On the Second Order Chromatic Number and Maximal Criticality of a Graph

K.M. Koh
Department of Mathematics
National University of Singapore
Singapore

K. Vijayan
Department of Mathematics
The University of Western Australia
Western Australia

Abstract. Given positive integers p and q, a (p,q)-colouring of a graph G is a mapping $\theta:V(G)\to\{1,2,\ldots,q\}$ such that $\theta(u)\neq\theta(v)$ for all distinct vertices u,v in G whose distance $d(u,v)\leq p$. The pth order chromatic number $\chi^{(p)}(G)$ of G is the minimum value of q such that G admits a (p,q)-colouring. G is said to be (p,q)-maximally critical if $\chi^{(p)}(G)=q$ and $\chi^{(p)}(G+e)>q$ for each edge e not in G. In this paper we study the structure of (2,q)-maximally critical graphs. Some necessary or sufficient conditions for a graph to be (2,q)-maximally critical are obtained. Let G be a (2,q)-maximally critical graph with colour classes V_1,V_2,\ldots,V_q . We show that if $|V_1|=|V_2|=\cdots=|V_k|=1$ and $|v_{k+1}|=\cdots=|V_q|=h\geq 1$ for some k, where $1\leq k\leq q-1$, then $h\leq h^*$, where

$$h^* = \max\{k, \min\{q-1, 2(q-1-k)\}\}.$$

Furthermore, for each h with $1 \le h \le h^*$, we are able to construct a (2,q)-maximally critical connected graph with colour classes V_1, V_2, \ldots, V_q such that $|V_1| = |V_2| = \cdots = |V_k| = 1$ and $|V_{k+1}| = \cdots = |V_q| = h$.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Given positive integers p and q, a pth order q-colouring of G is a mapping

$$\theta:V(G)\to\{1,2,\ldots,q\}$$

satisfying the condition that $\theta(u) \neq \theta(v)$ for all distinct vertices u, v in G whose distance $d(u, v) \leq p$. For simplicity, a pth order q-colouring of G is also called a (p, q)-colouring of G. The pth order chromatic number $\chi^{(p)}(G)$ of G is defined as the minimum value of q such that G admits a (p, q)-colouring. In particular, we have $\chi^{(1)}(G) = \chi(G)$, which is the usual chromatic number of G. The notions of a (p, q)-colouring and the generalized chromatic number $\chi^{(p)}(G)$ of G were introduced and studied by F. Kramer and F. Kramer around 1970 (see [3], [4] and [5]). Recently, motivated by a problem in cellular telecommunication technology, the above notions have been investigated again by Baldi [1].

The p-power G^p of G is the graph defined by

$$V(G^p) = V(G)$$
 and $E(G^p) = \{uv | u, v \in V(G) \text{ and } d(u, v) \le p\}.$

It follows by definition that $\chi^{(p)}(G) = \chi(G^p)$. Also, if H is a subgraph of G, then $\chi^{(p)}(H) \leq \chi^{(p)}(G)$. In particular, $\chi^{(p)}(G) \leq \chi^{(p)}(G+e)$ for each $e \in E(\overline{G})$, where \overline{G} is the complement of G.

A graph G is said to be (p,q)-maximally critical if $\chi^{(p)}(G)=q$ and $\chi^{(p)}(G+e)>q$ for each $e\in E(\overline{G})$. Let θ be a (p,q)-colouring of G. The graph G is said to be maximally critical wrt θ if θ is no longer a (p,q)-colouring of G+e for each $e\in E(\overline{G})$. Thus, G is (p,q)-maximally critical iff G is maximally critical wrt θ for all (p,q)-colourings θ of G. Also, it is clear that every graph G with $\chi^{(p)}(G)=q$ is a spanning subgraph of a (p,q)-maximally critical graph. It should be pointed out that a different notion of criticality of G (i.e., $\chi^{(p)}(G-v)<\chi^{(p)}(G)$ for each $v\in V(G)$) was introduced in [4].

Despite the fact that $\chi^{(p)}(G) = \chi(G^{(p)})$, there are graphs G which are (p,q)-maximally critical but their G^P are not (1,q)-maximally critical (for instance, the path P_n of order n where $n \geq 5$ and $n \not\equiv 0 \pmod{3}$ is (2,3)-maximally critical but P_n^2 is not (1,3)-maximally critical); and on the other hand, there are graphs G which are not (p,q)-maximally critical but their G^P are (1,q)-maximally critical (for instance, take G to be the graph of Figure 1).

Figure 1

A general problem is: Given positive integers p and q, characterize (p,q)-maximally critical graphs. When p=1, this problem is trivial. Indeed, a graph G is (1,q)-maximally critical iff G is a complete q-partite graph. For $p \ge 2$, the problem is, however, difficult, and has not yet been settled. In this paper, we make

the first attempt to study this family of graphs when p=2. In section 2 below, we give various families of (2,q)-maximally critical graphs, and then proceed to section 3 to study the structure of such a graph. Some necessary or sufficient conditions for a graph to be (2,q)-maximally critical are obtained. Let G be a graph with $\chi^{(2)}(G)=q$, and let V_1,V_2,\ldots,V_q be the colour classes of G such that $|V_1|\leq |V_2|\leq \cdots \leq |V_q|$. Suppose k is the least integer such that $|V_{k+1}|=|V_q|$. It is believed that if G is (2,q)-maximally critical, then the largest possible value of $|v_{k+1}|$ depends on $k,q,|V_1|,|V_2|,\ldots$ and $|V_k|$. In section 4, we examine this problem for the case when $|V_1|=|V_2|=\cdots=|V_k|=1$, and prove that in this case $|V_{k+1}|\leq h^*$ where $h^*=\max\{k,\min\{q-1,2(q-1-k)\}\}$. Finally, for each k with $1\leq k\leq h^*$, we show that there is a (2,q)-maximally critical connected graph G such that $|V_1|=|V_2|=\ldots |V_k|=1$ and $|V_{k+1}|=\cdots=|V_q|=h$.

Throughout this paper, for simplicity, we shall call a (2,q)-colouring of G a q-colouring of G, and a (2,q)-maximally critical graph a q-critical graph, or simply a critical graph if 'q' is clear from the context or immaterial. We shall denote by v(G), e(G) and diam G the order, size and diameter of G. For $v \in V(G)$, we write $N(v) = \{u \in V(G) | uv \in E(G)\}$, and write deg v for the degree of v. For $A \subseteq V(G)$, we write $N(A) = \bigcup (N(a) | a \in A)$, and write A for the subgraph of G induced by A. We refer to [2] for other notation or terms not defined here.

2. Families of Critical Graphs

We provide in this section a number of families of critical graphs. But first of all, we take note of the following observation (*): for any graph $G, \chi^{(2)}(G) \ge \Delta(G) + 1$, where $\Delta(G) = \max\{\deg v | v \in V(G)\}$.

- (1) A graph G of order n is 1-critical iff $G \cong O_n$, an empty graph of order n; and 2-critical iff G is a union of independent edges when n is even or G is a union of independent edges and an isolated vertex when n is odd.
- (2) A path P_n of order n is 3-critical iff $n \not\equiv 0 \pmod{3}$. A cycle C_n of order n is 3-critical iff $n \equiv 0 \pmod{3}$. Every complete graph K_n of order n is, by definition, n-critical; and a graph G with diam $G \leq 2$ is critical iff G is a complete graph.
- (3) For a connected graph G, G is 3-critical iff $G \cong P_n$ when $n \geq 4$ and $n \not\equiv 0 \pmod{3}$ or $G \cong C_n$ when $n \geq 3$ and $n \equiv 0 \pmod{3}$.
- (4) The cartesian product $C_n \times P_2$ ($n \ge 3$) is critical iff $n \equiv 0 \pmod{4}$. For $n \equiv 0 \pmod{4}$, we note that the graph $C_n \times P_2$ is uniquely 4-colourable (see Figure 2).
- (5) For $n \ge 6$ and $n \equiv 2 \pmod{4}$, the cartesian product $P_n \times P_2$ is not critical. Let a and b be the two end vertices of P_n and let $V(P_2) = \{c, d\}$. If G_n is the graph obtained from $P_n \times P_2$ by adding two new edges $e_1 = (a, c)(b, d)$ and $e_2 = (a, d)(b, c)$, then G_n is 4-critical (see Figure 3).
- (6) Given positive integers r, s, t, c_1 and c_2 with $r, s, t \ge 2, t \le s$ and c_1 +

Figure 2. 4-colouring of $C_8 \times P_2$

Figure 3. 4-colouring of G_{10} .

 $c_2=s-1$, let G be the graph whose V(G) is partitioned into subsets V_1,V_2,\ldots,V_{2r} where $V_1=V_3=\cdots=V_{2r-1}=\{1,2,\ldots,s\}$ and $V_2=V_4=\cdots=V_{2r}=\{1,2,\ldots,t\}$ such that

- (i) $\langle V_i \rangle \cong \begin{cases} K_s & \text{if } i \text{ is odd} \\ K_t & \text{if } i \text{ is even} \end{cases}$
- (ii) For i = 1, 3, ..., 2r 1, the vertex 'j' in V_i is adjacent to the vertices 'j + 1', 'j + 2', ..., 'j + c_1 ' (mod s) in V_{i+1} (and no more in V_{i+1}) if they are available, and
- (iii) For i = 2, 4, ..., 2r, the vertex 'j' in V_i is adjacent to the vertices 'j', 'j + 1', ..., 'j + c_2 ' (mod s) in V_{i+1} (and no more in V_{i+1}) if they are available (here $V_{2r+1} = V_1$).

It can be shown that G is a (s+t)-critical graph. Figure 4 shows the graph when r=3, s=4, t=3, $c_1=1$ and $c_2=2$.

It should be noted that for any graph G, $\Delta(G) \leq \chi^{(2)}(G) - 1$ by the observation (*). Thus, if G is $(\chi^{(2)}(G) - 1)$ -regular, then G must be critical.

Figure 4. A 7-critical graph

The cycles C_n when $n \equiv 0 \pmod{3}$ and those shown in (4), (5) and (6) are examples of this type. Some families of critical graphs which need not be regular are given below.

(7) For $n \ge 5$, $n \equiv 1$ or 3 (mod 4), the cartesian product $P_n \times P_2$ is 4-critical (see Figure 5).

Figure 5

(8) Given any two integers $r, s \ge 2$, let G be the graph obtained from a K_r and rK_s 's by gluing to each vertex in K_r a K_s (see Figure 6 for r = 4 and s = 3). It is easy to check that G is a (r + s - 1)-critical graph.

Figure 6. A non-regular 6-critical graph

- (9) Given integers r, s and t with $r \ge 2$, $s \ge t \ge 1$, let G be the graph whose V(G) is partitioned into subsets V_1, V_2, U_1 and U_2 such that
 - (i) $\langle V_1 \rangle \cong K_s, \langle V_2 \rangle \cong K_t$,
 - (ii) $\langle U_1 \rangle \cong \langle U_2 \rangle \cong 0_r$,
 - (iii) $(U_1 \cup U_2) \cong K_{r,r} F$ where F is a 1-factor of the complete bipartite graph $K_{r,r}$,
 - (iv) v and u are adjacent if $(v \in V_1 \text{ and } u \in U_1)$ or $(v \in V_2 \text{ and } u \in U_2)$. It can be proved that G is a (r+s)-critical graph. Figure 7 shows an example when r=3, s=2 and t=1.

Figure 7. A non-regular 5-critical graph

The last example shows how a q-critical graph can give rise to a qr-critical graph for each positive integer r.

(10) Given a graph G and a positive integer r, let G(r) denote the graph obtained from G by replacing each vertex v of G by an r-complete graph $K_r(v)$ such

that $a \in V(K_r(v))$ and $b \in V(K_r(u))(u \neq v)$ are adjacent in G(r) iff v and u are adjacent in G (see Figure 8). It is clear that if G is a q-critical graph, then G(r) is a q-critical graph.

Figure 8

3. Structures of Critical Graphs

In this section we study the structures of critical graphs. Some necessary or sufficient conditions for a graph to be critical are also given.

In what follows, we shall denote by $n(\Delta)$ the number of vertices v in G such that $\deg v = \Delta(G)$.

Theorem 1. Suppose that G is a graph whose V(G) is partitioned into subsets $A_1, A_2, \ldots A_q$ such that

- (i) $|A_1| \leq |A_2| \leq \cdots \leq |A_q|$,
- (ii) A_i is independent for each i = 1, 2, ..., q, and
- (iii) for all $i, j = 1, ..., q, i < j, \langle A_i \cup A_j \rangle$ consists of $|A_i|$ independent edges. Then
 - (1) $\Delta(G) = q-1$;
 - (2) If k is the largest integer such that $|A_k| = |A_1|$, then

$$n(\Delta) \ge \begin{cases} k|A_1| & \text{if } k \ge 2\\ 2|A_1| & \text{if } k = 1; \end{cases}$$

in particular, $n(\Delta) \geq 2$;

- (3) $n(\Delta) \leq q|A_1|$;
- (4) $\chi^{(2)}(G) = q$;
- (5) If G is uniquely q-colourable, then G is q-critical;
- (6) If $|A_q| |A_1| \le 1$, then G is q-critical.

- **Proof** (1) For each v in A_i (i = 1, 2, ..., q), it follows from (ii) and (iii) that $N(v) \cap A_i = \emptyset$ and $|N(v) \cap A_j| \le 1$ if $j \ne i$, with equality if i = 1. Thus, we have deg $v \le q 1$ with equality if i = 1. This proves (1).
 - (2) By the above argument, we have $\deg v = q 1$ for all $v \in A_i$ if $|A_i| = |A_1|$. Thus, $n(\Delta) \ge k|A_1|$ if $k \ge 2$. For k = 1, we note that every vertex in $N(A_1) \cap A_2$ is also of degree (G). Thus $n(\Delta) \ge |A_1| + |N(A_1) \cap A_2| \ge 2|A_1|$.
 - (3) It follows from (ii) and (iii) that if v is a vertex of maximum degree, then

$$v \in A_1 \cup \bigcup \{A_i \cap N(A_1) | 2 \le i \le q\},$$

and so

$$n(\Delta) \le |A_1| + \sum_{i=2}^{q} |A_i \cap N(A_1)|$$

 $\le |A_1| + (q-1)|A_1| = q|A_1|.$

- (4) Define a colouring θ of G by colouring all vertices in A_i by "i" (i = 1, 2, ..., q). Since $d(u, v) \geq 3$ for all distinct vertices u, v in A_i (i = 1, 2, ..., q) by (ii) and (iii), θ is a q-colouring of G and so $\chi^{(2)}(G) \leq q$. On the other hand, $\chi^{(2)}(G) \geq \Delta(G) + 1 = q$. Hence $\chi^{(2)}(G) = q$, proving (4).
- (5) If G is uniquely q-colourable, then the colouring θ of G defined in (4) is the only q-colouring of G. By (ii) and (iii), it is clear that θ is no longer a colouring of G + e for each $e \in E(\overline{G})$. Thus, G is critical.
- (6) Let φ be any q-colouring of G, and let V_1, V_2, \ldots, V_q be the colour classes of G determined by φ (i.e., $V_i = \{v \in V(G) | \varphi(v) = i\}, i = 1, 2, \ldots, q\}$. We may assume that $|V_1| \leq |V_2| \leq \cdots \leq |V_q|$. Since $\chi^{(2)}(G) = q, V_i \neq \emptyset$ for each $i = 1, 2, \ldots, q$. Since φ is a colouring of G, for each $i = 1, 2, \ldots, q$, V_i is independent, and for all i, j with i < j, $\langle V_i \cup V_j \rangle$ consists of at most $|V_i|$ independent edges. Accordingly, we have $e(G) \leq \alpha$, where

$$\alpha = (q-1)|V_1| + (q-2)|V_2| + \cdots + 2|V_{q-2}| + |V_{q-1}|.$$

It can be shown that α attains its maximum value α_{\max} iff $|V_q|-|V_1|\leq 1$. Thus if the assumption $|A_q|-|A_1|\leq 1$ holds in G, then by (ii) and (iii), we have $e(G)=\alpha_{\max}$, which implies that G must be critical.

Corollary. Let G be a q-critical graph, and let $\{V_i|i=1,2,\ldots,q\}$ be any family of colour classes of G with $|V_1| \leq |V_2| \leq \cdots \leq |V_a|$. Then

- (1) V_i is independent for each i = 1, 2, ..., q;
- (2) $\langle V_i \cup V_j \rangle$ consists of $|V_i|$ independent edges for all i, j with i < j;
- (3) $\Delta(G) = q 1;$

(4) If k is the largest integer such that $|V_k| = |V_1|$, then

$$n(\Delta) \ge \begin{cases} k|V_1| & \text{if } k \ge 2\\ 2|V_1| & \text{if } k = 1 \end{cases}$$

 $(5) \quad n(\Delta) \leq q|V_1|;$

(6)
$$e(G) = qv(G) - \sum_{j=1}^{q} j|V_j|$$
.

It was pointed out in section 2 that if G is a graph of order n with $\chi^{(2)}(G) = q$, $\Delta(G) = q - 1$ and $n(\Delta) = n$, then G must be critical. We call such a graph G a regular q-critical graph. Our next result considers the situation when $1 \le n - n(\Delta) \le 2$.

Theorem 2. Let G be a graph of order $n \ge 4$ with $\chi^{(2)}(G) = q \ge 3$, diam $G \ge 3$ and $\Delta(G) = q - 1$.

- (1) If $n(\Delta) = n 1$, then G is critical, and in this case, $G = G' \cup O_1$ where G' is a regular q-critical graph.
- (2) If $n(\Delta) = n 2$, then
 - (a) G is critical or
 - (b) $G \cong G^* \cup O_2$ or $G \cong G^* e$ where G^* and G^* are regular q-critical graphs, and $e \in E(G^*)$.

Remark We exclude the trivial case when diam $G \le 2$, which was mentioned in family (2). Also, if G is a regular q-critical graph of order n, then q|n and each colour class has the same number of vertices.

Proof. Let $\{V_1, V_2, \ldots, V_q\}$ be a family of colour classes of G with $|V_1| \le |V_2| \le \cdots \le |V_q|$. Note that $n(\Delta) \le q|V_1|$ holds also in G.

(1) If $n(\Delta) = n - 1$, then as $n(\Delta) \le q|V_1|$, either

$$|V_1|=|V_2|=\cdots=|V_q|$$

or

$$|V_1| = |V_2| = \cdots = |V_{q-1}| = |V_q| - 1.$$

In the former case, the fact that $n(\Delta) \ge n-1$ implies that $n(\Delta) = n$, a contradiction. In the latter case, the fact that $n(\Delta) = n-1$ implies that V_q contains an isolated vertex w and G-w is a regular q-critical graph. Thus G is critical by Theorem 1(6), proving (1).

(2) If $n(\Delta) = n - 2$, then as $n(\Delta) \le q|V_1|$, we have

$$|V_1| = |V_2| = \dots = |V_{q-1}| = |V_q| - 2$$

 $|V_1| = \dots = |V_{q-2}| = |V_{q-1}| - 1 = |V_q| - 1$

or

$$|V_1| = |V_2| = \cdots = |V_a|$$
.

In the first case, $G \cong G^* \cup O_2$ as stated in the theorem. In the second case, either $G \cong G^* \cup O_2$ again or G is critical by Theorem 1(6). In the third case, $G \cong G^* - e$ as stated in the theorem.

4. A Sharp Bound and Constructions

We first establish the following result as stated in the introduction.

Theorem 3. Let G be a connected q-critical graph, where $q \ge 3$ and let $\{V_1, V_2, \ldots, V_q\}$ be a family of colour classes of G. If $|V_1| = |V_2| = \cdots = |V_k| = 1$ and $|V_{k+1}| = |V_{k+2}| = \cdots = |V_q| = h \ge 1$ for some k, where $1 \le k \le q - 1$, then

$$h \le \max\{k, \min\{q-1, 2(q-1-k)\}\}.$$

Proof. Since the number on the right hand side of the above inequality is always exceeding 1, we may assume that h > 3.

Let $A = V_1 \cup V_2 \cdots \cup V_k$. We claim that for each $u \in A$ and $v \in V(G) \setminus A$, $d(u,v) \leq 2$. Otherwise, suppose $d(u,v) \geq 3$ for some $u \in V_i$ and $v \in V_j$, where $1 \leq i \leq k$ and $k+1 \leq j \leq q$. Now, if we keep the colours of all vertices of G except v, which is re-coloured by colour "i", we obtain a new q-colouring θ of G. Since $h \geq 3$, there exists a $w \in V_j \setminus \{v\}$ such that $w \notin N(u)$. Clearly, θ is a q-colouring of G + vw, which contradicts the fact that G is q-critical. Fix an arbitrary set V_i , where $k+1 \leq t \leq q$. Let

$$X = V_t \cap N(A)$$
.

Observe that $|X| \leq k$, and for each $u \in A$,

$$|N(u)\setminus (A\cup X)|\leq q-k-1.$$

From this and the earlier claim, it follows that

$$|V_t \setminus X| \le q - k - 1. \tag{1}$$

Thus

$$h = |V_t| = |X| + |V_t \setminus X| \le k + (q - k - 1) = q - 1.$$

Hence, if $2k \leq q-1$, then

$$\max\{k, \min\{q-1, 2(q-1-k)\}\}\$$

$$= \max\{k, (q-k-1) + \min\{k, q-k-1\}\}\$$

$$= \max\{k, q-1\}\$$

$$= q-1 > h.$$

We now confine ourselves to the case where 2k > q - 1, and note that in this case, it suffices to show that

$$h \leq \max\{k, 2(q-k-1)\}$$

and to consider the case when h > k.

For each t > k, let $b_t = |V_t \setminus N(A)|$. From (1), we have $b_t \le q - k - 1$. Let $b = \max\{b_t | t > k\}$. Without loss of generality, we may assume that $b_{k+1} = b$. Let

$$B=V_{k+1}\setminus N(A).$$

Since h > k, B is nonempty. From the earlier claim, for each $u \in A$ and $v \in B$, $N(u) \cap N(v) \neq \emptyset$. Thus, if we denote by e(S,T) the number of edges joining a vertex in S to a vertex in T, where $S,T \subseteq V(G)$, then

$$e(N(B),A) \geq bk$$
.

Since $e(V(G) \setminus (A \cup V_{k+1}), A) \leq k(q - k - 1)$, we have

$$e(V(G) \setminus (A \cup V_{k+1} \cup N(B)), A) \leq k(q-k-1) - bk$$
$$= k((q-k-1) - b).$$

Hence

$$|(V(G)\setminus (A\cup V_{k+1}\cup N(B)))\cap N(A)|\leq k((q-k-1)-b).$$

Since

$$|V(G) \setminus (A \cup V_{k+1})|$$

$$= |(V(G) \setminus (A \cup V_{k+1})) \cap N(A)| + |(V(G) \setminus (A \cup V_{k+1})) \cap \overline{N(A)}|,$$

we have

$$(q-k-1)h \le k((q-k-1)-b) + |N(B)| + (|\overline{N(A)}|-|B|)$$

$$\le k((q-k-1)-b) + b(q-k-1) + b(q-k-1)$$

$$= k(q-k-1) + b(2(q-k-1)-k).$$

Case 1. $2(q-k-1)-k \le 0$. Then

$$(q-k-1)h \le k(q-k-1)$$

or

$$h \leq k = \max\{k, 2(q-k-1)\}.$$

Case 2. 2(q-k-1)-k>0. In this case.

$$(q-k-1)h \le k(q-k-1) + (q-k-1)(2(q-k-1)-k)$$

= $2(q-k-1)^2$,

OL

$$h \le 2(q-k-1) = \max\{k, 2(q-k-1)\}.$$

The proof is thus complete.

We shall now provide methods of construction to show that for all k, q with $1 \le k \le q - 1$ and $q \ge 3$, and for each h with $1 \le h \le h^*$, where

$$h^* = \max\{k, \min\{q-1, 2(q-1-k)\}\},\$$

there is a connected q-critical graph with colour classes $\{V_1, V_2, \ldots, V_q\}$ such that $|V_1| = |V_2| = \cdots = |V_k| = 1$ and $|V_{k+1}| = \cdots = |V_q| = h$.

Let V be a set of k + h(q - k) vertices which is partitioned into q subsets V_1, V_2, \ldots, V_q such that $|V_1| = |V_2| = \cdots = |V_k| = 1$ and $|V_{k+1}| = \cdots = |V_q| = h$. For convenience, we label the vertices of V_i , as v_{ij} , where $i = 1, 2, \ldots, q$ and $j = 1, 2, \ldots, |V_i|$, and denote

$$W_0 = \{v_{11}, v_{21}, \ldots, v_{k1}\}$$

and

$$W_i = \{v_{(k+1)i}, v_{(k+2)i}, \dots, V_{qi}\}, \quad i = 1, 2, \dots, h.$$

We consider two cases.

Construction I. $h \leq k$.

Let G be a graph with V(G) = V. The adjacency of vertices in G is defined as follows (see Figure 9): The vertices $u \in W_s \cap V_i$ and $v \in W_{s'} \cap V_{i'}$, where $s \leq s'$, $i \neq i'$, are adjacent iff

- (i) s = s' (thus each W_i forms a clique in G)
- (ii) s = 0 and $s' = \min\{i, h\}, i = 1, 2, ..., k$.

It is not hard to see that the graph G so constructed is connected and q-critical. Note that if $k > \frac{2}{3}(q-1)$, then $q-k-1 \le \frac{1}{3}(q-1)$ and hence the value of h runs through the interval $[1, h^*]$.

Construction II. $k < h < h^*$.

Write $r = \min\{k, q - k - 1\}$, $r_1 = \min\{r, h - r\}$ and $r_2 = \max\{r, h - r\}$. Observe that $r_2 \le q - k - 1$.

Figure 9

Let G be a graph with V(G) = V. The adjacency of vertices in G is defined as follows: two vertices $u \in W_s \cap V_i$ and $v \in W_{s'} \cap V_{i'}$, where $s \leq s'$ and $i \neq i'$, are adjacent iff one of the following 4 conditions is satisfied:

- (i) s = s' = 0 (thus W_0 forms a clique in G);
- (ii) s = 0 and $s' = \min\{i, r\};$
- (iii) $1 \le s \le r, r+1 \le s' \le h, i, i' \in [k+1, q] \text{ and } (s+i) (s'+i') \equiv 0 \pmod{r_2}$;
- (iv) If $(r_2 = r \text{ and } s, s' \le r)$ or $(r_2 > r \text{ and } s, s' > r)$, then $s + s' \equiv h + 2r + 1 \pmod{r_2}$ and $i (s' + i') \equiv t \pmod{r_2}$ where $r_2 > t > r_1 + 1$.

The adjacencies defined in (iii) and (iv) are illustrated respectively as follows. Suppose k=3, q=8 and h=5. In this case r=3, $r_1=h-r=2$ and $r_2=r=3$. Take, for instance, (s,i) to be one of the following in $W_1 \cup W_2 \cup W_3$:

$$a_1 = (1,8), a_2 = (2,7), a_3 = (3,6), a_4 = (1,5), a_5 = (2,4).$$

Then the vertices adjacent to these a_i 's by (iii) are those b_j 's in $W_4 \cup W_5$ as shown in Figure 10, where

$$b_1 = (4,5), b_2 = (5,4), b_3 = (4,8), b_4 = (5,7).$$

Observe that the subgraph induced by the union of $A = \{a_1, a_2, \ldots, a_5\}$ and $B = \{b_1, b_2, b_3, b_4\}$ is a complete bipartite graph with bipartition $\{A, B\}$ in which a complete matching is deleted.

The adjacency of vertices in $W_1 \cup W_2 \cup W_3$ defined by (iv) is shown in Figure 11.

Figure 10

Figure 11

We shall now show that G is a desired graph. From (i), the vertices of W_0 must be coloured by different colours, say $v \in V_i \cap W_0$ is coloured by "i", i = 1, 2, ..., k. From (ii), for each $j, 1 \leq j \leq r$, the vertices of W_j have colours different from 1 to k. Likewise, from (ii) and (iii), colours of $v \in W_j(j > r)$ are different from 1 to k. By (iii) and (iv), every vertex in $G - W_0$ has exactly q - k - 1 neighbours in $G - W_0$ and hence $\chi^{(2)}(G - W_0) \geq q - k$, which implies that $\chi^{(2)}(G) \geq q$. We shall now show that each vertex $v \in V_i(i > k)$ is adjacent to exactly one vertex in V_j , where j > k and $j \neq i$. Suppose $v \in W_s$. Observe that v is adjacent to a vertex $v \in V_j \cap W_s$ by (iii) only if $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \pmod{r_2}$ and $v = v + i \equiv v + i \pmod{r_2}$ and $v = v + i \pmod{r_2}$ and

u for each $j \neq i$, while if $s \leq r = r_2$ or both s and $r_2 > r$, there is exactly one u if $s+i+j-1 \equiv t \pmod{r_2}$, where $0 \leq t \leq r_1-1 \pmod{r_2} \leq q-k-1$. Now, if s+i+j-1 has a remainder greater than r_1-1 on dividing by r_2 , then and only then we have an adjacency using (iv). Thus, if we colour the vertices of V_i by colour i, we have a q-colouring of G, and so $\chi^{(2)}(G) \leq q$. Hence $\chi^{(2)}(G) = q$. Since each vertex in $G - W_0$ is of degree q in G, the graph G so constructed is q-critical.

References

- [1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990), 95 110.
- [2] M. Behzad, G. Chartrand and L. Lesniate-Foster, "Graphs and Digraphs", Wadsworth International Group, Belmont, California, 1979.
- [3] Y.S. Ho, K.M. Koh, S.M. Lee and S.C. Shee, On a generalized chromatic number of a graph. 1990 (preprint)
- [3] F. Kramer, Sur le nombre chromatique K(p, G) des graphes, Rev. Française Automat. Informat. Recherche Opérationnelle 6 (1972), Sér. R-1 67–70.
- [4] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A46-A48.
- [5] F. Kramer and H. Kramer, Ein Färbungsproblen der Knotenpunkte eines Graphes bezüglich der Distanz p, Rev. Roumiane Math. Pures Appl. 14 (1969), 1031–1038.