+ s
C(n,k,p) = . ’

C(n—-1,k—1,p—mn) if p>8n-1 —8n—k-1

C(n—1,k,p)+C(n—1,k—1,p—n)  otherwise. @

Note that C(n,k,p) = C(p — st-1,k,p) if p < n+ sx_;. The numbers
C(n, k, p) have three symmetries which are expressed in equations (3), (4), and
(5). These equations will prove useful in the next section. The first (3) follows
by taking complements, and the second (4) follows by the transformation £ «
n— z + 1 on each element z of a subset. The third (5) combines both bijections.

C(n,k,p) = C(n,n—k,s, — p) 3)
C(m, k,p) = C(n,k,(n+ 1)k - p) @
C(n,k,p) =C(n,n—k,3, — (n+ 1)k + p). ®
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2, Fast bitstring algorithms.

Based on the recurrence relations of the previous sections we are led to a simple
algorithms for generating the elements of C(n, p). The algorithms represent the
subsets as characteristic bitstrings b1 b, - - - b,, and generate them in colex order.
The algorithms appear to run in constant amortized time, independent of n, k, and
p, but we are as yet unable to prove this.

2.1 Algorithm for C(n, p)

Our first algorithm is based directly on the recurrence relation (1) and is to be
found in Figure 1. The running time of this algorithm is clearly proportional to
the number of recursive calls it makes. Let D(n,p) denote the number of calls
to C1 initiated by the call C1(n,p). Then the amortized computation used by
C1(n,p) is proportional to the ratio D(n, p) /C(n, p). Unfortunately, this ratio
is not bounded by any constant, independent of n and p. In particular, if p is held
fixed and n increased then the ratio appears to be unbounded. On the other hand,
if p > v/, then the ratio appears to be bounded.

1 : ifa=p=1
D(np) = 1+ D(n-1,p) ifp<n ©
P =1 1+ D(n—1,p-n ifp> 8,

1+ D(n—1,p)+D(n—1,p—n) ifn<p<sp1.

procedure C1 (n,p: integer);
begin
if n=0 then Output(d)
else begin
if s[n—1] > p then begin
b[n}:=0; Cl(n-1,p);
end;
if n<p then begin
bnl:=1; Cl{n-1,p—m);
end;
end;
end {of Cl};

Figure 1: The procedure C1(n,p).

Procedure C1 satisfies conditions 1 and 2 of the CAT principle but, by the pre-
vious discussion, does not appear to satisfy condition 3, at least for small values
of p.

If possible, we would like to eliminate calls of degree 1. Many calls of degree 1
are eliminated in procedure C2(n, p). These eliminated calls skip over blocks of
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0 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16
0|1
{2 2
2{3 3 3 3
3|14 4 4 7 4 4 4
415 5 5 8 9 9 9 8 5 5 5
5]6 6 6 9 10 15 15 14 14 15 15 10 9 6 6 6
6|7 7 7 10 11 16 22 21 21 25 26 26 25 21 21 22 16
718 8 8 1t 12 17 23 29 29 33 37 38 42 4 43 44 42
819 9 9 12 13 18 24 30 38 42 4 50 55 62 67 74 T2
9/10 10 10 13 14 19 25 31 39 52 56 60 68 76 8 99 103
10|11 11 11 14 15 20 26 32 40 53 67 71 79 9 101 119 129

Table 2: The original numbers D(n, p).

procedure C2(n,p: integer);
begin
if p=0 then Output (b)
else begin
if p< mn then begin
b[n]:=0; C2A(p,p);
end else
if p>s[n—1] then begin
b(nl:==1; C2(n-1,p—mn);
end
else begin
b[n]:=0; C2n-1,p);
bnl:=1; C2(n-1,p—n);
end;
b[n] :=0;
end;
end {of C2};

Figure 2: Improved version of C1(n, p).

0’s, so we must ensure that 0 s are indeed in the positions that are skipped over.
This is accomplished by initializing b to contain all 0 ’s and by the statement b{ n]
=0 attheend of C2. The initial call is C2(n,p) if p < s,/2. If p > s,/2, then
the roles of O and 1 are interchanged and C2(n, s[n] — p) is called.

With this modification, the second case of the recursion for D(n,p) becomes
1+ D(p,p) instead of 1+ D(n— 1,p). To avoid confusion let us denote the re-
sulting numbers E(n, p). We have observed experimentally that the ratio E(n, p)
/C(n,p) isless than4.5if p < s,/2, but we have no proof. The maximum value

91



012 34 5 6 7 8 9 10 11 12 13 14 15 16
01
111 2
211 3 2 3
3|1 3 3 5 4 3 4
4/1 3 3 6 6 7 8 6 S5 4 S
S|t 3 36 7 9 12 10 12 11 13 9 7 6 5 6
6|1 3 3 6 7 10 14 14 16 18 21 19 20 17 18 18 14
711 3 3 6 7 10 15 16 20 22 28 27 31 32 33 35 33
8|1 3 3 6 7 10 15 17 22 26 32 34 39 43 49 52 54
9|1 3 3 6 7 10 15 17 23 28 36 38 4 51 60 68 72
1011 3 3 6 7 10 15 17 23 29 38 42 50 58 68 79 88

Table 3: The improved numbers E(n, p).

of this ratio appears to occur at p = 3,,/2 if n > 10.
Conjecture 1. Forall 0 < p< s,/2,

E(n,p)
C(np —

2.2 Algorithm for C(n, k, p)

In this section we extend the results of the previous section to C(n, k,p). We
immediately adopt the idea that was used to improve the algorithm and the result
is quite similar to C2(n, p). See Figure 3 for C3(n, k,p).

The following table indicates which version of C3(n, k, p) should be called for
maximum efficiency.

k< n/2 k> n/2

P < (8utsk—3nk)/2 | C(n, k,(n+ 1) k—~p) C(n,n—k, s, —p)
P2 (sn+Sk—3nt)/2 C(n, k,p) C(n,n—k, 3, —(n+1)k+p)

A recurrence relation for D(n, k, p) is given below.

1 ifn=p=1
D(n k.p)= 1+ D(p — sk-1,k,p) ifp< n+ s
&P 1+4D(n—1,k—1,p—mn) ifp>8y_1—Spk-1

1+ D(n—-1,k,p)+D(n—1,k—1,p—n) otherwise.

Experimentally, we have observed that the worst case occurs when k and p are
in the middle of their ranges; that is, when we are generating C(n,n/2, s,/2)
(again, n must be large enough). It appears in this case that the ratio is bounded
by 6, but we have no proof that it is bounded by any constant.
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Conjecture 2. Forall (s, + 8k — 8ak)/2 < p < sn+syand k < nf2, if
C(n,k,p) > 1, then

C(n,k,p) =

procedure C3(n,k,p: integer);
begin
if k=0 then Output (b)
else begin
if p<n+s[k—1] then begin
b(n]:=0; C3p-slk—1],k,p):
end else
if p>s[n—1] —s[n—k—1] then begin
bnl:=1; C3(n—1,k-1,p—n);
end
else begin
b[n):=0; C3(n—1,k,p);
binl:=1; C3(n—-1,k—1,p—m);
end;
b[n]:=0;
end;
end {of C3};

Figure 3: The procedure C3(n, k,p).

3. A provably fast subset algorithm.

In this section we present an algorithm for generating the elements of C(#n, p) in
constant amortized time, where the subsets are represented by a list of the elements
in the subset.

The algorithms presented in the previous section made use of the fact thatC(n, p)
= C(p, p) if p < n. This fact allowed the algorithm to skip the redundant recur-
sive calls where a series of possible subset elements, specifically the elements
p+1,p+2,...,n, must be excluded. This technique was used previously by
Roelants van Baronaigien and Ruskey [10] and Ko and Ruskey [6). The algo-
rithm we present here is slightly more complicated because we must skip both
redundant recursive calls where elements must be excluded and where elements
must be included. We refer to the elements that must be included or must be ex-
cluded as forced elements. To be more precise, j must be included if s;_1 < p
and must be excluded if 7 > p.

The trick to avoiding the processing of the forced elements is to consider com-
plement C(n, p) = C(n, 3, —p) of C(n, p). If k must be included inC(n, p) then
it must be excluded in C( n, p), and vice-versa. Thus, the problem of determining
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if there is a sequence of elements that must be included in C(n, p) is equivalent
to the problem of determining if there is a sequence of elements that must be ex-
cluded from C(n, p), and we have already seen how to do that in Section 2.

Of course, if we are listing C(n, p) then we must include elements that we are
skipping over and if we are listing C(n,p) we do not include the elements that
we skip over. It is, therefore, necessary to pass a third parameter, comp, to the
procedure. If comp is true then we must include the forced elements in the subset
and if comp is false we must exclude the forced elements from the subset.

Before discussing how to deal with the forced elements, we briefly discuss the
data structure used to represent the subset. In procedure C4, the array list is used
to represent the list of elements in the subset. Consider the seta = {a; < a2 <

. < aj}. We represent that set by setting list[0] = a), list[a;] = a4 for
i=12,...,7j—1,list[aj]] = n+ 1andforalli ¢ a, list[s] = i+ 1. As
an example, if list = 2,2,3,5,5,8,7,8,9 and n = 8 then the subset that list
representsis {2,3,5, 8 }. Eachelement /is¢[] is initialized to i+ 1 except list [0]
which is initialized ton + 1.

We now consider an efficient method of skipping over forced elements. If
list[$] =i+ f,theni+ 1,i+ 2,...,1+ f — 1 are excluded; furthermore, if
1 is included then 1 + f is included (list[0] is always included). Clearly, a se-
quence of forced elements can be either included or excluded in constant time
regardless of the length of the sequence.

The algorithm is presented in Figure 4. We have already discussed variables
list, and comp. The global array s, and the parameters n and p are the same as
defined in Section 2.

The description of procedure C4 and a simple inductive proof can be used to
show that procedure C4 lists all subsets of an n-set that sum to p. What remains
to be discussed is the time complexity of procedure C4.

To analyse the algorithm, we use the CAT principle. It is clear that every call
of the procedure will result in some output, and that the amount of computation
done in each call of the procedure, excluding recursive calls, is constant. If there
is a call of degree one (that is, p < n and so the procedure directly calls itself
only once), then either the next call produces output, or the next call is of degree
2. Thus, by the CAT principle, the generation algorithm, procedure C4, runs in
constant amortized time.

4. Summary and further research.

We have given a provably constant amortized time algomhm for generating all
subsets of an n-set with a given sum. This algorithm uses a data structure similar
to the stack simulation data structure used by Reingold, Neivergelt, and Deo [2]
to implement a Gray Code generation algorithm.

We also presented a simpler algorithm that experimentally appears to run in con-
stant amortized time. An algorithm for listing all subsets of an n-set of a specific
size that have a given sum is presented as well.
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procedure C4(n,p:

integer; comp:
begin

boolean);
if n=0 then Output (b)
else begin

if p> s[n)/2 then begin

p:=s8[n] —p; comp := not comp;
end;

if p<mn then
if comp then begin
listn] := 1list[0]; 1ist[0]:
C(p,p, comp) ;

list[0] := list[n]; 1list[n]:=n+1;
end else

p+1;

C(p,p, comp);
else begin
list[n] := list[0]:
if comp then begin
C('n—l,p, Comp):‘
1list[0] := list[n]:
C(n—1,p—n, comp);
end else begin
C(n—1,p—mn, comp);
1list[0] := 1ist[n); list[n]:=n+1;
C(n—1,p, comp);
end;
end;
end;
end {of C4};

1list[0] :==n;

list[n]:

n+1;

Figure 4: The procedure C4(n, p).

The problem of listing these objects using a loopless algorithm [5] remains open
as does the resolution of Conjecture 1 and Conjecture 2 of Section 2.
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