Efficient Dominating Sets in Spanning Trees

Anthony E. Barkauskas

Mathematics Department
University of Wisconsin —La Crosse
La Crosse, Wisconsin 54601

Abstract. An efficient dominating set S for a graph G is a set of vertices such that
every vertex in G is in the closed neighborhood of exactly one vertex in . If G is
connected and has no vertices of degree one, then G has a spanning tree which has an
efficient dominating set. An O(n) algorithm for finding such a spanning tree and its
efficient dominating set is given.

1. Introduction.

A set S of vertices in a graph G = (V, E) is adominating set for G if every vertex

in V is either in S or adjacent to a vertex in S. We will assume |V| = n. (Ter-
minology not explicitly defined in this paper will be consistent with that of [4].)
If we think of a graph as a communication network, then a dominating set could
be a set of broadcasting stations, each able to send a message to itself and all its
neighbors, and collectively able to broadcast to all vertices of the graph. Special
requirements are usually placed on a dominating set S, such as asking for a mini-
mum dominating set (a dominating set S of smallest possible cardinality) in order
to minimize the number of broadcasting stations which need to be constructed, or
an independent dominating set (a dominating set S in which no two vertices of S
are adjacent) in order to prevent interference from broadcasting stations which are
adjacent. Hedetniemi and Laskar have written an excellent survey paper on dom-
ination and its variations [5] and have compiled a bibliography containing several
hundred references [6].

2. Efficient dominating sets.

In [2], Bange, Barkauskas and Slater introduced the concept of efficient domina-
tion. A set S of vertices is an effcient dominating set for G if S is a dominating
set in which every vertex of G is dominated by exactly one member of S. If we
call N[u] = {v € V | v = u or v is adjacent to u} the closed neighborhood of
u, then S is an efficient dominating set for G if and only if every vertex in V is in
the closed neighborhood of exactly one vertex in S. An efficient dominating set is
both a minimum dominating set and an independent dominating set. If a commu-
nication network can be represented by a graph which has an efficient dominating
set, itis possible to select a set of stations, all broadcasting on the same channel, so
that the broadcasts reach every vertex with no interference caused by overlapping
broadcasts. It is not always possible to achieve this type of domination, because
not all graphs have efficient dominating sets. Figure 1 shows simple examples of

JCMCC 15 (1994), pp. 129-140

all three of these types of domination. Note that only the tree in Figure 1.d can
be efficiently dominated. For two further simple examples, the path P, always
has an efficient dominating set containing [$] vertices, while the cycle C, has an
efficient dominating set if and only if =0 mod 3.

< <

1.a. A minimum dominating set. 1.b. An independent dominating set.
1.c. A minimum and independent 1.d. An efficient dominating set.
dominating set.

Figure 1. Three types of dominating sets.
Solid dots indicate vertices in the dominating set.

There is little hope that a polynomial time algorithm to find efficient dominating
sets exists, since it has been shown in [3] that the problem of determining whether
or not an arbitrary graph G has an efficient dominating set is NP-complete. As is
usually the case in domination theory, if the graph is a tree it is much easier to find
an efficient dominating set if one exists. In [3] an O(=n) algorithm is given for
determining the maximum number of vertices of a tree which can be efficiently
dominated and a constructive characterization is given for trees which have effi-
cient dominating sets.

It is clear that both the complete graph K, and the empty graph K, have ef-
ficient dominating sets. Thus, given any graph G it is possible to obtain a graph
G' which can be efficiently dominated either by adding edges to G or by deleting
edges from G. One possible question is: given a graph G, what is the minimum
number of edges which must be added to G or deleted from G in order to form
such a graph G'? A different approach is to ask if there exists a subgraph G’ having
specified properties (for example, minimally connected) which can be efficiently
dominated.

3. Efficient domination of spanning trees.

Now consider a graph as a model for a communication network in which edges
represent where it is possible to construct lines of communication between ver-
tices. We wish to decide which lines of communication need to be constructed

130

so that the resulting graph will be minimally connected and it will be possible to
find a set of broadcasting stations which reach every vertex exactly once. Thus,
we wish to find a spanning tree T for a graph G such that T" has an efficient dom-
inating set. Obviously if G is disconnected there is no spanning tree, and since
not every tree has an efficient dominating set, there may be no such spanning tree
even in a connected graph. The goal in this paper is to give sufficient conditions
on a connected graph G to guarantee that G has a spanning tree T which has an
efficient dominating set. We offer the first two observations.

Observation 1. If 2 connected graph G has an efficient dominating set, then G
has a spanning tree which has an efficient dominating set.

Proof: Let S be an efficient dominating set for G. For each vertex v in S, there is
a corresponding star K, consisting of v and its n, neighbors in G. Since S is
an efficient dominating set, every vertex of G is in exactly one such star. We can
build a spanning tree T for G by starting with one such star as an initial tree T".
If T” does not span G, then since G is connected there exists a vertex y not in T”
which is adjacent to some vertex z in 7. Extend 7" to a larger subtree of G by
adding edge zy and also the unique star containing y from the efficient dominating
set for G. Repeat this process until 7" spans G. Then T” will be a spanning tree
of G which is efficiently dominated by the same set § which dominates G.]

If G does not have an efficient dominating set and is not a tree, G may or may
not have a spanning tree which has an efficient dominating set. For example, every
spanning tree of a cycle is a path, and as we have already noted, all paths can be
efficiently dominated. The graph in Figure 2.a has a spanning tree which can be
efficiently dominated, while the graph in Figure 2.b has no spanning tree which
can be efficiently dominated.

2.a. A graph with a (unique) spanning 2.b. A graph having no spanning
tree which can be efficiently tree which can be efficiently
dominated. dominated.

Figure 2. Two graphs which cannot be efficiently dominated.

131

Note that the graph in Figure 2.b is just one example of an infinite class of such
graphs since the two paths of length two may be replaced by any paths with length
=2 (mod 3).

Observation 2. Ifa graph G has a Hamiltonian path, then G has a spanning tree
which can be efficiently dominated.

Proof: A Hamiltonian path for G is a spanning tree, and all paths can be efficiently
dominated. |

One obvious way to attempt to construct a general algorithm for finding a span-
ning tree with an efficient dominating set is to proceed as follows. Pick an arbitrary
vertex to be in the efficient dominating set, and let it and all its neighbors form a
subtree T' of G which can be efficiently dominated. If T’ does not span G and G
is connected, find a vertex v not in T” adjacent to some vertex u in 7. If v has a
neighbor z in G which is notin T, T” can be extended by adding edge uv together
with the star formed by z and all its neighbors not in T”.

This method breaks down because it is not always possible to find such a vertex
z. Vertex v might be a vertex of degree one in G, or all neighbors of v in G may
already be vertices in 7", none of which are leaves or vertices in the dominating set.
In this case the existing 7’ cannot be extended to include v. Having started in this
way, there is no way to overcome the problem of vertices of degree one. As can
be seen in [3], some structures of the leaves in a tree determine immediately that
the tree cannot have an efficient dominating set, while other structures allow the
possibility, contingent upon the remaining structure of the tree. Figure 3.a shows
an example of a structure which automatically precludes efficient domination of
any spanning tree of G, while Figure 3.b shows a structure for which efficient
domination depends on the remainder of the spanning tree.

3.a. A forbidden structure for 3.b. A conditional structure for
efficient domination, efficient domination.

Figure 3. Two examples of structures
which affect the possibility of an efficient dominating set.

If the vertex v is not of degree one in G, the difficulty created by having all
neighbors of v in T can be avoided by a more careful algorithm. In particular, we
will see that if G is connected and has no vertices of degree one, there is always a
spanning tree of G which can be efficiently dominated.

132

3. Main theorem

The first theorem gives a sufficient condition for a graph G to have a spanning
tree which can be efficiently dominated.

Theorem 1. If a graph G is connected and has no vertices of degree one, then
G lias a spanning tree which can be efficiently dominated,

Proof: We will proceed inductively to build a rooted subtree 7' of G which can
be efficiently dominated. Ateach step we will show how to add at least one vertex
to T” in such a way that the resulting larger subtree can be efficiently dominated.
Since G is finite, the algorithm will terminate when TV has the same number of
vertices as G. This construction will be done in such a way that at any stage, the
following conditions will hold:

CONDITIONS. There will be a rooted spanning tree T of G in which each
vertex v (except the root) will have a unique parent p(v) and a set (possibly empty)
of children which will be labeled cy,. .. , ca,. T” will be an efficiently dominated
subtree of T, rooted at the same vertex. Ateach stage of the algorithm, the vertices
of G are vertices in T and classified as follows:

I. Vertices in T'. Since any vertex v in the rooted tree 7' must be dominated
exactly once, exactly one of v, p(v), or one child of v must be in the efficient
dominating set. Thus, the vertices of 7" can be labeled in the following three
ways:

1. D (for dominating). These vertices are in the efficient dominating set.

2. DA (for dominated above). These are children (in T') of vertices la-
beled with D.

3. DB (for dominated below). These are parents of vertices labeled with
D.

II Vertices notin T”. These vertices can also be labeled in three ways.

1. Vertices whose parents are in T"'. There are two types.
a. TDA (for temporarily dominated above). These are children of ver-
tices labeled with D.
b. TDB (for temporarily dominated below). These are children of
vertices labeled with DA or DB, The labeling will be done so that all
vertices with label TDB will have at least one child.

2. U (for unused). These are vertices whose parents are not in T,

As the algorithm proceeds, The tree T/ will grow larger at each step but will not
otherwise change. Thus, the labels D, DA, and DB are permanent labels. At each
iteration, we will consider a vertex labeled with TDA or TDB and show how to
assign it a permanent label and add it to T"'. In the process it may be necessary
to revise the portion of the spanning tree T which does not contain 7", but such
revision will satisfy the conditions above. The process will terminate when there
are no more vertices labeled with TDA or TDB, because then 7" will equal T and
T spans G.

133

INITIAL STEP. Since G is connected it has a spanning tree T'. We will consider
T to be rooted at some vertex r. Let T" consist of the single vertex r. The single
vertex r efficiently dominates T, so label it with D. Label all the children in T" of
r with TDA. Label all other vertices of T" with the label U. Then T and T satisfy
the conditions above. (Note that there are not yet any vertices labeled with TDB,
so condition II.1.b is automatically true.)

ITERATIVE STEP. Assume we have a spanning tree T for G and an efficiently
dominated subtree T containing k vertices labeled to satisfy the conditions above.
If there are no vertices labeled with TDA or TDB, then T” = T and we are done,
otherwise we consider the two cases separately:

Case 1. Suppose v is a vertex labeled with TDA. Let the children in T of v, if any,
be labeled ¢y,... ,c,. There are two subcases:
Case 1.a. No child in T of v is a leaf in T". In this case p(v) is in 7" and has
label D, so we expand T” by adding vertex v and edge vp(v), labeling v with
DA, and we label the children of v with TDB. The specified conditions are
satisfied, in particular, the vertices labeled with TDB have at least one child
in T, and we have increased 7" to k + 1 vertices.

Case 1.b. At least one child in T ¢; of v is a leaf in T". Vertex c¢; cannot be a
vertex of degree one in G by hypothesis, hence, ¢; must be adjacent (in G) to
at least one vertex w; different from v. Since T spans G, w; must also be a
vertex in T, and again we will consider subcases, depending on the label of
w;. :
Case 1.b.i. For some leaf c;, vertex w; has label DA or DB. In this
case we revise the tree T' by deleting edge vp(v) and adding edge ¢; w;
so that ¢; is now the unique parent of v in T. Vertex w; is already in
T, so extend T" by adding vertex c;, edge ¢; w; vertex v and edge vc;.
Label vertex v with D, and label vertex ¢; with DB. Label any remaining
children of v with TDA. Note that vertex c; has no children in T" other
than v, and v is already in 7. Note also that T is still a spanning tree
for G, and that T is a subtree of T which is efficiently dominated, the
labelings satisfy the conditions given above, and 7" has been increased
to k + 2 vertices.

Case 1.b.ii. For each leaf ¢;, vertex w; has label D, or else is not in
T'. In this case we revise the tree T by deleting edge vc; and adding
edge ¢; w;. If w; is labeled with D then w; is in T, so we can extend
T' immediately by adding edge c;w; and vertex ¢;, labeling ¢; with DA.
(Note that ¢; has no children in T'.) If w; is not in 77, then we revise
T by deleting edge vc; and adding edge c;w;. Note the conditions are
still satisfied, in particular, any vertex labeled with TDB in the revised
T must still have at least one child. Repeating this process for each leaf
ci, we eliminate all children of v which are leaves, and we can apply
Case 1.a. Thus, T" has been increased to at least k + 1 vertices.

134

Case 2. Suppose v is a vertex with label TDB. Then by hypothesis v must have
at least one child, call it cp. Label the remaining children (if any) c;,... ,c, as
in Case 1. Again there are two subcases.
Case 2.a. Suppose none of ¢y ,... ,c, are leaves in T'. Then extend T by
adding vertex v, edge vp(v), vertex ¢, and edge vcg, labeling cp with D
and v with DB. Label the remaining children of v with TDB and the children
of co with TDA. The conditions are satisfied, in particular, each vertex with
label TDB has at least one child, and 77 has been increased to k+ 2 vertices.
Case 2.b. Suppose at leastone ¢;, 1 < i < n,isaleafinT. As in Case 1.b.,
c; must be adjacent in G to at least one vertex w; different from v in G, and
there are two subcases, depending on the label for w;.
Case 2.b.i. For some leaf c;, vertex w; has label DA or DB. This case is
identical to Case 1.b.1i, except that we must include ¢y when labeling the
children of v with TDA. Thus, T has been increased to & + 1 vertices.

Case 2.b.ii. For each leaf c;, vertex w; has label D or else is notin 7. In

this case we revise T exactly as in Case 1.b.ii, so thatnone of ¢y, ... , ¢,
isaleafin T, and apply Case 2.a. Thus, 7" has been increased to at least
k + 2 vertices.

Since T is a subtree of T having the same root, and all children of vertices in 7"
which are not themselves in 7" must be labeled with either TDA or TDB, if we
repeat the iterative step until there are no vertices labeled with TDA or TDB, T
will equal T and we will have the desired efficiently dominated spanning tree for
G. |

4. Graphs with vertice of degree one.

The conditions of Theorem 1 are by no means necessary. Observation 1 and
Observation 2 have already shown that some graphs with vertices of degree one
have spanning trees which can be efficiently dominated. It is also possible to
extend Theorem 1 slightly.

Observation 3. If G is a connected graph and all vertices of degree one in G are
adjacent to a single vertex v, then G has a spanning tree which can be efficiently
dominated. .

Proof: Let T be a spanning tree for G rooted at r. Let » be labeled with D, each
child of r of degree one be labeled with DA, and the other vertices be labeled ac-
cording to the conditions of Theorem 1. The conditions of Theorem 1 are satisfied,
and the iterative step may be applied repeatedly to obtain a spanning tree which
can be efficiently dominated. |

Figure 2.a gives an example of a graph G which satisfies none of the conditions
listed so far, yet G has a spanning tree which can be efficiently dominated. It is
clear that if G is to have a spanning tree which can be efficiently dominated, it
must have a subtree 7' which contains all the vertices of degree one of G, and

135

T’ can be efficiently dominated. The graph in Figure 2.b shows that this is not
enough, because although a path containing the two endpoints can be efficiently
dominated, the graph has no spanning tree which can be efficiently dominated. In
this case the iterative step of Theorem 1 cannot be applied because any spanning
tree T which contains the path T’ would have a leaf with label TDB, a violation of
the conditions on T'. This is inevitable because after constructing 7", the remaining
vertex of G is adjacent only to vertices with labels DA or DB. This observation
leads to the following theorem.

Theorem 2. Let G be a connected graph. Then G has a spanning tree which can
be efficiently dominated if and only if there exists a subtree T' of G satisfying
the following three conditions:

1. T contains all the vertices of degree one of G;

2. T' can be efficiently dominated;

3. Every vertex in G whichis notin T’ is adjacent either to one of the vertices
in the dominating set for T' or to some vertex in G which is not in T'.

Proof: If G has a spanning tree T which can be efficiently dominated, then the
three conditions are trivially satisfied by T'.

Conversely, if the three conditions are satisfied, then root T/ at some vertex.
Take an efficient dominating set for T which satisfies condition 3, and label the
vertices of T/ appropriately as D, DA, or DB. Since G is connected, T’ can be
extended to a spanning tree T for G. Consider each vertex v of T" which is not in
T'. If p(v) has label D, label v with TDA. If p(v) has label DA or DB, then if v is
not a leaf of T", label v with TDB, otherwise, if v is a leaf of T', then by hypothesis
v is adjacent to some vertex w which is either in D or is not in 7", If w is in D,
revise T by deleting edge vp(v) and adding edge vw, labeling v with TDA. If w
isnot in T, revise T" by deleting edge vp(v) and adding edge vw, labeling v with
U. Label all vertices of T' whose parents are not in T with label U. Then T" and
T" satisfy the conditions of Theorem 1, and the iterative step may be applied to
extend T to an efficiently dominated spanning tree for G. |

5. Algorithm,
Theorem 1 and Observation 3 justify the following algorithm.

INPUT: A connected graph G and a vertex r. If G has any vertices of degree one,
they must either be the vertex = or be adjacent to r.

OUTPUT: A spanning tree T rooted at r and a labeling of the vertices of " which
shows the efficient dominating set for T'.

136

PROGRAM EfficientTree;
TYPE:
labels: (D, DA, DB, TDA, TDB, U);
VAR:
G: graph;
T: tree;
v,c, w,T: vertex;
Q: Queue_of_vertices;
dore: boolean;
value: labels;

PROCEDURE LabelandEnter (Q:Queue_of_vertices; v: vertex; value: labels);
BEGIN
label(v):= value;
Enter v in Q;
END;

PROCEDURE Processchildren (T': tree; v, ¢: vertex; done: Boolean);
(*Comment: Vertex v in tree T has an ordered set of children. Starting
with either the first or second child of v, this procedure either
assigns a permanent label to v, making done = TRUE, or else transfers
each child of v of degree one to another vertex in T.¥)

BEGIN
WHILE ((c is a child of v) and (not done)) DO
BEGIN
IF (c is not a leaf) THEN c:= rextchild of v
ELSE
BEGIN
w:= any vertex which is adjacent to ¢ in G but is not equal to v;
(*Comment: ¢ cannot be = or a child of =, hence ¢
is not of degree one in G and such a vertex w must exist.*)
CASE (label (w)) OF
DA, DB:
BEGIN
Revise T by making w the parent of c, and ¢ the parent of v;
(*Comment: the new tree still spans G. No vertices
labeled D, DA or DB have been affected.*)
label (c):= DB;
label (v):=D;
FOR (each child ¢ of v) DO LabelandEnter (Q, ¢, TDA);
done:= TRUE;
END
D, TDA, TDB, U:
BEGIN

137

Revise T' by making w the parent of c;
(*Comment: T still spans G.*)

IF (label (w) = D) THEN label (c):= DA;

c:= nextchild of v;
END

ENDCASE;
ENDELSE;
ENDWHILE;

END;

BEGIN (*EfficientTree*)
INPUT (G);
FOR (each vertex v of @) DO label (v):=U;
INPUT (7); (*Comment: Any vertices of G of degree one
must be adjacent to r or equal .*)
SpanningTree (G, T, r); (*Comment: Find a spanning tree of G rooted at r.
G must be connected.*)
label (v):= D;
FOR each child ¢ of » DO LabelandEnter (Q, c, TDA);
WHILE (not EmptyQueue (Q)) DO
BEGIN
v:= LeaveQueue (Q);
(*Comment: Note that all vertices in Q) are labeled TDA or TDB*)
done := FALSE;
IF (label (v) = TDA) THEN
BEGIN
Processchildren (T', v, firstchild (v), done);
(*Comment: Start with the first child of v.*)
IF (not done) THEN (*Comment: v has no children which are leaves.*)
BEGIN
label (v):= DA;
FOR each child ¢ of v DO LabelandEnter (Q, ¢, TDB);
ENDIF;
END
ELSE (*Comment: label (v) equals TDB and v will have at least one child.*)
BEGIN
Processchildren (T, v, secondchild (v), done);
(*Comment: Start with the second child of v.*)
IF (not done) THEN
(*Comment: None of the children of v after firstchild will be a leaf.*)
BEGIN
label (v):=DB;

138

label (firstchild (v)):=D;
FOR (each child ¢ of firstchild (v)) DO LabelandEnter (Q, ¢, TDA);
FOR (each child ¢ of v other than firstchild) DO
LabelandEnter (Q, ¢, TDB);
ENDIF;
ENDELSE;
ENDWHILE;
OUTPUT (T with vertex labels); -
END.

Each vertex v of the graph appears at most once in the queue. Processchildren
inspects each child ¢ of vertex v in the spanning tree T', possibly moving c to be
inspected again as the child of a different vertex, but no child is inspected more
than twice. If 7" has n vertices, n — 1 of them are children, so the main loop of
EfficientTree is O(n). SpanningTree is O(n) if implemented properly [9, p. 17].

Thus, the time complexity of algorithm EfficientTree for finding a spanning tree
of G which has an efficient dominating set is O(n).

6. Conclusion.

Theorem 1 gives a sufficient condition for a graph G to have a spanning tree which
can be efficiently dominated, and algorithm EfficientTree finds a spanning tree and
its efficient dominating set in linear time for such a graph G. Theorem 2 gives a
necessary and sufficient candition for an arbitrary graph G to have a spanning tree
which can be efficiently dominated, but does not suggest how to find such a tree.
One method would be to find all the spanning trees of G, and check each one for
an efficient dominating set using the O(n) algorithm in [3]). This method is not
efficient because the number of spanning trees grows exponentially with the order
of the graph for dense graphs. In particular, if ¢ denotes the number of spanning
trees of a graph, then ¢ = #»™2 for the complete graph K,. An O(n+ e + e-t)
algorithm for finding all spanning trees of G is discussed in [8, pp. 325-326],
and a slightly improved algorithm can be found in [7]. It may be possible to use
the structure of trees with efficient dominating sets to modify these algorithms
to consider only a small portion of the spanning trees of G, and thus develop an
efficient algorithm to apply Theorem 2, but this remains an open problem.

139

References

1. D. Bange, A. Barkauskas, L. Host, and P. Slater, Efficient near-domination
of grid graphs, Congressus Numerantium 58 (1987), 83-92.

2. D. Bange, A. Barkauskas, and P. Slater, Disjoint dominating sets in trees,
Sandia Laboratories Report, SAND 78-1087-J (1978).

3. D. Bange, A. Barkauskas, and P. Slater, Efficient dominating sets in graphs,
in “Applications of Discrete Mathematics”, R. Ringeisen, F. Roberts, eds.,
SIAM, 1988, pp. 189-199.)

4. G. Chartrand and L. Lesniak, “Graphs and Digraphs”, 2nd ed., Wadsworth,
Belmont CA, 1986.

5. S. Hedetniemi and R. Laskar, Recent results and open problems in domi-
nation theory, in “Applications of Discrete Mathematics”, R. Ringeisen, F,
Roberts, eds., SIAM, 1988, pp. 205-218.

6. S. Hedetniemi and R. Laskar, Bibliography on domination in graphs and
some basic definitions, Discrete Mathematics 86 (1990), 257-277.

7.R. Jayakumar, K. Thulasiraman, and M.N.S. Swamy, MOD-CHAR: An im-
plementation of Char’s spanning tree enumeration algorithm and its com-
plexity analysis, IEEE Trans. Circuits Syst. 36 (2), (February, 1989), 219-228.

8. E.M. Reingold, J. Nievergelt, N. Deo, “Combinatorial Algorithms, Theory
and Practice”, Prentice-Hall, Englewood Cliffs, NJ, 1977.

9. R. Tarjan, Data structures and network algorithms, SIAM Regional Confer-
ences Series 44 (1983).

140

