Assigning Task Modules to Processors
in a Distributed System

L. Taol, B. Narahari?, Y.C. Zhao!

Abstract

This paper studies the problem of allocating interacting
program modules, of a distributed program, to the heteroge-
neous processors in a distributed computer system. The inter-
acting program/task modules are represented by an undirected
task graph, whose vertices denote task modules and edges de-
note interactions between modules. We are given the execution
cost of a task module on each processor, the communication
cost between two task modules if they are placed on different
processors, and the interference cost between two task mod-
ules if they are placed on the same processor. The objective of
our problem is to assign task modules to the processors such
that the total of the above three costs incurred by the pro-
gram on the system is minimized. The above task assignment
problem is known to be NP-hard for a three processor system,
but its complexity for a two processor system remained open.
In this paper we prove that the problem remains NP-hard
for a two processor system even when (1) task graph is pla-
nar and has maximum degree 3 or (2) task graph is bipartite.
We then present three heuristics, based on simulated anneal-
ing, tabu search, and stochastic probe approaches respectively.
We present an experimental analysis of these three heuristics,
and compare their performance with the only known heuristic
method in the literature. Our experiments demonstrate that
our heuristics provide major improvements.

L. Tao and Y.C. Zhao are with Dept. of Computer Science, Concordia Uni-
versity, Montreal, Quebec, Canada.

?B. Narahari is with Dept. of Electrical Engineering and Computer Science,
George Washington University, Washington, DC, USA.

3This work has been partially supported by Canadian NSERC research grant
OGP0041648, Quebec FCAR research grant 92NC0026, and USA National Sci-
ence Foundation Grant NSF-CCR-9209345.

JCMCC 14 (1993), pp. 97-135

1 Introduction

The advances in semiconductor technology and computer networks
have led to the design and development of a number of distributed
computer systems [13,14,17]. A distributed computer system consists
of a set of heterogeneous processors, with different computational
capabilities, that communicate with each other through an intercon-
nection network. The time, or cost, required by a pair of processors
to communicate is determined by the topology of the interconnec-
tion network. Distributed systems provide an environment where
different modules, or procedures, of a program can be executed on
different processors; a module running on one processor can trans-
fer control, using the network, to a module running on a different
processor [1].

A program to be executed on a distributed system consists of a set
of interacting program modules, henceforth also called task modules.
Each program module performs a set of operations, and thus can be
viewed as a procedure. To execute the program, we must assign
each task module to a processor in the system; a task module is
executed on the processor to which it is assigned. Completion of the
distributed program is accomplished when all the task modules have
been executed on the processors. The performance of the program on
the distributed system depends heavily on the following three costs
(times):

o Ezecution costs. Since the processors are heterogeneous, differ-
ent modules usually need different execution times on different
processors. For example, a module consisting of floating point
operations will have lower execution time (cost) on a processor
that has floating point capability, as opposed to a processor
without this capability. Thus, the execution time of the pro-
gram depends on how the modules are assigned to the proces-
SOTS.

o Communication costs. If two interacting modules are assigned
to different processors, the inter-module communications need
to go through the interconnection network thus may intro-
duce significant performance overhead due to the limited inter-
processor communication bandwidth. Since different pairs of

98

modules usually have different communication loads, and dif-
ferent pairs of processors usually have different communication
links and bandwidths between them, the communication costs
are in general dependent on the assignment of the task modules
to the processors.

o Interference costs. If two modules are assigned to the same pro-
cessor, they will compete for the same set of resources (CPU,
memory, [/0, etc.) and this interference cost (time) slows down
the execution of either module. Since different modules may
need different hardware resources, and the processors are het-
erogeneous, the interference costs are also processor-dependent
in general.

A fundamental issue in maximizing the system performance is there-
fore to assign the modules to the processors to minimize the total
cost incurred by the program if the program has a sequential control
thread; or to minimize the completion cost, which is the maximum
cost incurred by the program on any processor, if the modules can
be executed concurrently. This problem, of finding the assignment
of modules to processors, is called the task assignment problem in
distributed systems.

The above task assignment problem can be formally defined
in graph theoretic terms as follows. For any integer n > 0, let
[»] = {1,2,...,n}. Assume that the system has m > 0 proces-
sors, and the program in question has n > 0 task modules. The
distributed program can be represented as an undirected task graph
G = (V,E), where |V| = n, each vertex v € V represents a task
module, and each edge e = (u,v) € E represents two communicating
(interacting) modules. Each module can be assigned to any one of
the m processors. For any vertex u € V and any integer 1 < i < m,
X (u, 1) denotes the execution cost of running module u on processor
t. For any edge (u,v) € E and any integers 1 < ¢,5 < m, C(, j,u,v)
denotes the generic cost between modules « and v if u is assigned
to processor ¢ and v is assigned to processor j. If ¢ # j, C(3,J,u,v)
represents the interprocessor communication cost between modules u
and v under this assignment. If ¢ = j, C(3, j, u, v) represents the in-
terference cost between modules z and v caused by resource conflicts
on the same processor.

99

Given a task graph G = (V, E), a distributed system of m het-
erogeneous processors, along with the costs X (u,7) and C(¢, j,u,v)
for all 1 <¢,5 < m and u,v € V, the task assignment problem is to
find a mapping 7 : V — [m] to minimize the total cost

costy(7) = Z X(u,w(u))+ Z C(w(u),n(v),u,v)

ueV uFv

or the completion cost

coste(m) = max Z X(u,k)+ Z C(m(u),m(v),u,v)

1sksm | o=k n(w)=h

ugv
We call the above task assignment problem with objective func-
tion costy(7) the nonuniform task assignment problem (TA). If both
the communication costs and the interference costs are processor-
independent, then TA is reduced to the uniform task assignment
problem. While the uniform model is used by most work on task
assignment in the literature, it is not a realistic model for heteroge-
neous computer systems. In such systems different processor pairs
may have different communication bandwidths, as is the case in most
distributed systems [13]. In this paper we focus on the study of
nonuniform task assignment problem, and treat the uniform task as-
signment as a special case. Some researchers have also worked on
uniform task assignment to minimize the completion cost costo(7)
[15]. In our experimental study, costy(7) is provided for reference
only.

Most related work in the literature focuses on uniform task assign-
ment problems [16,12,3]. Stone proposed the classical model for uni-
form task assignment without interference costs and used the max-
flow algorithm to derive optimal solutions to minimize the total cost
for systems with two processors [16]. Stone also gave important hints
for generalizing his algorithm to solve task assignment problems with
m > 2 [16). Gursky proved that stone’s task assignment model for
m > 2 is NP-hard [9]. Lo designed a heuristic to address the uni-
form task assignment problem based on the max-flow algorithm to
minimize the total cost for systems with m > 2, and introduced the
interference costs to reduce the completion cost [12].

100

For the nonuniform task assignment problem, polynomial time al-
gorithms have been developed, for arbitrary m, for special instances
of the task graph G. Specifically, there is an O(m?n) algorithm if G
is a tree [2], an O(m3n) algorithm if G is a series parallel graph [19],
or an O(m**1n) algorithm if G is a partial k-tree [6]. In addition,
Ferndndez-Baca recently proved that the nonuniform task assign-
ment problem is NP-hard for m > 3 even if G is planar and bipartite
[6]. It was also shown that no polynomial time approximation algo-
rithms exist unless P=NP [6], for m > 3. The complexity of TA for
a two processor system remained open. In addition, for the nonuni-
form task assignment (TA), there have been no heuristics proposed
thus far.

In the first part of this paper, we show the intractable nature of
the nonuniform task assignment problem for a two processor system.
We first show that the problem remains NP-hard, for a two processor
system, even if the task graph G is planar with maximum degree 3.
We then observe that the problem remains NP-hard for a two proces-
sor system even if G is bipartite. Finally, we show that the problem
can be solved in polynomial time for arbitrary number of processors
if the degree of the graph is at most 2. This final observation closes
the gap between the P and NP cases in terms of the degree of the
graph.

In the second part of this paper, three heuristics are proposed to
solve this problem based on simulated annealing, tabu search, and
stochastic probe approaches. An extensive experimental study is
performed on 42 different data sets both for nonuniform and uniform
task assignment. Experiments show that our heuristics are efficient
and effective in general. For uniform task assignment problem, our
heuristics on the average improve the total costs of Lo’s max-flow
based heuristic by 10% for the data sets with constant or zero inter-
ference costs (using only 2.8% CPU time of Lo’s heuristic); and by
71% for the data sets with random interference costs.

In the next section, we first present our complexity study for the
TA problem. Section 3 addresses some problem-specific design issues
for general heuristics for task assignment. Three efficient heuristics
based on simulated annealing, tabu search, and stochastic probe are
proposed in Section 4. Extensive experimental studies, mainly be-
tween our heuristics and Lo’s max-flow based heuristic, are reported

101

in Section 5. Section 6 summarize our results with some observa-
tions. We summarize the main ideas and drawbacks of Lo’s heuristic
in the Appendix to this paper.

2 Complexity Study

In this section we prove the NP-hardness of nonuniform task as-
signment with m = 2 by reducing the instances of two standard
NP-complete problems to the instances of task assignment with two
processors. To facilitate our complexity study, we first reformulate
the nonuniform task assignment problem so that a problem instance
can be completely described by a graph G, and any feasible solution
to this problem instance can be represented by a subgraph of Gj.

2.1 Problem reformulation

As an instance of the task assignment problem, we are given the
task graph G = (V, E), the cost functions X and C, the number
of modules n, and the number of processors m. To facilitate the
following complexity analysis, we represent all of the above related
information in a weighted ezpanded graph G1 = (V4, E;). We define
Vi as

Vi = Upev Vo, where V, = {v},2%,...,v™}.

For any v € V and 1 < k < m, v* represents an allocation of module
v to processor k. We define E; as

E, = {(ui,vj)|(u,v) € Eand 1<, <m}.

The execution and generic costs are represented by the weights of
the vertices and edges in G respectively. For each vertex v* € Vi,
v* is assigned a weight w;(v*) = X(v,k). Similarly, for each edge
e = (u',v9) € Ey, e is assigned a weight wo(e) = C(4, j,u,v).
¥ From the definition of the problem, a feasible assignment can
now be represented by a subset Vi, of V1 if | Vo NV, |= 1 for all
v € V. The induced subgraph on V}, denoted by H = (V4, E}1) where
Ep = {(u,v) € Ey|u,v € V3,}, is isomorphic to G and represents the
execution and generic costs of an assignment denoted by Vj,. We call
H an allocation graph. The cost of an assignment represented by

102

Vi can now be calculated in terms of the vertex and edge weights
of the allocation graph H. Let Wi(V}) = Y {w1(v) | v € V3} and
Wa(Er) = Y {wa(e) | e € E}, the cost of the assignment, denoted
by T'(H), is:

T'(H) = Whi(Vi) + Wa(E).

The task assignment problem can now be stated as: Find an
allocation graph H C G, to minimize I'(H). The decision version of
TA can be stated as:

Instance: Expanded graph G; and a real number D > 0 (cost).
Question: Is there an allocation graph H such that I'(H) < D.

2.2 Problem Complexity

In this subsection we show the intractable nature of the task ass-
ingment problem for a two processor system. Specifically we show
that TA remains NP-hard for a two processor system even if the
task graph is planar and has maximum degree 3 or the tak graph is
bipartite.

Theorem 1 TA is NP-hard even if m = 2 and G is planar with
degree 3.

Proof: It is easy to see that the problem belongs to NP since for
any assignment V} and any cost D we can check in polynomial time
O(|Vi| + |Er]) = O(JV| + |E|) whether I'(H) < D. To show that
it is NP-hard, we show that the decision version of the problem is
NP-complete by presenting a polynomial time transformation from
any instance of the Planar One-In-3SAT problem, which was shown
to be NP-complete in [5], to an instance of the TA problem.

Planar One-In-3SAT Problem

Instance: Given a set if = {u; | 1 < i < p} of variables and a
collection € = {¢j | 1 £ j < 8} of clauses over U such that each
clause ¢; € C has |c;| = 3 and the graph G; = (Vi, Ey) is planar
where

Vi=CUU,

Er = {(cj,ui) | ui € ¢j or T; € ¢5}.

103

Question: Is there a truth assignment for &/ such that each clause
in C has exactly one true literal?

Let U = {u1,uz,...,u,} and C = {¢1,¢2,...,¢4} be an instance
of the Planar One-in-3SAT problem, and let G; be the graphical
representation of this instance. Let s;, for 1 < ¢ < pu, denote the
number of clauses in C that contain either u; or %;. We first construct
a task graph G as follows. The vertex set of G is

V={c,&d|1<j<0u{u},u},...,uf |1<i<pu}.
The edge set of G is defined such that
E=FEcUEc_yULEy,
where
o BEc={(c},e})(che})s (cfhcd) [1< <6}
o Ey = {(u},u?), (v}, ud), ..., (uf ', uf) | 1 <i< p};and

o the edge set Ec_y is defined in such a way that (cf, u u?) € Ec_y
if and only if the a-th literal of clause c; is either u; or @;, and
each vertex uf-’ has exactly one such edge in Fo_y.

Since the degree of G is 3 and Gy is planar, we can always make
G planar by choosing b for each ¢} according to the connection or-
der in Gy, first from top to bottom, then from left to right. For
example, let U = {u,u,u3}, C = {e1,¢c2}, &1 = {wy, %2, ua}, and
¢ = {@,uz,u3}. Figure 1 shows the corresponding G;. Figure 2
shows the corresponding task graph G.

We now describe a procedure to construct the expanded graph
G1 = (W3, Ey) of G for a two processor system. We define

Vi=DUF,
where D = {c},Ej,cf, 2@ | 1 < j < 6} and F =
{ul, @}, u?,2?,...,u, % | 1 £ i < p}. Each vertex in G is re-

" placed by two vertlces where ¢} € V1 corresponds to an assignment
of module ¢} € V' to processor 1 and ¢} € V; corresponds to an as-
signment of module ¢} € V to processor 2. The vertices in F are
defined similarly. We define

Ey=E,UE,UE,UE;UEUE,UE,

104

(&)
&)
(&)

(¢

Figure 1: Graph Gy

Figure 2: Task graph G

105

where

EP_{(cga _1) (C)(]’ J)|1<J<0}

E, ={(7},%),(&,8)),(5,) | 1 <5 < 0}

E, = {(c},2), (5, ¢3),(c3,89), (T,) (¢, 3), (G, e)) 1 1 < 5 <
E, = {(u},ud), (u},ud), .o (uf 7) | 1S i S pks

Et={(u @), (@), ... (@8 [1<i <k

= {(u},7), (@}, ud), (u?,’?),...,(PN, (@) |
15z5u}

2! —{(CJ, :) (c_17 |),(b) (J? t)l(b) EE}

To complete the construction of G; we need to assign weights to
the edges and vertices of G1. Let w;(v) = 1 for all v € V4, i.e., all
vertices are assigned unit cost. To assign the weight of each edge,
let M; be any number larger than 126 and let M3 be any number
larger than 126 + 30M; — p. The weight of each edge is then defined
as follows:

set wy(e) = M if e € E, U Ey;
set ‘UJ2(€) =M ifee Eq;
set wa(e)=1ife€ E, UE,UEy

The weights of the edges in E, are as51g11ed such that if the a-th
literal of clause ¢; is u; and e = (cf, u?) € E, then set wo(e) =
1 and wy(e’) = M for all ¢ € {(cf,@),(T,ul),(c%,)}
If the a-th literal of clause ¢; is %; and e = (cg,ﬂf) €
E,, then set wg(e) = 1 and wq(e’) = M; for all & €
{(c2,ud), (2}, ud), (3, %)} Figure 3 shows the expanded graph
G for the task graph G in Figure 2.

In what follows, we show that there exists a solution for the
Planar One-in-3-SAT problem if and only if there exists an allocation
graph H such that I'(H) < 30M; + 120 — p. Figure 4 shows the
allocation graph H for our example.

106

F= 12+42(2+M;)+3+2(2M,+1) =6M, + 21

Figure 4: Allocation graph H

107

Suppose there exists such a truth assignment for U. Using this
truth assignment we can construct an allocation graph H = (Vj, Ep)
in which

Vi=HiUH,UHj;

where
Hy = {c}, J, <; ¢ | the a-th literal of clause c; is true and the
b-th and b'-th literals of clause c; are
false, for 1 < j < 68},
Hy = {ul,u?,...,uf | variable u; is true for 1 < ¢ < u},
Hs = {8}, %?,...,7" | variable u; is false for 1 < i < p};
and

Ep={(z,w)€ Ey | z,w € Vi}.

To compute I'(H), it is observed that) {w;(v) | v € V,} = 68,
since |Vi| = 68 and wy(v) = 1 for all Vi; Y- {wa(e) | e € ExN(E U
Ey)} = (M, +2); S{wile) | e € By (B, UE)} = Ty (si — 1)
and Y {ws(e) | e € E, N Ey} = 6(1 + 2M;). Therefore, we have
T(H) =660+ 0(M; +2)+ X! (si — 1)+ 6(1 + 2M,). Since each
clause has 3 literals, thus 3"/, s; = 36, the above discussion implies
that F(H) = 391\/11 + 1260 - K.

Conversely, assume that there exists an allocation graph H of G,
such that I'(H) < 30M; + 126 — p. Since My > 30M; + 120 — u, the
weight of any edge e in Ep must be less than Mj, i.e., equal to 1 or
M;. Therefore, for each i, 1 < i < p, either {u},u?,...,ul} C V;
or {u},%?,...7"} C Vi, but if w! € Vi, (@ € Vi), then @ ¢ V,
(uf ¢ V). From similar reasoning, for each j, 1 < j < 8, at most
one vertex from {c},c?¢?} can be in Vi, and thus 3" {wa(e) | e =
(2,w) € E} such that z,w € D} > (2 + M;)8. Further, it is noted
that 3_{wa(e) | e = (z,w) € B} such that z € D and w € F} >
(1 + 2M;)8. The above discussion implies that I'(H) must be at
least Y {wi(v) | v € Va} + i (si = 1)+ (2+ M1)0 + (1 + 2M,)9,
which is equal to 30Af; 4126 — . That is, the equality must hold and
the only possible case to satisfy the equality is to have exactly one
vertex from {cJ, f, J} in V}, for each Jy 1< 37 <40, and the weight
of the edge from the vertex in {c},c%,¢3} N Vj to the vertex in F is
equal to 1. This establishes the ex1stence of a truth assignment for &/

108

such that each clause in C has exactly one true literal. In particular,
we can assign the true value to u; if {u},u?,...,u4]'} C Vj, or to w;
if {z},%?,...,%¥} C Vi. This completes the proof of the theorem.

The next theorem shows the intractability of the problem, for
m = 2 even if the task graph is bipartite.

Theorem 2 TA is NP-hard even if m = 2 and G is bipartite.
Proof: The proof uses a transformation from an instance of the
Maximum 2-Satisfiability problem [7] (Max 2-SAT) to an instance of
TA.

Let U = {uy,uz,...,u,} be the set of variables, C = {e;, ¢z, ..., ¢}
be the set of clauses and k be the given constant as defined in the
Maximum 2-SAT problem. We first construct a bipartite task graph
G as follows. The vertex set of G is

V=A{all <i<0}U{u;|1 <j<p}.
The edge set of G is:
E = {(ci,u;)| literal u; or @; appears in clause ¢;}.

From the construction above it follows that G is bipartite. The
expanded graph G; for a two processor system is constructed as
follows. Assume without loss of generality that the literals in each
clause are ordered. The vertex set is defined as:

Vi={c,cd|l <i<O}U{u;,u|1<j<p}

Note that ¢! corresponds to assigning module ¢; to processor 1 and
¢? corresponds .to assigning module ¢; to processor 2. The edge set

of (G; is defined as:

By = {(c}, u5), (i, 85), (¢}, u;), (cf, ;) literal u; or &;
appears in clause ¢; }.

The weights of all vertices in G is set to 0, i.e., for all z € W
wy(v) = 0. Let e = (c?,b) € Ey, where a € {1,2} and b € {u;,%;]1 <
J £ pu}. We set wp(e) = 1 if the a-th literal of clause ¢; is b, and
wo(e) = 62 otherwise. The task graph G and the expanded graph G;
thus form an instance of TA where G is bipartite and m = 2. We now

109

prove that there exists a truth assignment for &/ that simultaneously
satisfies at least k of the clauses in C if and only if there exists an
allocation graph H = (Vj, E;) with T(H) < k — k62 + 263.

Suppose there exists a truth assignment for If that simultaneously
satisfies ko (> k) of the clauses in C. One can construct an allocation
graph H = (Vj, E}) as follows. The vertex set of H is:

Vi = {u;lu; is true } U {&;]%; is true }
U{c?| a € {1,2}, a=1 if only if the first literal of ¢; is true}.

To determine the value of I'(H), we recall that only edges have non-
zero weights. We note that the number of edges in E} incident to
¢} € Vi, fora = 1 or 2, is two. Suppose c; is true and ¢} (respectively,
¢?) is in V,. Then, the first (respectively, the second) literal of ¢;,
say z! (respectively, z2), is also in V}, and the weight of edge (¢}, 2')
(respectively, edge (c?,2%)) is equal to one. Since the weight of the
other edge incident to ¢} or ¢? is equal to 62, the sum of the weights
of these two edges incident to ¢} or ¢? is equal to 1+62. On the other
hand, assume that ¢; is not true. Then ¢? is in V}, and the weights
of both edges incident to ¢? are 26%. This implies that To(E) =
ko(1 + 6%) + (6 — ko)26%, which is ko(1 — 62) + 26%. Then I'(H) =
Wa(Ep) < k(1 — 62) + 63, because ko > k and 1 — 6% < 0.

To prove the converse, let H = (Vj, Ep) be an allocation graph
with T'(H) = Wo(Ep) < k — k6% + 263, Then, there are at least &
vertices in Vi, N {c},c?|1 < i < 6} such that the sum of the weights
of the edges incident to those vertices are 1 + §2. To verify this,
suppose that there are only &’ (< k) such vertices. It follows that
since |[VyN{c!,c?[1 < i <0} =0, Wo(ER) = k'(1+6%) + (6 - £')26?,
which is larger than (k—k82+26%) assuming without loss of generality
that & > 1. These observations establish the existence of a truth
assignment for I{ that simultaneously satisfies at least & of the clauses
in €. In particular, assigning the true value to literal u; (or ;) if
u; € Vp, (respectively, if @; € Vj,) gives a desired assignment.

2.3 A tractable subset of nonuniform TA

In this subsection we address the case in which the degree of G
is less than three and show that TA can be solved in polynomial
time for this case. This result together with the NP-hardness result

110

completely closes the gap between the polynomially solvable cases
and the NP-hard cases in terms of the maximum degree of the task
graph G.

Theorem 3 Given an instance of TA with the degree of G less
than 3, TA can be solved in O(m3n) time for arbitrary m.

Proof: Note that if the degree of G is less than 3, the graph is either
a simple path or a cycle. If the graph is a cycle, we can duplicate a
particular vertex to create a simple path. Let v, and v; be the two
end vertices in G. If the original task graph is a cycle, v; and v, are
two occurrences of a single vertex.

The corresponding expanded graph G, has O(m?2n) edges. If we
designate a direction for each edge from the incident vertex closer
to some v}, 1 < i < m, to the another incident vertex, G; becomes
a directed acyclic graph. Designating any vertex v}, 1 < i < m, in
G, as the source, we have algorithm [4] to find the shortest path
between the source and the rest of the vertices in time O(m?n).

If the original task graph is a cycle, for each 1 < 7 < m, we invoke
the shortest path algorithm to find the shortest path from v} to vj.
If the original task graph is a simple path, for each 1 < ¢ < m, we
invoke the shortest path algorithm to find the shortest path from v
to] where 1 < j < m. The shortest path among the resulting m
paths represents the optimal task assignment. The time complexity
of this process is therefore O(m3n).

3 Problem-specific design issues

Since uniform and nonuniform task assignment problems are both
NP-hard, heuristic approaches must be adopted for their general
solutions. In the rest part of this paper, we propose three iter-
ative heuristics to solve the task assignment problems. All these
heuristics are based on general solution space search strategies. In
this section, we first address some design issues specific to the task
assignment, which are common to all the three heuristics, so that
our heuristics can be described more concisely. Without loss of
generality, we assume that the cost function C(i,j,u,v) is sym-
metric in terms of both parameter pair (u,v) and parameter pair
(¢,7): for any integers i,j € [m] and any modules u,v € V,

111

C(i,4,u,v) = C(i,4,v,u) = C(4,4,u,v) = C(j,%,v,u).

3.1 Move and neighborhood design

Let X be the set of all mappings V — {1,2,...,m}. We call X
the solution space. The nonuniform task assignment problem can be
presented as

Minimize cost;(7): 7w e X

where costy(7) is the objective function.

A wide range of heuristics solving problems capable of being writ-
ten in this form can be characterized conveniently by reference to se-
quences of moves that lead from one trial solution (selected ™ € X)
to another. Let S be the set of all defined moves. We use S(7)
(7 € X) to denote the subset of moves in S applicable to x. For any
s € S(m), s(«), the new solution obtained by applying move s to =,
is called a neighbor of 7. We call {s(7)|s € S} the neighborhood of
solution 7 in solution space X.

Vertex move and vertezx exchange are two popular classes of moves
for graph partition. Let §7 = {(u,?)|u € V,i € [m]} be the set of
all moves for moving one module away from its current assigned
processor. Given any move s = (u,i) € S; and ©# € X, s(7) is
identical to 7 except that s(7)(u) = ¢. Let 3 = {(u,v)|u,v € [n]}
be the set of all module swaps. Given any move s = (u,v) € Sz and
7 € X, s(w) is identical to w except that w(u) and 7(v) are swapped.

Our experiments show that module moves in S; are very effective
in distributing the modules among the processors to minimize the
total execution cost, while module swaps in S; are very effective in
refining the assignment to minimize the total communication and
interference costs. The best order and mixture of module moves and
module swaps are problem instance dependent. To compromise the
neighborhood size and the effectiveness of the moves, our heuristics
use a special set S3 of moves, where for any 7 € X, S3(7) = S)(w)U
S3(m), and

S5 = { exchange u and v | u,v € V; moving v to processor j

maximizes gain which is < 0;
u is assigned to processor j},

112

where gain, the improvement in cost, is defined in the next subsec-
tion. Informally, we give module moves higher priority than module
swaps. For a given assignment 7 and a given module v assigned to
processor %, we first try moving v to all the other processors; if mov-
ing v to processor j has the best gain which is less than zero, then we
also try swaps of v with each of the modules assigned to processor
J. Experiments show that S3 performs better than S; or S5 alone in
terms of both running time and solution quality for all of our three
task assignment heuristics.

3.2 Gain functions and their incremental update

During each iteration of our heuristics, we need to measure the
effectiveness of each potential move. For any move s, we define
the gain of s relative to the current assignment # € X to be
g(8) = costy(m) — costi(s(w)). For each s = (u,i) € Sy, we have
the gain of s relative to the current solution # € X to be
a(u,?) = X(u,w(u)) - X(u,1)
+ Y _{C(r(u), n(z),u,z) - C(i,n(z),u,z)}.
zeV

r#u

For each s = (u,v) € S2, we have the gain of s relative to the current
solution 7 € X to be

92(u,v) = g1(u, 7(v)) + g1(v, 7(u))
—2C(m(u), 7(v), u,v)
+C(m(u), 7(u),u,v)
+C(m(v), m(v), u,v).

Since the gains for moves in S3 are defined in terms of g; or g3,
and g can be easily obtained from g;, we only need to maintain the
current definition of g,. If we store g; in the memory, after a module
move or swap, ¢g; can be incrementally updated efficiently. After a
move s = (u,1) € S, the function g; can be updated as follows: let

a = X(u,i)— X(u,7(x))
+ 3 {CG, 7(z),u,2) — C(n(u),7(z),u,2)};

zeV
T#u

113

for any t € [m], let

gi(u,t) = gi(u,t)+a;

and for any z € V — {u} and any t = [m] — {7(z)}, let

alz.t) = az,1)
-C(n(z),m(u),z,u)
+C(m(z),t,z,u)
+C(t,m(u), z,u)
-C(t,i,z,u)

where g¢] denotes the updated version of g;.

4 Iterative heuristics for task assignment

Simulated annealing [11,10] and tabu search [8] are two of the most
important techniques for general combinatorial optimization. Even
though they are new (having a history less than 10 years) and still
under development, they have claimed success in many application
domains. Stochastic probe is a new approach recently proposed by
us for combinatorial optimization [18]. It combines the advantages
of both the stochastic search process in simulated annealing and the
aggressive search process in tabu search. In this section we sum-
marize the main ideas of these three approaches, and present our
adaptations of them to the task assignment problem.

4.1 Simulated annealing

Simulated annealing can be viewed as an enhanced version of the
local search. It attempts to avoid entrapment in poor local optima
by allowing occasional uphill moves. This is done under the influence
of a random number generator and a control parameter called the
temperature. As typically implemented [11], the simulated annealing
approach involves a pair of nested loops and two additional param-
eters, a cooling ratio r, 0 < r < 1; and an integer temperature length
L (see the generic simulated annealing heuristic in Figure 5).

114

—

Get a random initial solution =.
Get an initial temperature T" > 0.
3. While stop criterion not met do:
3.1 Perform the following loop L times:
3.1.1 Let 7’ be a random neighbor of .
3.1.2 Let A = costy(7) — costy(n’).
3.1.3 If A > 0 (downhill move),
set 7 = 7', '
3.14 If A < 0 (uphill move),
set # = 7' with probability e2/T.
3.2 Set T = rT (reduce temperature).
4. Return the best 7 visited.

N

Figure 5: Simulated annealing

The heart of this procedure is the loop at Step 3.1. Note that
e2/T will be a number in the interval (0,1) when T > 0 and A < 0,
and rightfully can be interpreted as a probability that depends on
A and T. The probability that an uphill move will be accepted
diminishes as the temperature declines, and, for a fixed temperature
T, small uphill moves have higher probabilities of acceptance than
larger ones. This particular method of operation is motivated by a
physical analogy, best described in terms of the physics of crystal
growth [11]. It has been proven that the heuristic will converge to a
global optimum if the temperature is lowered exponentially and the
initial temperature is chosen sufficiently high [10].

There are two main issues related to the adaptation of this gen-
eral approach to the task assignment problem. The first is the design
of moves and neighborhood structure, the other is the design of the
cooling schedule. We use 53 (see Subsection 3.1) as the set of moves.
More specifically, during each iteration, we randomly choose two pro-
cessors ¢ and j (i # j), then randomly choose a module u such that
7(u) = ¢. If moving u to processor j has a nonnegative gain, then we
use its resulting assignment as #x’; otherwise we randomly choose a
module v such that 7(v) = j and try to swap modules u and v, and
use the assignment resulting from the move with better gain as .

As for the cooling schedule design, we made the following deci-

115

sions.

1.

We let L = n - SIZEFACTOR, where SIZEFACTOR is a pa-
rameter.

The initial temperature Ty is chosen so that the initial ac-
ceptance rate is around INITPROB, another parameter in the
range (0,1).

. For each temperature we measure the acceptance rate of the

proposed moves. The heuristic stops when for five tempera-
tures the acceptance rate is lower than MINPERCENT and
the best visited solution is not improved in that period of time.
Here MINPERCENT is another parameter in the range (0,1).

All the parameters for our simulated annealing heuristic are not
independent. We tune the parameters of our annealing heuristic for
each of our problem instance one at a time. We repeat the process
until no perturbation of the parameters can improve the performance.
We find that the parameter values r = 0.95, SIZEFACTOR = 16,
INIPROB = 0.4, and MINPERCENT = 0.02 are appropriate for

most

4.2
Tabu

of the problem instances.

Tabu search

search is another newer general approach for combinatorial

optimization [8]. It differs from simulated annealing at two main
aspects:

It is more aggressive. For each iteration the whole neighbor-
hood of the current solution is usually searched exhaustively to
find the best candidate moves.

It is deterministic. Each iteration repeats the above exhaustive
search for best candidate moves. The best candidate move
which does not cause cycling in the solution space will be used
no matter what sign its gain has. A tabu list is usually used
to record the recent move history to avoid solution cycling, so
comes the name of the approach.

116

Figure 6 outlines a generic tabu search heuristic using 7 to rep-
resent a solution, cost;(7) the cost function, and ¢ the length of the
tabu list. Given a random solution, the heuristic repeats the loop at

1. Get a random initial solution 7.
2. While stop criterion not met do:
2.1 Let 7 be a neighbor of # maximizing
A = costy(m) — costy(7’) and not visited
in the last ¢ iterations.
22 Setw =
3. Return the best 7 visited.

Figure 6: Tabu search

Step 2 until some stop criterion is met. During each iteration, the
heuristic makes an exhaustive search of the solutions in the neigh-
borhood of the current solution which have not been traversed in the
last ¢ (¢ > 1) iterations. The neighboring solution with the best cost
will be used to replace the current solution. The main design issues
for a tabu search heuristic are as follows:

1. The design of the neighborhood (moves) of the current solu-
tions. A large neighborhood usually makes each iteration more
aggressive but also more time-consuming,.

2. The design of the contents of the tabu list. If move s is used to
transform the current solution to 7, the corresponding cell of
the tabu list should capture some attributes of 7 or s so that 7
will not be traversed again in the next ¢ steps. At one extreme,
we can store solution 7 directly in the tabu list. But in practice,
to save memory space and checking time, some attributes of s
will be stored in the tabu list to prevent s or s~! to be used in
the next t iterations. If we use a more detailed set of attributes
of a solution or move in each cell of the tabu list, more memory
space and checking time will be incurred during the solution-
space search, and the searches will be less restrictive since less
solutions (in addition to the ones visited in the last ¢ iterations)
will be tabued. On the other hand, if we use a more abstract
(simplified) set of attributes of a solution or move in each cell

117

of the tabu list, the implementation will be more space and
time efficient for each iteration, and the searches will be more
restrictive since more extra solutions will be tabued.

3. The design of the aspiration level function. To make the imple-
mentation more space and time efficient, most designs of the
contents of the tabu list will tabu too many solutions in addi-
tion to those visited in the last ¢ iterations, thus risk to lose
good move candidates. As a make-up, we can define an aspi-
ration level A(s,7) (usually an integer) for each pair of move
s and solution 7 such that if cost;(s(7)) < A(s,7) the tabu
status of s for the current solution 7 can be overridden. In
practice some attributes of w, instead of 7 itself, will be used
in the definition of A(s,w). A(s,w) is designed to capture the
common properties of the earlier applications of s to solutions
sharing the same attribute values as .

4, The design of the length ¢ of the tabu list. Parameter ¢ de-
termines how long the move history will be saved in the tabu
list. Suppose that 7 is a local optimum, and it needs at least
t' consecutive “uphill” moves to go to another local optimum
n/. Then t > t' is a necessary condition for = to reach 7’. In
general, the longer the tabu list, the more time for tabu status
checking for each move, and the more restrictive the search pro-
cess. On the other hand, a too short tabu list risks to introduce
cycling in the solution space. Parameter ¢ can be a constant
or a variable during the execution of the heuristic. For many
applications, a tabu list length around 7 is found appropriate

[8).

Following is a description of our tabu search heuristic for task
assignment.

1. We use 53 of Subsection 3.1 to define the moves and the neigh-
borhood of the current solution.

2. For the tabu list design, we use a circular list to maintain the
vertices moved (swapped) in the last ¢ (¢t > 1) iterations. We
find that a more detailed characterization of the past moves
usually traps the search process in a small subspace of the

118

solution space (many vertices may never be moved). A constant
tabu list length of 5 produces the best performance for most of
our problem instances.

3. We use the cost of the best visited solution as the aspiration
level A(s,n) for all pairs of s and 7. Based on the same ob-
servation pointed out in the last item, more “flexible” searches
implemented by a more sophisticated aspiration level definition
tend to limit the real search freedom in the solution space.

4.3 Stochastic probe

In general, simulated annealing and tabu search heuristics are slower
than problem-specific heuristics. Their excessive running times
mainly result from the searching strategies of these two heuristics.

e As for the simulated annealing heuristic, it is not aggressive in
neighborhood search. Each iteration chooses a random neigh-
boring solution, which is usually not the most profitable one.
The solution cost improves mostly in a narrow time range. The
solution searches after this range is mainly limited to a small
subspace of X [18].

o As for the tabu search heuristic, the utilization of information
is low. For example, if we use S3 to define the moves, then
each iteration needs to search a neighborhood of more than
n(m —1) solutions while using the information for only few (no
more than the length of the tabu list plus one) of the neighbor-
ing solutions. The deterministic search process also limits the
solution search to a small subspace of X.

The objective of this subsection is to introduce a new approach for
general combinatorial optimization. We will demonstrate its power
through the task assignment problem in the next section. The design
is based on our following convictions:

o Aggressive neighborhood searches are essential to finding
“good” solutions in a practical time frame. But a more ag-
gressive search usually implies more search time. While tabu
search and simulated annealing approaches represent the two

119

extremes, a good trade-off must be made to compromise the
aggressiveness and the running time of the search process.

e A good search heuristic should have the ability to effectively
leave local optima when they are reached. The trace of the cur-
rent solution should be controlled by the recent move history,
not by “random walk.”

¢ Randomized search is more effective in avoiding cycling in so-
lution space than the tabu list technique. But the acceptance
of moves with very bad gains (as simulated annealing does in
high temperature) is usually not profitable.

The result is a combination of the aggressive search process in the
tabu search approach and the stochastic search process in the sim-
ulated annealing approach. We call our new approach stochastic
probe.

Given any 7 € X and v € V, we use §(7,v) to denote the subset
of moves in S(w) that redefines 7(v). For any integer p > 0, we use
random(—p) to represent a random integer between —p and 0 inclu-
sively. Figure 7 outlines our stochastic probe heuristic. Informally,
the heuristic consists of a sequence of well-organized probes, each
probe searching for a local optimum. The last solution in a probe will
be modified randomly to some extent to become the initial solution
for the next probe. The heuristic stops when no improvements on
the best visited solution occur for several consecutive probes. Each
probe in turn consists of a sequence of iterations, each making an
aggressive search for the most profitable move involving the current
vertex. All the vertices become the current one in turn, thus no one
will be ignored in the search process. Variable p is used to control the
tolerance of “bad” moves. The chosen move will be accepted if and
only if it has a gain greater than random(—p). Initialized to be po,
p will increase its value if the last move has negative gain, and reset
to po as soon as a move is accepted. This mechanism is designed to
help the solution search leave local optima when they are reached.
A probe finishes when the gains for the last k consecutive iterations
are all less than or equal to zero. The following are the main design
issues to apply this approach to the solution of a particular problem.

120

1. Get a random initial solution 7.
2. Initialize p to po.
3. Let L be a circular list of the vertices in V.
Set v to any of the vertices in V (the current vertex).
4. While stop criterion not met do:
4.1 While there is any A > 0 in the last k iterations of this
loop do:
4.1.1 Let v be the next vertex down the list L.
4.1.2 Let s € §(7,v) maximizing A in 3.1.3.
4.1.3 Let 7’ = s(m), A = costy(7) — costy (7).
4.1.4 Let 2 be the average of negative gains encountered
in the current execution of loop at Step 3.1.
Set p=p - |az].
4.1.5 If A > random(—p), set # = =, p = po.
4.2 Perturb randomly the value of x) for 8% of the vertices
uin V.
4.3 Set p = pp.
5. Return the best = visited.

Figure 7: Stochastic probe

o The parameter pp. The value of pg determines the initial value
of p for each probe, which controls the extent of tolerance for
“bad” moves. '

o The parameter a. a is a real number controlling the sensitivity
of the value of p to the recent move history.

o The parameter 8. A small 8 will lead to more thorough solution
searches in a small subspace of X, whereas a large 8 will enlarge
the search range to exploit more local optima.

o The stop criteria for each probe and for the heuristic. The
former is determined by k. A larger k makes a more thorough
probe into a subspace of X with more running time. There are
similar trade-offs for the stop criterion of the heuristic.

For the task assignment problem, we find the following decisions
are appropriate:

121

o We set pg to 20% of the average absolute value of the negative
gains for the first 1000 iterations.

e We set a to a value ranging from 0.2 to 0.8 depending on prob-
lem instance.

¢ We sset § to a value ranging from 10 to 15 depending on problem
instance. We find that the variation of 8 during the execution
cannot significantly improve the solution quality for this par-
ticular problem.

o We set k to n. A larger £ makes a more thorough probe into a
subspace of X with more running time.

o The heuristic stops when the best visited solution cannot be
improved for several consecutive probes.

5 Experimental studies

Extensive experiments are conducted to evaluate the relative perfor-
mances of our heuristics and Lo’s heuristic. The experiments can be
classified into two parts: (i) experiments based on the nonuniform
model; (ii) experiments based on the uniform model. The latter is
further subdivided into three categories: (1) experiments without
interference costs; (2) experiments with constant interference costs
less than the corresponding minimal communication costs; (3) exper-
iments with random interference costs. The data sets are basically
generated following Lo’s experiment designs in [12]. For each exper-
iment, we report the total cost and CPU time. We also report the
completion cost for reference, even though it is not part of the objec-
tives under our models. Let n be the number of task modules, and m
the number of processors. The communication pattern of a problem
instance can be (a) clustered, in which there are roughly 3m clusters;
(b) sparse, in which only 1/6 of the elements in C' are nonzero; or
(c) structured, in which the inter-module communication pattern can
be line, ring, square 2-D mesh, or binary tree. For all of our data sets,
the costs are randomly generated. The name of each data set begins
with “C” for clustered, “S” for sparse, or the name of topology for
structured communication patterns, followed by n and m. All of the

122

measurements C30.3 C40.4

SP | SA | TS | SP| SA T TS
total cost| 984 1022]| 1042| 1433] 1498] 1508

completion cost| 205| 245| 217 318] 300f 314

CPU time (sec.)| 1.07 1.13| 1.32| 2.5]| 10.98] 8.71

measurements C50.5 C60.6
SP{ SA | TS | SP | SA | TS
total cost| 2212| 2274 2255] 2672 2721 2711
completion cost| 476| 601| 585| 527) 492| 491
CPU time (sec.)| 3.77| 15.55| 11.98 9.06] 10.7| 35.73

Table 1: Performance comparisons for nonuniform clustered data sets

experiments are performed on a SUN Sparc 2 workstation running
SUN-OS Release 4.01. The efficient lift-to-front max-flow algorithm
with time complexity O(n3) [4] is used to implement Lo’s heuristic.
To simplify presentation, we use LO, SA, SP, and TS to denote Lo’s
heuristic and our heuristics based on simulated annealing, stochastic
probe, and tabu search respectively.

5.1 Nonuniform task assignment

Since we cannot find general heuristics for this model in the liter-
ature, in this subsection we compare the performances of our own
three heuristics. We generate 12 problem instances with n ranging
from 30 to 60 and m from 3 to 6. All the execution costs, com-
munication costs, and interference costs range from 1 to 10. The
intra-cluster costs range from 15 to 50. The experimental results for
clustered data sets, sparse data sets, and structured data sets are re-
ported in Tables 1-3. The experimental results show that compared
with SA and TS, the average improvements of SP over the 12 prob-
lem instances are 3.2% and 1.9% respectively, the CPU times of SA
and TS are 1.94 and 2.4 times of those for SP respectively.

5.2 Uniform task assignment

Since LO is the only general heuristic for the uniform model in the
literature, in this subsection we mainly compare the performance
of our heuristics with that of LO. The experiments for this model

123

measurements S$30.3 S40.4

SP [SA| TS| SP | SA TS
total cost| 856| 868| 868] 1218| 1258| 1236

completion cost| 158 146| 146| 182| 207 222

CPU time (sec.)| 1.18| 1.23] 1.35| 1.83] 2.93{ 5.52

measurements S50.5 S60.6
SP|SA|JTS | SP | SA TS
total cost| 1687| 1726| 1690] 2208| 2216| 2217
completion cost| 309 271 324 349; 350| 382
CPU time (sec.)| 3.95] 6.75| 8.87| 9.11| 23.83{ 15.45

Table 2: Performance comparisons for nonuniform sparse data sets

measurements Line60_6 Ring60_6

SP| SA | TS | SP | SA | TS
total cost| 1421 1439] 1424| 1400] 1402| 1425

completion cost| 100 134 111 113} 105 91

CPU time (sec.)| 11.7| 17.58| 23.28| 17.20| 23.92{ 44.68

measurements Mesh49.6 Tree60.6
SP | SA TS SP SA TS
total cost| 1060 1119] 1107 1433 1461| 1437
completion cost| 126] 167| 134 110| 144 101
CPU time (sec.)| 9.6| 15.5| 28.3] 19.03] 21.25] 27.8

Table 3: Performance comparisons for nonuniform structured data
sets

124

measurements C40.3 C60.4
SP SA TS LO SP SA TS LO
total cost 1699 1705| 1701.6 1809| 2783.8| 2788.2 2785 2962
completion cost| 1133.2] 1105.2 1128{ 1608.4 1825| 1711.6| 1759.2| 2866.8
CPU time (sec.) 0.14 0.69 0.6 1.14 0.74 1.58 2.08] 19.81
measurements C80.5
SP SA TS LO

total cost| 3865.6] 3899| 3912.8]| 4431.4

completion cost| 2779 2628.8| 2787.6] 3812

CPU time (sec.)] 0.46] 1.72] 2.73 102

Table 4: Performance comparisons for clustered data sets without
interference costs

can be classified into three categories: (a) experiments without in-
terference costs; (b) experiments with constant interference costs;
(c) experiments with random interference costs. The execution costs
range from 20 to 80 for (a) and (b), and from 1 to 10 for (c). The
communication costs range from 5 to 10 for (a) and (b), and from 1
to 10 for (c). The intra-cluster communication costs range from 10
to 25. Ten data sets are used in each category of the experiments.
Each data set contains five problem instances generated by the same
specifications. The costs reported for each data set are the average
over the five problem instances contained in the data set.

5.2.1 Experiments without interference costs

For experiments in this category, no module assignment can be made
by Lo’s stage 1 (Grab) in 25 of all 50 tested problem instances. For
the remaining 25 instances, only 8.7% of the modules are assigned by
Lo’s stage 1. Tables 4-6 show that compared with LO, the average
improvements of SP, SA, and TS over all 50 problem instances are
11.8%, 10.2%, and 10.3% respectively for the total cost. The average
CPU times for LO are 77.9, 18.2, and 28.2 times of those for SP, SA,
and TS respectively.

125

measurements S40.3 S60.4
SP SA TS LO SP SA TS LO
total cost| 2027.6| 2029.4| 2039.6{ 2052.4| 3237.4] 3268 3256.2] 3502.6
completion cost 1583 1728.4 1704 1956.6 2972] 2965| 3086.6] 3137.4
CPU time (sec.) 0.21 0.9 0.39 3.31 0.12| 0.22 0.44 16
measurements S80.5
SP SA TS LO
total cost| 4138.6] 4280.2| 4236.6] 4613
completion cost| 4089.6| 4209.2] 4171| 4351
CPU time (sec.)] 0.36| 0.57| 0.58| 100.57

Table 5: Performance comparisons for sparse data sets without in-

terference costs

measurements Line64_4 Ring64._4
SP SA TS LO SP SA TS LO
total cost| 2484 2484.6| 2487 3041{ 2574.6} 2582.2| 2577.6] 3122.4
completion cost| 921 981 916| 2216.8| 909.8] 828.2| 919.6] 1762.6
CPU time (sec.)| 0.38 0.88] 2.53 4.94 0.33 1.81 2.52) 11.96
measurements Mesh64.4 Tree63_4
SP SA TS LO SP SA TS LO
total cost| 2855.6 2875| 2865.8| 3261.4] 2412| 2416.6f 2420.8| 2908.6
completion cost| 1734.2| 1606.2| 1680.6) 3088 983.4] 928.4] 959.4] 2592.8
CPU time (sec.) 0.43 1.74 1.72 3.26] '0.42 2.04 2.19] 15.19

Table 6: Performance comparisons for structured data sets without

interference costs

126

measurements C40.3 C60_4

SP SA TS LO SP SA TS LO
total cost| 2347.6] 2347.6[2348.2| 2525 4262 42714 4266| 4665.2
completion cost| 1337.8] 1337.8| 1294.2| 2325 3026.2| 2749.4| 2848.6| 4150.4
CPU time (sec.)] 0.28] 1.26] 0.97| 25| o077 111 1.31] 33.38
measurements C80.5

SP SA TS LO
total cost| 6352.2| 6386.4] 6412| 6428

completion cost| 5353.2{ 5596.6| 5595.4| 6367.2

CPU time (sec.) 0.5| 2.12| 3.49| 75.48

Table 7: Performance comparisons for clustered data sets with con-
stant interference costs

measurements 540.3 S60.4

SP SA TS LO SP SA TS LO
total cost| 2446.2 2489 2484 2645.2] 4247 4297| 4253.8(4397.4

completion cost| 1875.8| 1901.4| 1965.4 2455(3533| 3600.2| 4005.8| 4150.2

CPU time (sec.) 0.15 0.79 0.53 2.2] 0.25 0.59 0.49| 18.48

measurements S80_5

SP SA TS LO
total cost] 6048| 6157.6| 6128.6| 6640.6

completion cost| 5902.6| 5786.2| 5910.2| 6009.8

CPU time (sec.)| 0.39 1.17) 0.74] 90.67

Table 8: Performance comparisons for sparse data sets with constant
interference costs

5.2.2 Experiments with constant interference costs

For experiments in this category, all the interference costs are set to
constant 4. No module assignment can be made by Lo’s stage 1 in 22
of the 50 tested problem instances. For the remaining 28 instances,
only 9.1% of the modules are assigned by Lo’s stage 1. Tables 7-9
show that compared with LO, the average improvements of SP, SA,
and TS over 50 problem instances are 9.87%, 9.42%, and 9.52% re-
spectively for the total cost. The average CPU times over all problem
instances for LO are 58, 20, and 22.7 times of those for SP, SA, and
TS respectively.

127

measurements Line64_4 Ring64_4

SP SA TS LO SP SA TS LO
total cost| 2576.2| 2578.2| 2582.6 3005| 2683.2{ 2686| 2687 3276

completion cost| 1041.8| 1041.8| 1028| 1415| 1051.6| 992.6| 1011.8| 1838.6

CPU time (sec.) 0.49 1.96 2.34] 2.7 0.52] 1.25 2.44 9.68

measurements Mesh64_4 Tree63.4

SP SA TS LO SP SA TS LO

total cost{ 3049.6{ 3049.8(3051.2] 3525.6| 2581.4 2584.8| 2581.4] 3093
completion cost{ 1611] 1617| 1583| 3304.8(1023.8(1005.8| 1013.6| 2727.4
CPU time (sec.) 0.73 0.98 3 5.87 0.49 2.35 2.22] 11.88

Table 9: Performance comparisons for structured data sets with con-
stant interference costs

measurements C403 C60.4

SP SA TS LO SP SA TS LO
total cost| 1852.2] 1871.4| 1857| 4187.8 3522| 3536.4] 3533.4 9569

completion cost| 838.2] 897.8| 823.4] 4173.8(1300.8| 1279.8| 1339.8| 9558.6

CPU time (sec.) 0.22 0.55[1.21 0.02 0.4 1.79 2.86 0.09

measurements C80.5
SP SA TS LO
total cost| 5661.6| 5714.6 5672(16349.2
completion cost| 1754.8| 1820.8| 1817.8(16067
CPU time (sec.) 0.54 1.23 2.9 0.37

Table 10: Performance comparisons for clustered data sets with ran-
dom interference costs

5.2.3 Experiments with randomly generated interference
costs

For experiments in this category, all the interference costs are gen-
erated randomly in the range from 1 to 10. Since all the problem
instances have some negative weights in Lo’s reduced network, only
stage 3 (Greedy) of Lo’s heuristic can be invoked and the CPU time
is thus substantially reduced. Tables 10-12 show that the average
total cost over all 50 problem instances for LO are 3.51, 3.47, and
3.49 times of those for SP, SA, and TS respectively. The average
CPU times for SP, SA, and TS over all problem instances are 5.36,
15.32, and 23.53 times of those for LO respectively.

128

measurements S$40.3 S60.4
SP SA TS LO SP SA TS LO
total cost| 1670| 1696.2| 1677.2] 4537.8(3093.2| 3100.2| 3096.4| 9892.6
completion cost| 704.2] 726.4| 738.4| 4537.8| 1140.2 1076| 1061.8| 9889.4
CPU time (sec.)| 0.15 0.64 0.67 0.03 0.52 1.35 2 0.1
measurements $80.5
SP SA TS LO

total cost| 4794.4| 4809.2] 4811.8 17640

completion cost{ 1430.8| 1456.2| 1443.6] 17639.2

CPU time (sec.)] 0.63] 2.19 44 0.22

Table 11: Performance comparisons for sparse data sets with random
interference costs

measurements Line64_4 Ring64_4
SP SA [TS LO SP SA TS LO
total cost| 2561.8] 2580] 2567| 11493.8| 2533.6| 2538.6{ 2545.4| 11357
completion cost| 747.4| 755.2| 754.6] 11493.8| 710.4| 730.6| 726.2| 11357
CPU time (sec.) 1.09{ 2.25] 2.18 0.14 1.16 2.62 2.65| 0.14
measurements Mesh64_4 Tree63_4
SP SA TS LO SA TS LO
total cost| 2710.6| 2736.8| 2732.6| 11425.2| 2504| 2525.2| 2516.6] 11109.2
completion cost| 822.8(807.2| 818.6| 11424.6| 705] 722.4| 721.4| 11108.6
CPU time (sec.) 0.5] 112] 243 0.12| 0.56] 1.66] 2.21 0.15

Table 12: Performance comparisons for structured data sets with
random interference costs

129

It can be seen from Tables 4-12 that LO’s completion cost and
total cost are very close for all the problem instances, since it assigns
most of the modules to a single processor.

6 Conclusion

In this paper, we discussed the intractable nature of the task assign-
ment problem in distributed systems. For the two processor system,
we first showed that the problem remains NP-hard even if the task
graph is planar with maximum degree 3. We then showed that the
problem is still NP-hard for the two processor system even if the
task graph is bipartite. Finally, we showed that the problem can be
solved in polynomial time for the systems with arbitrary number of
processors if the degree of the task graph is at most 2. This obser-
vation closes the gap between the P and NP cases in terms of the
degree of the task graph.

We proposed three efficient and effective heuristics based on sim-
ulated annealing, tabu search, and stochastic probe to solve the
task assignment problem. An extensive experimental study was per-
formed on different data sets both for nonuniform and uniform task
assignment problems. For uniform task assignment problem, our
heuristics on the average improve the total costs of Lo’s max-flow
based heuristic by 10% for the data sets with constant or zero inter-
ference costs (using only 2.8% CPU time of Lo’s heuristic); and by
71% for the data sets with random interference costs. Among our
heuristics, stochastic probe always outperforms simulated annealing
and tabu search both in total costs and CPU time for all of the
problem instances.

Our heuristics can also be adapted to solve the task assignment
problem which minimizes the completion time. A more sophisticated
scheme is needed for the incremental update of the current cost to
maintain the efficiency of the heuristics. The related results will be
reported in another paper.

130

Appendix: Lo’s heuristic

In this appendix we summarize the main ideas and drawbacks of Lo’s
max-flow based heuristic for task assignment [12]. It will provide the
readers with insights to explain why Lo’s heuristic performs poorly
in general.

Since Lo’s heuristic is designed to solve the uniform task assign-
ment problem, we need to redefine some notations. A problem in-
stance for uniform task assignment is defined by n, the number of
modules; m, the number of processors; X(i,), the execution cost
of module 7 on processor j, 1 £ 72 < n,1 < j < m; C(¢,7), the
communication cost between modules i and 7, 1 < 7,7 < n, if they
are assigned to different processors; and I(z, 5), the interference cost
between modules 7 and 7, 1 < ¢,7 < n, if they are assigned to the
same Processor.

Allocation for one processor

For any k € [m], we can allocate task modules to processor k by the
max-flow algorithm. Let processor £ be the source node, ¢ the sink
node representing all the other m — 1 processors, and each task mod-
ule a separate node. For any ¢ € [n], the weight between processor k
and module ¢ is

wk,'=—ZX(z r)— X(z L)+ ZI(: 7)s
r:ﬁk .]—'1
and the weight between sink ¢ and module ¢ is
wh..ZwJ,+ ZI(z])= X(4,k)+ = ZI(z 7)-
J#k J—l J—l

For any ¢,j € [n], ¢ # j, the weight between modules i and j is
C(i,7)— I(i,7). All the modules to the source side of a minimal cut
are allocated to processor k.

Lo’s heuristic

Lo’s heuristic has the following three stages:

131

Grab: Try sequentially to allocate the modules to each processor
until no assignment can be made for any of the processors.
The execution costs need to be adjusted after each round of
allocation. It has been proved that all the assignments made
in this stage are the prefix of an optimal assignment [12]. Let
T be the set of indices of the unallocated modules after this
stage.

Lump: Evaluate a lower bound

L= gj:‘mjm X(i,7)+ ie’.lrp-u{lio} cut(#, ig)
for the cost incurred by allocating the modules indexed by T
to at least two processors, where iy is any index in T', and
cut(?,7p) is the minimum cut between modules 7 and ig in the
subgraph consisting only of the module nodes indexed by T.
If the minimum cost incurred by allocating all of the modules
indexed by T to a particular processor is less than or equal to
L, allocate accordingly.

Greedy: Evaluate the average weight ¢ of C(¢,5) — I(3, 5) over all
pairs of modules 7 and j. If there is a path between two modules
indexed by T consisting only of edges with weight greater than
¢, the two modules belong to the same cluster as long as all of
the modules in the cluster can be executed on some processor
with a limited cost. Each cluster of modules indexed by T is
allocated to the same processor incurring minimum execution
cost.

Main drawbacks of Lo’s heuristic:

1. Max-flow algorithms only work when all the edges have non-
negative weights.

(a) Since the weights for edges between modules are of form
C(i,7) — I(3,7), Lo’s first two stages can be applied only
if C(i,7) 2 I(3,5) for all 4,5 € [n]. This is a severe re-
striction for the choice of communication and interference
costs.

132

(b) Even if C(z,7) > I(4,7) for all ¢,5 € [n], the weight wy;
between the source and module ¢ will be negative for suffi-
ciently large n and small average interference cost. Stone
proposed to add a positive integer A to all the weights w,;
for 4 € [m] to make them nonnegative. Since one A will
be added to the weight between the source and module
¢, while m — 1 A’s will be added to the weight between
module ¢ and the sink ¢, Stone’s approach greatly reduces
the chance that module 7 be allocated.

2. Lower bound L is too conservative. As a consequence, stage 2
is never utilized for all of our experiments. Lo never showed
the applicability of stage 2 through any example in her thesis
or papers.

3. Stage 3 separates the consideration for communication/inter-
ference costs and that for execution costs. Experiments show
that stage 3 has the tendency of allocating modules to few
processors, thus leading to poor completion costs.

133

References

[1] S. Bokhari, “Assignment problems in parallel and distributed
computing,” Kluwer Academic Publishers, 1987.

[2] S. Bokhari, “A shortest tree algorithm for optimal assignments
across space and time in a distributed processor system,” IEEE
Trans. Software Engineering, SE-7, 1981, pp. 583-589.

[3] W.W. Chu, L. J. Holloway, M. Lan, and K. Efe, “Task allocation
in distributed data processing,” Computer, November 1980, pp.
57-69.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction
to algorithms,” The MIT Press, 1990.

[5) M. E. Dyer and A. M. Frieze, “Planar 3DM is NP-Complete,”
J. Algorithms, 7 (1986) pp. 174-184.

[6] D. Fernandez-Baca, “Allocating modules to processors in a dis-
tributed system,” IEEE Trans. on Software Engineering, Vol.
15, No. 11, Nov. 1989, pp. 1427-1436.

[7] M. R. Garey and D.S. Johnson, “Computers and intractability:
a guide to the theory of NP-completeness,” W.H. Freeman, San
Francisco, 1979.

[8] F. Glover, “Tabu search — Part 1,” ORSA Journal on Comput-
ing, Vol.1, No.3, 1989, pp. 190-206.

[9] M. Gursky, “Some complexity results for a multi-processor
scheduling problem,” private communication with H. S. Stone,
1981.

[10] B. Hajek, “Cooling schedules for optimal annealing,” Mathe-
matics of Operations Research, Vol.13, No.2, 1988, pp. 311-329.

[11] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: an experimental evalu-
ation; Part I, graph partitioning,” Operations Research, Vol.37,
No.6, November-December 1989, pp. 865-892.

134

[12] V. M. Lo, “Heuristic algorithms for task assignment in dis-
tributed systems,” IEEE Trans. on Computers, Vol. 37, No.
11, November 1988, pp. 1384-1397.

[13] R. M. Metcalfe and D. R. Boggs, “Ethernet: distributed packet
switching for local computer networks,” Communications of the
ACM, Vol. 19, July 1976, pp. 395-404. :

[14] M. Satyanarayanan, “Multiprocessors: a comparative study,”
Prentice-Hall, Englewood Cliffs, N.J., 1980.

[15] C. C. Shen and W. H. Tsai, “A graph matching approach to
optimal task assignment in distributed computing systems using
a minmax criterion,” IEEE Trans. on Computers, Vol. C-34, No.
3, March 1985, pp. 197-203.

[16] H. S. Stone, “Multiprocessor scheduling with the aid of network
flow algorithms,” IEEE Trans. on Software Engineering, Vol.
SE-3, No. 1, Jan. 1977, pp. 85-93.

[17] R.J. Swan, S.H. Fuller, and D.P. Siewiorek, “Cm*~ A modular,
multi-microprocessor,” Proc. AFIPS 1977 Fall Joint Computer
Conference, No. 46, 1977, pp. 637-644.

[18] L. Tao and Y. C. Zhao, “Multi-way graph partition by stochastic
probe,” Computers & Operations Research, Vol. 20, No. 3, 1993,
pp- 321-347.

[19] D. F. Towsley, “Allocating programs containing branches and
loops within a multiple processor system,” IEEE Trans. on Soft-
ware Engineering, Vol. SE-12, October 1986, pp. 1018-1024.

135

