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Abstract. Given positive integers pand g, a (p, ¢)-colouring of a graph G is amapping

8:V(G) - {1,2,...,q) such that 8(u) # 8(v) for all distinct vertices u, v in G
whose distance d(u,v) < p. The pth order chromatic number (P (G) of G is the
minimum value of ¢ such that G admits a (p, ¢)-colouring. G is said to be (p, q)-
maximally critical if (P (G) = ¢ and xP) (G + ¢) > g for each edge e not in G. In
this paper we study the structure of (2, ¢) -maximally critical graphs. Some necessary
or sufficient conditions for a graph to be (2, g) -maximally critical are obtained. Let G
be a (2, g) -maximally critical graph with colour classes V3, Va,..., V;. We show that
if il =|WB]l=---=|Wil=1and|usy] = --- = Vel = b > 1 for some k, where
1< k< g—1,thenh < h*, where

h* =max{k,min{g—-1,2(¢—1 —k)}}.

Furthermore, for each h with 1 < k < h*, we are able to construct a (2, ¢) -maximally
critical connected graph with colour classes V;,V3,...,V; such that |[Wj| = |W3| =
co= Vil = Land [Vio| = -+ = [Vg] = .

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Given positive
integers p and ¢, a pth order q-colouring of G is a mapping

0: V(G) —’{1:21"'!q}

satisfying the condition that 8( u) 5 6(v) for all distinct vertices u, v in G whose
distance d(u,v) < p. For simplicity, a pth order g-colouring of G is also called
a (p, g)-colouring of G. The pth order chromatic number x?(G) of G is
defined as the minimum value of ¢ such that G admits a (p, g)-colouring. In
particular, we have x{V (G) = x(G), which is the usual chromatic number of G.
The notions of a (p, g)-colouring and the generalized chromatic number x? (G)
of G were introduced and studied by F. Kramer and H. Kramer around 1970 (see
[3], [4] and [5]). Recently, motivated by a problem in cellular telecommunication
technology, the above notions have been investigated again by Baldi [1].
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The p-power G? of G is the graph defined by
V(G?) =V(G) and E(GP) = {uv|u,veV(G) and d(u,v) <p}.

It follows by definition that x‘P (G) = x(GP). Also, if H is a subgraph of G, then
xP(H) < x(G). In particular, x‘P(G) < x‘P(G + ¢) for each e € E(G),
where G is the complement of G.

A graph G is said to be (p,¢)-maximally critical if x‘?(G) = ¢ and
xP(G +e) > qforeache € E(G). Let 8 be a (p, g)-colouring of G. The
graph G is said to be maximally critical wrt @ if § is no longer a (p, g) -colouring
of G + e for each e € E(G). Thus, G is (p, ¢) -maximally critical iff G is max-
imally critical wrt.@ for all (p, g) -colourings 8 of G. Also, it is clear that every
graph G with x?(G) = ¢ is a spanning subgraph of a (p, g) -maximally criti-
cal graph. It should be pointed out that a different notion of criticality of G (i.e.,
xP (G - v) < x'P(G) for each v € V(G)) was introduced in [4].

Despite the fact that x(P (G) = x(G'P), there are graphs G which are (p, ¢)-
maximally critical but their GF are not (1, g) -maximally critical (for instance, the
path P, of order n where n > 5 and n 3 0 (mod 3) is (2, 3) -maximally critical
but P,f isnot (1, 3)-maximally critical); and on the other hand, there are graphs G
which are not (p, ¢) -maximally critical but their GP are (1, ¢) -maximally critical
(for instance, take G to be the graph of Figure 1).

C Q
2/ o3 o)
i i i ! 5> v
S = ’ b ’ 6.
30 pZ . /
\)
4
(2)
X (G) =5 G 1is not (2,5)- 5
maximally critical G” is (1,5)maximally
critical
Figure 1

A general problem is: Given positive integers p and ¢, characterize (p, g)-
maximally critical graphs. When p = 1, this problem is trivial. Indeed, a graph
@G is (1, g)-maximally critical iff G is a complete g-partite graph. Forp > 2, the
problem is, however, difficult, and has not yet been settled. In this paper, we make



the first attempt to study this family of graphs when p = 2. In section 2 below,
we give various families of (2, g) -maximally critical graphs, and then proceed to
section 3 10 study the structure of such a graph. Some necessary or sufficient con-
ditions for a graph to be (2, ¢)-maximally critical are obtained. Let G be a graph
with x?(@) = ¢, and let V1, V2,...,V, be the colour classes of G such that
V1] < [V2| < -+ < |V|. Suppose k is the least integer such that |[Vi.1] = |V,].
It is believed that if G is (2, ¢) -maximally critical, then the largest possible value
of |ug.1| depends on k, g, |V1],|V2),... and |Vi|. In section 4, we examine this
problem for the case when |V;| = |V3]| = --- = |Vi| = 1, and prove that in this
case [Vi+1]| < h* where b* = max{k,min{g—1,2(g—1—k)}}. Finally, for each
h with 1 < h < h*, we show that there is a (2, ¢) -maximally critical connected
graph G such that [Vi| = |[Vz| = ...|[Vi| = 1 and [Visa| = - = |V | = h

Throughout this paper, for simplicity, we shall call a (2, ¢)-colouring of G
a g-colouring of G, and a (2, g)-maximally critical graph a q-critical graph,
or simply a critical graph if ‘g’ is clear from the context or immaterial. We
shall denote by v(G), (@) and diam G the order, size and diameter of G. For
v € V(G), we write N(v) = {u € V(G)|uv € E(G)}, and write deg v for the
degree of v. For A C V(G), we write N(A) = U(N(a)|a € A), and write {A)
for the subgraph of G induced by A. We refer to [2] for other notation or terms
not defined here.

2. Families of Critical Graphs

We provide in this section a number of families of critical graphs. But first of
all, we take note of the following observation (*): for any graph G, x?(G) >
A(G) + 1, where A(G) = max{degv|v € V(G)}.

(1) A graph G of order = is l-critical iff G & O,, an empty graph of order n;
and 2-critical iff G is a union of independent edges when = is even or G is
a union of independent edges and an isolated vertex when = is odd.

(2) A path P, of order n is 3-critical iff n 2 0 (mod 3). A cycle C, of order
nis 3-critical iff n = 0 (mod 3). Every complete graph K, of order n is,
by definition, n-critical; and a graph G with diam G < 2 is critical iff G is
a complete graph.

(3) For a connected graph G, G is 3-critical iff G P, when n > 4 and
n#0 (mod3) orG = C, whenn> 3 and n= 0 (mod 3).

(4) The cartesian product C,, x P,(n > 3) is critical iff n = 0 (mod 4). For
n = 0 (mod 4), we note that the graph C, x B is uniquely 4-colourable
(see Figure 2).

(5) Forn> 6 andn= 2 (mod4), the cartesian product P, x P; is not critical.
Let o and b be the two end vertices of P, and let V(P,) = {c,d}. If G, is
the graph obtained from P, x P, by adding two new edges e; = (a, c)(, d)
and ez = (a,d)(b,c), then G,, is 4-critical (see Figure 3).

(6) Given positive integers r,s,t,c; and c; withr,8,¢t > 2,t < sand ¢ +
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Figure 3. 4-colouring of Gyo.
c2 = s — 1, let G be the graph whose V(G) is partitioned into subsets
Vi, Va,...,Voy where V; = V3 = ... = Vp,y = {1,2,...,8}and V, =
Va=---=V,={1,2,...,t} such that
. K, ifiisodd
iy (V) &
® v {K, if i is even

(ii) Fori=1,3,...,2r— 1, the vertex ‘;” in V; is adjacent to the vertices
G4+1,45+2 ..., + a’ (mod s) in V;4; (and no more in V;,1) if
they are available, and

(iii) Fors = 2,4,...,2r,the vertex ‘;° in V; is adjacent to the vertices ‘;°,
9+ 1°,...,"% + ¢’ (mod 8) in V;, (and no more in V;,,) if they are
available (here Va,41 = V1).

It can be shown that G is a (s + t) -critical graph. Figure 4 shows the graph

whenr=3,s=4,t=3,ci=1landc; =2.

It should be noted that for any graph G, A(G) < x‘?(G) — 1 by the
observation (*). Thus, if G is ( x‘¥ ( G) —1) -regular, then G must be critical.



Figure 4. A 7-critical graph

The cycles C, when n = 0 (mod 3) and those shown in (4), (5) and (6) are
examples of this type. Some families of critical graphs which need not be
regular are given below.

(7) Forn> 5,n=1 or3 (mod4), the cartesian product P, x P, is 4-critical
(see Figure 5).

s 2 3 4 2 3 1 4
10—0—0O—O—O 1 10—0O—0O—0—0—0O—(02
2,‘~JJ—-.,/~£-—-O - a\ — O
301 4 4 2
(a) Pg x P, (b) P, x P,
Figure 5

(8) Given any two integers r,s > 2, let G be the graph obtained from a K,
and rK,’s by gluing to each vertex in K, a K, (see Figure 6 for r = 4 and
8 = 3). Itis easy to check that G is a (r + s — 1)-critical graph.



Figure 6. A non-regular 6-critical graph

(9) Givenintegers r,sandt withr > 2,s >t > 1, let G be the graph whose

V(G is partitioned into subsets V;, V3, U and U, such that
@ (Vi) & K..(Va) ¥ Ki,
(ii) (Ul) ¥ <U2) ~ 0,
(iii) (U3 UU,) & K, — F where F is a 1-factor of the complete bipartite
graph K,

(iv) vand u are adjacentif (ve Viandu e Uh)or (v € V2 and u € TD).
Itcanbe proved that G is a (»+ s) -critical graph. Figure 7 shows an example
whenr=3,s=2andt=1.

Figure 7. A non-regular S-critical graph

The last example shows how a g-critical graph can give rise to a gr-critical

graph for each positive integer r.
(10) Givena graph G and a positive integer r, let G(r) denote the graph obtained
from G by replacing each vertex v of G by an r-complete graph K, (v) such



thata € V(K,(v)) and b € V(K,(u))(u # v) are adjacent in G(r) iff
v and u are adjacent in G (see Figure 8). It is clear that if G is a g-critical
graph, then G(r) is a gr-critical graph.
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Figure 8

3. Structures of Critical Graphs
In this section we study the structures of critical graphs. Some necessary or suf-
ficient conditions for a graph to be critical are also given.
In what follows, we shall denote by n(A) the number of vertices v in G such

that degv = A(G).
Theorem 1. Suppose that G is a graph whose V(G) is partitioned into subsets
Al,Az,...Aq such that

@ |4 L [42] < LAl

(ii) A; is independent foreachi=1,2,...,q,and
(i) foralli,j=1,...,q,i< j,{A;UA;) consists of |A;| independent edges.
Then

1) AG)=¢q-1;
(2) If k is the largest integer such that |Ag] = |Ai|, then
klAi| ifk>2
A 2
n(4) 2 { 2|41| ifk=1;

in particular, n(A) > 2;
(3 n(a) <qlAl;
@ x?(G) =¢;
(5) If G is uniquely q-colourable, then G is q-critical;
6) If |Ay| - A1l £ 1, then G is g-critical.
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N(v)NA; =@ and [N(v) NA4j] < 1ifj # i, with equality if i = 1. Thus,
we have degv < g — 1 with equality if § = 1. This proves (1).

By the above argument, we have degv = g— 1 forall v € A; if |A;] = |Ai].
Thus, n(A) > k|A;|if k > 2. For k = 1, we note that every vertex in
N(A1)NA; is also of degree (G). Thus n(A) > |A;|+ [N(A1) NAz| >
2|A).

It follows from (ii) and (iii) that if v is a vertex of maximum degree, then

v € ALUU{A;NN(A)|2 <i<q),

and so

q
n(4) <A+ ) |4 N(A4)]
i=2
<l + (g D]4i] = g|lA].

Define acolouring 8 of G by colouring all vertices in A; by “s” (i = 1,2,.
g). Since d(u,v) > 3 for all distinct vertices u,v in A;(s = 1,2,...,q)
by (ii) and (iii), @ is a g-colouring of G and 50 x‘? (@) < gq. On the other
hand, x®(G) > A(G) + 1 = q. Hence x'®(G) = g, proving (4).

If G is uniquely g-colourable, then the colouring @ of G defined in (4) is
the only g-colouring of G. By (ii) and (iii), it is clear that @ is no longer a
colouring of G + e for each e € E(G). Thus, G is critical.

Let o be any g-colouring of G, and let V1, V3, ... ., V, be the colour classes of
G determined by o (ie., V; = {v € V(G)Ip(v) = 22» i=1,2,...,9). We
may assume that [V}] < |[Va] < --- < |V,]. Since x'?(G) = q,V; # @ for
eachi=1,2,...,q. Since p is a colouring of G, foreachi = 1,2,...,q,
V; is independent, and for all 4, j with i < 7, {V; U V;) consists of at most
|Vi| independent edges. Accordingly, we have e(G) < a, where

a=(g-D[V|+(g=Va]+ -+ 2|Vea| + [Veul].
It can be shown that « attains its maximum value amax iff [V,| — |Vi| < 1.

Thus if the assumption |A,| — |A;| < 1 holds in G, then by (ii) and (m)
we have e(G) = amax, Which implies that G must be critical.

Corollary. Let G be a g-critical graph, and let {Vi|s = 1,2,...,q} beany
family of colour classes of G with || < |Va| £ --- < |V;|. Then

(1)
@
(&)

V; is independent foreach i=1,2,...,q;
(Vi UV;) consists of |V;| independent edges for all i, j withi < j;
A(G)=q-1;
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(4) If k is the largest integer such that |Vi| = |Vi|, then

KVi| ifk>2

n(A)z{ZMI k=1

(5) n(A) <gWal;
6) e(G) = gv(G) — Y51 Vil 1

It was pointed out in section 2 that if G is a graph of order n with x‘¥(G) = g,
A(G) = g —1 and n(A) = n, then G must be critical. We call such a graph
G a regular g-critical graph. Our next result considers the situation when 1 <
n—n(A) <2.

Theorem 2. Let G be a graph of order n > 4 with x?(G) = ¢ > 3, diam
G>3andA(G)=¢q—-1.
(1) If n(A) = n—1, then G is critical, and in this case, G = G' U Oy where
G' is a regular q-critical graph.
2) If n(A) =n-2, then
(@) G is critical or
M G=G*UO; or G G — e where G* and G* are regular g-critical
graphs, and e € E(G*).

Remark We exclude the trivial case when diam G < 2, which was mentioned in
family (2). Also, if G is a regular g-critical graph of order n, then g|n and each
colour class has the same number of vertices. '

Proof. Let {W, V2,..., V,} be a family of colour classes of G with |V1| < [V2] £
.-+ < |V;]. Note that n(A) < g|Vi| holds also in G.

(1)Ifn(A) = n—1,thenasn(A) < g|V1|, either

Vil = V2| = .- = [V4l
or
Vil = [Va| = --- = [Vor| = Vg - 1.

In the former case, the fact that n(A) > n— 1 implies that n(A) = n, a
contradiction. In the latter case, the fact that n(A) = n — 1 implies that V,
contains an isolated vertex w and G — w is a regular g-critical graph. Thus G is
critical by Theorem 1(6), proving (1).

(2)Ifn(A) =n—2,thenas n(A) < g|Vi|, we have

Vil = V2| = --- = [Vea| = |V - 2
Vil = -~ = Vo-a| = [V | = 1= [Vg] - 1,

or
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Vil = V2] = - = [Vgl.

In the first case, G = G* U O, as stated in the theorem. In the second case,
either G & G* U O, again or G is critical by Theorem 1(6). In the third case,
G = G* — e as stated in the theorem., ]

4. A Sharp Bound and Constructions
We first establish the following result as stated in the introduction.

Theorem 3. Let G be a connected q-critical graph, where ¢ > 3 and let {V,,
Va,..., V,} be a family of colour classes of G. If |Vi]| = [Va]=---= |Vi| =1
and|Vis1| = [Viez| = ---= |Vg| = b > 1 forsomek, wherel < k < q— 1, then

h < max{k,min{g - 1,2(¢— 1 - K)}}.

Proof. Since the number on the right hand side of the above inequality is always
exceeding 1, we may assume that h > 3.

LetA=ViUVz.--UV;. Weclaim that foreachu € Aandv € V(G) \ 4,
- d(u,v) < 2. Otherwise, suppose d(u,v) > 3 forsomeu € V;andv € V},
where1 < i< kand k+ 1 < j < g. Now, if we keep the colours of all vertices
of G except v, which is re-coloured by colour “§”, we obtain a new g-colouring @
of G. Since h > 3, there exists aw € V; \ {v} such that w ¢ N(u). Clearly, ¢
is a g-colouring of G + vw, which contradicts the fact that G is g-critical. Fix an
arbitrary set V;, where k + 1 <t < g. Let

X =ViNN(A4).
Observe that | X| < k, and for each u € A,
IN(w)\(AUX)|<g—k-1.
From this and the earlier claim, it follows that

e\ X|<gqg-k-1. 6]

h=[V=[X|+V\X|<k+(g—k-1)=g-1.
Hence, if 2k < ¢— 1, then

max{k,min{g — 1,2(¢— 1 -k)}}
=max{k,(¢g— k—1) + min{k,qg — k—1}}
=max{k,qg— 1}
=¢—1>h.
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We now confine ourselves to the case where 2k > ¢ — 1, and note that in this
case, it suffices to show that

h < max{k,2(¢—k—1)}
and to consider the case when h > k.

Foreacht > k,letb; = |V; \ N(A)|. From (1), wehave b < ¢ — k — 1. Let
b= max{b:|t > k}. Without loss of generality, we may assume that b;+) = b. Let
B=Vi1 \N(A).

Since k > k, B is nonempty. Fom the earlier claim, foreachu € Aandv € B,
N(u) N N(v) # 0. Thus, if we denote by e(S, T") the number of edges joining a
vertex in S to a vertex in T°, where S, T C V(G), then

e(N(B),A) > bk.
Since e(V(G) \ (AU Vi41), 4) < k(g — k — 1), we have

e(V(G)\(AUV,s1 UN(B)),A) <k(g—k—1) — bk
= k((g—k—-1) —b).

Hence
KV \(AUVir i UN(B))) NN(A)| < k((g—k—1) = ).
Since

V(G \ (AU Vi)
=(V(G)\ (AU V1)) NN(A)|+ [(V(G) \ (AU Vii1)) NN(4)],

we have

(g—k—1Dh<k((g—k—1)—b) + [N(B)| + (IN(A)| - |B]
<k((g—k-1) -by+blg—k-1)+b(¢g—k-1)
=k(g—k—-1)+b(2g—k—-1) —k).

Casel. 2(¢g—k-1)-k<O.
Then

(g—k—1Dh<k(g—k-1)

or

13



h < k=max{k,2(q—k—1)}.

Case2. 2(¢g—-k—-1)—-k>0.
In this case,

(g—k-Dh<k(g—k-D+(q—k-1D(2Aq—k—-1)—k)
=2(g—-k-1?

or
h<2g—k—-1)=max{k,2(¢— k- 1)}.

The proof is thus complete. 1
We shall now provide methods of construction to show that for all &, ¢ with
1<k<qg—1andg > 3,andforeach h with1 < h < h*, where
h* = max{k,min{g —1,2(¢ -1 - k) }},

there is a connected g-critical graph with colour classes {V;, V2, ..., V} such that

|Vl|= |V2|= - IVkI= 1 aﬂd|Vk+1|= vee= Iv’d:h.
Let V be a set of k + h(g — k) vertices which is partitioned into ¢ subsets
Wi, Va,..., Vosuch that|Vi| = [Va| = --- = [Vi| = 1 and [Vpsi| = - - - = |V = h.

For convenience, we label the vertices of V;, as v;;, where 4 = 1,2,...,9 and
j=1,2,...,|V|, and denote

Wo = {vi1,va1,...,vu1}

and
Wi = {vk+1yis ke 2i- - Veih 1= 1,2,...,h.

We consider two cases.

ConstructionI. h < k.

Let G be a graph with V(G) = V., The adjacency of vertices in G is defined as
follows (see Figure 9): The vertices u € W,NV; andv € Wy NV, where s < ¢/,
i # 1, are adjacent iff

(i) s = s’ (thus each W; forms a clique in &)

(i) s=0ands =min{i,h},i=1,2,...,k.

It is not hard to see that the graph G so constructed is connected and g-critical.
Note that if k > (g — 1), theng — k — 1 < (g — 1) and hence the value of h
runs through the interval [1, h*].

ConstructionII. k< h < h*.

Write r = min{k,g — k — 1}, 71 = min{r,h — r} and r, = max{r,h — r}.

Observe thatr, < g—k — 1.

14
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<"V0 >EI(};

Figure 9

Let G be a graph with V(G) = V. The adjacency of vertices in G is defined as
follows: two vertices u € W, NV; and v € Wy NV, where s < s’ and i # ¢/, are
adjacent iff one of the following 4 conditions is satisfied:

(i) s= s =0 (thus W, forms a clique in G);

(i) s=0ands' =min{i,r};

i) 1<s<rr+1<s<hii€lk+]l,gland(s+1)—(d+i)=
0 (mod ry);

(iv) If(rp =rands, s’ <r)or(ry >rands,s' >r),thens+s' =h+2r+
1(modr;) andi —(s'+4¢') =t (mod ) wherer, >t > m + 1.

The adjacencies defined in (iii) and (iv) are illustrated respectively as follows.
Suppose k = 3,g=8andh =S5. Inthiscaser = 3,71 = h—r = 2 and
1y = r = 3. Take, for instance, ( s, 1) to be one of the following in W1 UW, UW3:

61 =(1,8),62 =(2,7),03 =(3,6),a4 = (1,5),05 = (2,4).

Then the vertices adjacent to these a;’s by (iii) are those b;’s in W, UWs as shown
in Figure 10, where

bl = (4)5)’b2 = (514):b3 = (4’8),b4 = (5:7)-

Observe that the subgraph induced by the union of A = {e1,062,...,as5} and
B = {b;, bz, b3, bs } is acomplete bipartite graph with bipartition { A, B} in which
a complete matching is deleted.

The adjacency of vertices in W) U W2 U W3 defined by (iv) is shown in Figure
11.
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Figure 11

We shall now show that G is a desired graph. From (i), the vertices of Wy
must be coloured by different colours, say v € V; N W) is coloured by “¢”, i =
1,2,...,k. From (ii), for each j,1 < j < r, the vertices of W; have colours
different from 1 to k. Likewise, from (ii) and (iii), colours of v € W;(j > r)
are different from 1 to k. By (iii) and (iv), every vertex in G — Wy has exactly
g— k-- 1 neighbours in G — W, and hence x(? (G — W) > q— k, which implies
that x(®(G) > q. We shall now show that each vertex v € V;(i > k) is adjacent
to exactly one vertex in V;, where j > kandj # i. Suppose v € W,. Observe that
v is adjacent to a vertex u € V; N W,. by (iii) only if s+ i = s* + j (mod 2) and
s < riff s* > r. Thus,if r; = r < sors < r < 2, then there is exactly one such

16



u for each j # ¢, while if s < r =  orboth s and r, > r, there is exactly one u
ifs+i+j—1=t(modry),where0 <t<r —1(notethatry < g—k—1).
Now, if s+ ¢+ j — 1 has aremainder greater than r; — 1 ondividing by =, then and
only then we have an adjacency using (iv). Thus, if we colour the vertices of V; by
colour i, we have a g-colouring of G, and 50 x‘®(G) < q. Hence x2(G) = q.
Since each vertex in G — W) is of degree ¢ in G, the graph G so constructed is
g-critical. :
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