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1 Introduction

In recent years a great deal of work has been done on decompositions of
complete graphs into edge-disjoint cycles; see the splendid survey [15] for
details. What we shall concentrate on here are certain so-called perfect cycle
decompositions of the complete graph K,,; we start with some definitions.

An m-cycle system of K, is an ordered pair (V, C) where V is the vertex
set of K, and C is a set of edge-disjoint cycles, each of length m, which
partition the edge set of K. The order of the m-cycle system is |V| = v.

Suppose that we have an m-cycle system, (V, C), of order ». Take each
cycle ¢ in C, and replace it by the graph ¢(i) formed by joining all the
vertices of ¢ at distance i in ¢; let C(3) = {c(i) | c € C}. Then if (V,C(3))
is again a cycle system of K, (but not necessarily an m-cycle system), we
say that the original system (V,C) is an i-perfect m-cycle system of K,.
Moreover, if (V, C) is an i-perfect m-cycle system for all ¢, then we call the
system a Steiner m-cycle system. Since our graphs are undirected, it is
only necessary for an m-cycle system to be i-perfect for 1 < ¢ < |m/2] in
order for it to be a Steiner m-cycle system.

It is immediate that, if the cycle length m is 3, all 3-cycle systems are
Steiner; they are, of course, Steiner triple systems, since the cycle C3 and
the complete graph K3 are the samel!

If the cycle length m is 4, there are no 2-perfect 4-cycle systems. (The
reader could draw a 4-cycle ¢ and consider the graph ¢(2) obtained from
this!) So henceforth we shall assume that the cycle length is at least 5.

Work has chiefly concentrated on finding the spectrum for i-perfect m-
cycle systems; this is the set of values v for which there exists an i-perfect
m-cycle system of order ». It is straightforward to see that necessary con-
ditions for existence of an i-perfect m-cycle system of order v are the same
as the necessary conditions for existence of an m-cycle system of order v,
namely, that:

v>m (orv=1);
v is odd (so each vertex of K, has even degree); and
2m divides v(v — 1) (so m divides the total number of edges).

Of the work done to date on i-perfect cycle systems, most has involved
finding the spectrum for 2-perfect cycle systems. The case m = 5§ was
treated first ([16]), m = 7 in [17], and some general results for any odd m
in [14). For even m, see [13] for m = 6, [2] for m = 8, and for other small
values of m, both even and odd, see [3]. Also, 2-perfect decompositions of
A copies of K, have been considered; see [6] and [1].
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Besides 2-perfect cycle systems, which have been of interest partly be-
cause of the associated quasigroup that arises (see [12]) and also because
of statistical applications ([11]), if the cycle length m is a multiple of 3, say
m = 3k, then k-perfect 3k-cycle systems are of interest because the cycles
C(k) = {c(k) | c € C}, where (V,C) is a 3k-cycle system, form a Steiner
triple system.

Henceforth we shall concentrate on the problem of finding the spec-
trum for k-perfect 3k-cycle systems. This has been done for k = 2 (see
[13], and [6] for the two isolated cases missing from [13]) and for k = 3
(see [5]). We remark that there does in fact exist a 3-perfect 9-cycle sys-
tem of order 9, so the spectrum in [5] should be extended to include the
value 9. A 3-perfect 9-cycle system of order 9 is (V,C) where V = Zg
and C = {(0,1,2,3,4,5,6,7,8),(0,2,4,7,1,8,5,3,6),(0,3,1,4,8,6,2,7,5),
(0,4,6,1,5,2, 8,3,7)}.

In Section 2 we give some well-known but necessary lemmas and describe
the now standard construction that we use. Section 3 then deals in detail
with the case k = 4, Section 4 with & = 5, while Section 5 gives some
general results for arbitrary k not divisible by 3. Section 6 then applies
these results further, and summarises the situation for small k.

2 Some lemmas and the Construction

LEMMA 2.1 (i) When 2n =0 or 2 (mod 6), 2n > 6, then there exists a
group divisible design with n groups of size 2 and blocks of size 3.

(ii) When 2n = 4 (mod 6), 2n > 10, then there ezists a group divisible
design with one group of size 4 and the rest of size 2, and with blocks of
size 3.

Proof: (i) This first appeared in Hanani [10], Lemma 6.3; such group
divisible designs also arise by taking any Steiner triple system of order
2n 4+ 1 (which is 1 or 3 (mod 6)) and deleting one point. The groups of
size 2 arise from the blocks that contained the one deleted point, and the
blocks of size 3 are those blocks of the Steiner triplé system not meeting
the deleted point.

(ii) This is essentially done in [18], page 276. Wilson gives a pairwise
balanced design with number of elements congruent to 5 (mod 6), with one
block of size 5 and the rest of size 3. Deletion of one point from the block
of size 5 yields a suitable group divisible design with one group of size 4,
the rest of size 2, and blocks of size 3. a
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Henceforth a group divisible design (GDD) on s elements with block size
3 and group sizes in {m;} (and index A = 1) will be denoted GD(3, {m;}; s).
We frequently use the main theorem in [9] to ensure that a suitable GDD
with block size 3 exists.

We shall also use the following well-known results (see [14], Lemmas 2.1
and 2.2).

LEMMA 2.2 When m i3 prime, there exists a Steiner m-cycle system of
Kp.

LEMMA 2.8 Whenm is odd and v =1 (mod 2m) is a prime power, then
there exists a Steiner m-cycle system of K,,.

THE CONSTRUCTION Let v = as + ¢ for a, € > 0; generally in
our constructions of k-perfect 3k-cycle systems, a will be either k or 3k,
and is sometimes referred to as the number of “layers”. Vertices of K, will
be
{(,)112i<s, 1<j<a}lU{ooi}iay.

On the set {(#,5) | 1 < i < s} we take a GDD with blocks of size 3, and
various group sizes. For each block {(z,7),(¥,4),(2,7)} of the GDD we
take a k-perfect 3k-cycle decomposition of K4 o o On the vertices

{@)1<i<a}u{i)|1<i<a}U{(z4)|1<j<a}.

Now suppose groups of the GDD are {(i1, §), (32,7), . -, (ig,5)}. Ife =0, for
each group of the GDD, on the vertex set {(¢1,7),...,(i,5) |1 < j < o},
place a k-perfect 3k-cycle system of order gc.

For € = 1, for each group of the GDD, place on {co; }U{(31,7),..., (39, 7) |
1 € j < a} a system of order ga + 1.

If € > 1, choose one group {(i1,5),-..,(#3.,7)} of the GDD and on

{ooi}ic1 U {(1,5)s- -1 (1505) 1 <5 < a}
place a system of order g*« + €. Then for all remaining groups, on
{ooi}ici U{(i1,5), ..., (ig,4) | 1 <5 < a}

place a k-perfect 3k-cycle decomposition of Kgote \ Ke. (Here K, \ K
refers to the graph on a vertices with b vertices singled out, and all the g

edges between these b vertices removed; this is sometimes referred to as a
“hole” of size b in Kj.)
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3 Thecasek=14

The necessary conditions for existence of a 4-perfect 12-cycle system of
order v are that v = 1 or 9 (mod 24), and of course v > 12,s0 v = 25 is
the smallest possible order. We start with some relatively small examples.
EXAMPLE 8.1 (Z35,C) is a 4-perfect 12-cycle system of order 25,
where |

C = {(0+4, 144, 4+4, 1244, 1444, 544, 1644, 1144, 1744, 24+, 9+4, 21 +1) |
0 < i < 24}, with addition in Zs.

EXAMPLE 8.2 (Z,9,C) is a 4-perfect 12-cycle system of order 49, where
C = {(0+1i, 144, 344,641, 2414, T+i, 1344, 5+1, 1444, 24+4,10+4, 21 +i),
(0+4,7+4,19+44,35+14,13+4,47 +4,23+4,5+1,41 +1,18+4,1+4,30+1)
| 0 < i < 48}, with addition in Zs.

EXAMPLE 8.8 (21 x Zs,C) is a 4-perfect 12-cycle system of order
33, where C is obtained from the following four “starter” cycles, by cycling
mod (11, -); this yields 44 cycles altogether.
((0,1),(1,1),(0,3),(0,2),(1,3),(3,3),(1,2),(2,1), (3, 2),(2,2), (4, 1), 4,2)),
((0,1),(2,1), (4,2),(1,1),(3,3),(6,1),(1,3), (5,2),(10,3), (7,1), (1, 2), (7, 2)),
((0,1), (5,1), (10, 3), (6,3), (7,2), (10,2), (4,1), (1, 1), (8,1), (5, 2), (8,3), (9,3)),
((o’ 2)’ (2’ 2)‘ (10| 3)’ (9’ l)’ (2! 3)! (5’ 3)’ (0’ 3)! (o’ l)’ (7’ 3), (1’ 2)’ (5’ 2)’ (9! 3))’

EXAMPLE 8.4 (Z9x Z3,C) is a 4-perfect 12-cycle system of order 57,
where C is obtained from the following seven starter cycles, mod (19, —):
((0,1),(2,2),(9,2), (10,1),(11,1),(17,2), (12,2),(5,1),(1,1),(3,1),(0,2),(7,1)),
((0,1),(3,2),(11,2),(5,2), (8,2), (10,1), (6,2), (4,2), (0,3), (1,3),(0,2), (8, 1)),
((0,1),(4,2),(9,1),(0,3),(0,2), (3,3), (3,1), (6,1), (15,1), (2,1), (10, 2),(9,2)),
((0,1),(5,2),(11,1),(0,3),(2,3), (7, 1), (8,3), (11, 3), (12,1),(18,3), (4, 3), (16, 3)),
((0,1),(10,2), (0,2), (15,2), (4,3), (13,3), (9, 1), (4,1),(17,3), (5,1), (14,3), (3,3)),
((0,1), (0,2), (6,3),(8,1), (15,3), (13,1), (18,3), (2,2), (14,3), (1,3), (6,2), (11,3)),
((0,1),(1,2), (18,3),(7,2), (6,3), (18,2), (9,3), (13,3),(9,2), (3, 3), (13, 2), (15, 3)).

EXAMPLE 8.5 There exists a decomposition of Ka3\ Ko into 4-perfect
12-cycles.

Let the vertex set of Kas \ Ko be {(i,7) | 0 <i<20<j5<T7}u
{A,B,C,D,E, F, G,H,I}. Here the vertices {A,...,I} correspond to the
hole, and remain fixed. The 41 cycles are given in two parts:

First the following 13 starters are cycled mod (3, —) (with the elements
in the hole remaining fixed):

(An (0: 0)» (1’ 0), E, (0, 5): (0v4)' B, (1' 2)! (2’ 0)’ F, (224)t (0» 7))’
(€. (0,0),(0,1),G,(1,0), (2,1), D, (2,0),(1,1), H,(2,2), (1,2)),
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(Ai (Ol 3)! (113)' B’ (1) 1)’ (2’4)) C’ (0’ 1)’ (2! 2)! D’ (1|4)) (0’ 2))’
(4,(0,1),(1,3),C,(1,7),(2,3), F,(2,2),(0,3),/,(1,2),(1,5)),
(4,(0,6),(1,5),G,(2,6),(2,7), F, (2,5),(0,4), H,(1,7),(1,4)),

(B’ (0! 6)’ (2’ s)lHl (OI 3), (1)2)1G, (1’ 3)’ (l! 6)’ I’ (1’ 1)) (115))’
(D,(0,7),(2,1), F, (1,6),(2,4), E, (1,1),(0,5), 1, (1,0), (0,6)),

(B’ (o’ 7)7 (0’ 3)1 D' (0’ 5)’ (1' 3)’ E’ (2’ 7)’ (ll 7)' G’ (1’4)’ (2’ 0))1
(C,(0,5),(2,2), E, (1,6),(1,0), H,(2,5), (2,7), 1, (2,4), (2,6)),
((0,0),(0,4),(0,2),(0,6),(1,2),(2,7), (0,5), (2,0),(1,7), (2,1),(1,4), (1,3)),
((0,1),(1,5),(1,3),(2,7),(0,6), (2,1), (1,1), (1,2), (0, 4), (1,4), (2, 5), (2,6)),
((0,2),(2,7),(2,0),(2,5), (1,3), (1,1), (1,7),(1,2), (0, 0), (2, 3), (1,4), (0, 3)),
((0,3),(1,6),(1,1),(1,4), (0,0),(2,5), (1,5), (2, 2), (0, 6), (2,0),(0, 7), (2, 6)).

Then the following two cycles are taken (not cycled).

((0,0),(0,3),(1,1),(2,2), (2,0),(2,3), (0, 1), (1,2), (1,0), (1,3),(2,1), (0,2)),
((0,4),(1,6),(0,5),(1,7),(2,4), (0,6), (2,5),(0,7), (1,4), (2,6), (1,5), (2, 7))-

We also need the following crucial “building block” for the constructions
in this case, as there is no 4-perfect 12-cycle decomposition of K, 4 4.

LEMMA 8.6 The tripartite graph K12 12,12 has an edge-disjoint decom-
position into 4-perfect 12-cycles.

Proof: Consider the following idempotent quasigroup of order 12, obtained
from the direct product of

1141213 T3 T3
312|411

and 3121
411132 21113
213|114

Let the quasigroup operation be denoted o.
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10[11]9]12]6|7]5]|8

111101297 6| 8|5

A decomposition of K12 12,12 on the vertex set {i;} U {i2} U {is}, 1 <
+ < 12, into triangles, is given by

{(z1,32,(zoy)3) |1 <2 <12,1 <y <12}

We form 36 12-cycles from these 144 triangles. First we group the triples
into certain sets of four, and for each set

(a1, az, a3), (b1, b2, b3), (c1, c2, €3), (d1, d2, d3),
we take the 12-cycle
(a1, b2, 3, d1, ag, b3, c1, d2, as, by, c2, d3).
The 36 sets of four triples are as follows; herez =1,5,9andy =1,2,...,12:

{((z + i)ls (y + i)?s ((.'L' + ") ° (y + "))3) | i=0,1,2, 3}:
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if y lies in {1,2,3,4}, or in {5,6,7,8}, or in {9,10, 11, 12} then addition of
i is to be such that y+ ¢ remains in that set; so, for example, if y = 6, then
y+iequals 6,7, 8,5 for i =0,1,2,3. A straightforward check now shows
that this is indeed a 4-perfect 12-cycle decomposition of Kj3,12,12. ]

The Construction described in Section 2 above is now applicable here,
witha=12,e=1 or 9; so v = 24n + € with s = 2n.

If 2n = 0 or 2 (mod 6) we take a GDD on {(i,5) | 1 < i < 2n} with
groups all of size 2, while if 2n = 4 (mod 6) there is one group of size 4.
The required 4-perfect 12-cycle systems are all given above: K. 12,12,12, Kos,
K9 (since the GDD does not exist when n = 2), K57, Kas \ Ko and Kas.

In summary, we have:

THEOREM 8.7 The spectrum for 4-perfect 12-cycle systems is the set of
allv=1o0r9 (mod 24), v > 25.

4 Thecasek=>5

The necessary conditions for existence of a 5-perfect 15-cycle system of K,
are that v =1, 15, 21 or 25 (mod 30), and v > 15.
We start with some examples.

EXAMPLE 4.1 Since 15 is odd, and 31 and 61 are prime, there exist
Steiner 15-cycle systems of orders 31 and 61. (Lemma 1.3 above.)

There is also a 5-perfect 15-cycle decomposition of K555 (see Theorem
5.1 below). So, taking a GDD with n groups of size 6 (for n > 3), and
blocks of size 3, using the Construction in Section 2 above we obtain a
5-perfect 15-cycle system of K, when v = 30n+ 1. (Use a = 5, s = 6n,
e=1)

When v = 30n + 15 = 5(6n + 3), we use the Construction with ¢ = 0
and a = 5. Take a Kirkman triple system of order 6n + 3 as our GDD; so
only one case is needed:

EXAMPLE 4.2 (V,C) is a 5-perfect 15-cycle system of Kj5 where
V = (Z7 x Z2)U{oo} and the seven cycles in C come from the one starter
cycle:
(°°: (51 1)’ (5: 0)) (3v 0): (4v l): (0: 0)1 (6’ l)v (4s 0)! (l! 0)1 (2’ 0)’ (0, 1):
(3,1),(1,1),(2,1),(6,0)) cycled modulo (7, —) (with oo fixed).
When v = 30n + 21 = 5(6n +4) + 1, we use a GDD(3, {6,4*};6n + 4),
which exists for n > 3. (The asterisk means one group of size 4.) Use the
Construction with € = 1, @ = 5 and s = 6n + 4. Then 5-perfect 15-cycle
systems of orders 21, 31, 51 (and the isolated case of order 81) are needed.
We give ones of orders 21 and 51 below; for order 31 see Example 4.1.
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EXAMPLE 4.8 (V,C) is a 5-perfect 15-cycle system of order 21 where
V = Z; x Z3 and C consists of 14 cycles, obtained cyclically mod (7, —)
from the following two starter cycles:
((0,0), (1,0),(3,0), (6,0), (0, 1), (5,0), (1,1), (6,1), (5,1),(0,2),
(2,1),(3,2),(4,2),(2,2), (6,2)),
((0,1), (4,1),(5,0), (2,1),(2,0), (3,2), (6,0), (2,2), (6,1),(1,0),
(1,2),(3,0),(5,2),(1,1),(0,2)).

EXAMPLE 44 (V,C) is a 5-perfect 15-cycle system of order 51, where
V = Zy7 x Z3 and C consists of 85 cycles obtained cyclically mod (17, )
from the following five starter cycles:
((0,1),(1,1),(0,2),(1,2),(0,3),(2,1),(2,2), (4,1), (1,3), (2, 3), (4,3),
(3,2),(7,1),(3,1),(5,1)),

((0! 1)’ (3) 1)’ (0' 2)) (21 2)’ (1, 1)’ (7’ l)' (9’ 2)' (5l l)l (8l 2)l (Ol 3)’ (3’ 3)’
(8,3),(6,1),(15,2),(9,1)),

((0,1),(7,1),(0,2),(9,1), (16,2), (4, 1), (15,2), (10, 1), (15, 3), (11,1),(11,3),
(1,1),(10,3), (14,1), (3,3)),

((o’ 2)’ (5, 2)’ (9! 2)! (61 2)! (15) 2)’ (8! 2)’ (2’ 2)' (10’ 3)’ (2| 1)' (9’ 3)’ (8' 1)’
(7,3),(1,3),(1,2),(13,3)),

((0,3),(10,3), (15,1), (9, 3), (16,2), (6, 3), (2,2), (8,3), (6,2), (11,3), (7,3),
(15,3), (1,2), (12, 3), (14, 2)).

When v = 30n + 25 = 5(6n + 5), we use a GDD(3, {3,5%};6n + 5),
which exists for n > 2. We then need decompositions of K555 (Theorem
5.1 below), K5 (Example 4.2 above) and K5 (Example 4.5 below), and
use the Construction with ¢ =0, a =5 and 8 = 6n + 5.

(The isolated case of order 55 is also needed to complete this case.)

EXAMPLE 4.5 (V,C) is a 5-perfect 15-cycle system of order 25 where
V = Zs x Zg and C consists of 20 cycles obtained cyclically mod (5, —)
from the following four starter cycles:
((0,1),(1,1),(3,1),(0,2),(2,1),(1,2),(3,2),(2,2), (0,3), (4, 1), (2,3),
(1,3),(4,3),(4,4), (3,5)),
((ol 1)! (0, 2)! (4, l)l (1’ 3)’ (1) 1)' (0’ 4)’ (2’ 1)' (2’4)’ (2’ 2)' (lD 5)’ (3’ 3),
(1,4), (4,2), (2,5), (4,5)),
((0,1),(4,3),(0,5),(3,2), (3,5), (1,1),(1,5), (2,3), (2,2), (3,4), (2,4),
(0,4),(3,1), (4,5),(1,4)),
((0' 2)’ (1) 3)’ (2’ 4)’ (2’ 5)0 (0’ 3)' (3’ 2)! (21 3)7 (1D4)’ (3! 5)1 (37 3)’ (0! 4)1
(1,5),(0,5), (4,2), (3,4)).

Summarising, we have:

THEOREM 4.8 The spectrum for 5-perfect 15-cycle systems is the set of
allv=1, 15, 21 or 25 (mod 30), v > 15, except possibly the isolated case
v = 55.
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5 A general result

We have a decomposition of Ky s i into k-perfect 3k-cycles for any odd &
not divisible by 3.

THEOREM 5.1 Let k =1 or 5 (mod 6). There is a k-perfect 3k-cycle
decomposition of Ky i .

Proof: Let the vertices of Ki i i be
3
Ul <i<k
i=1

First, let k = 63+ 1. We take k cycles of length 3k as follows. For the jtb
cycle (for 1 < j < k) we take:

((l: 1)1 (j.2),(k—j+2,3),(2,1),(j+ 1:2)'(k-j+3’3):(3: 1):---1(23»1);
(G+28—-1,2), (k-5 +2s+1,3),(25+1,1), (j + 25,2), (k — j +25 +2,3),...
vy (841,1), (G +48,2), (k — j + 48+ 2,3), (48 +2,1),...,

cer(k,1),(G - 1,2), (k= § +1,3)).

Consider the edges at distance 1:

(i,1) is adjacent to (j +i—1,2),for1 < j < k;

(¢,1) is adjacent to (k— j +14,3),for1<j< k.
Also (j+1—-1,2) is adjacent to (k—j+i+1,3)forl <j<kandl1<i<k;
that is, (letting z = j + i — 1), we have (z, 2) is adjacent to (k — z + 24, 3),
forl<z<kandl <i<k. Now as 1 varies between 1 and k, so k —z+2i
takes all k values between 1 and k. (This is where we need k odd!)

Next, we check the k-perfect requirement. To do this, we list the k
triangles that arise from the j*® k-cycle given above. Recall that k = 6s+1.

Position in cycle Vertices of triangle

Lk+1,2k+1 (1,1),(7 + 2s,2),(k— 3 +4s+2;3)
2,k+2,2k+2 (7,2),(k—7+28+2,3),(4s+2,1)
3,k+3,2k+3 (k—3+23),(2s+2,1),(j +4s+1,2)
k, 2k, 3k (2s+1,1),(5 +4s,2),(k— 3+ 1,3).

Summarising this, we have the triangles ((3,1),(j +2s+1—1,2),(k—j +
48+i+1,3)), for 1 < i < 6s+ 1=k (where addition is modulo k). As j
varies between 1 and k, we see that (i, 1) occurs with (z,2) for 1 < z < k,
and also with (z,3) for 1 <z < k.
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In the case k = 63 + 5, we have a similar result. The k cycleé of length
3k are as follows, for 1 < j < k:

((l 1),(5,2), (k-3 +2,3),(2,1), G +1,2), (k- j +3,3),(3,1),..
.y (28,1),(F +28—1,2),(28 —5+1,3), (25 +1, 1), (7 +28,2), ...
.., (48+1,1), (+48,2), (48—§+2,3),. .., (68+5,1), (—1,2), (k—j+1,3)).

Again, consider edges at distance 1. The vertex (i,1) is adjacent to (j +
i-1,2)for1<j<kandalsoto (i—j4,3)for1<j<k.

Also the vertex (5 + i,2) is adjacent to (k — j + i + 2, 3); so (letting

= §+3) we have (3,2) adjacent to (k —2j+z+42,3)for1 <j<k(and k

is odd so that as j va.nw, k — 27 +x + 2 takes all values (mod k) between
1 and k).

The edges at distance k in the above (j*!) k-cycle give rise to the fol-
lowing triangles. (Recall that here k = 68+ 5.)

Position in cycle Vertices of triangle

1,k+1,2k+1 (1,1),(2s -5 +3,3),(i +45+3,2)
2,k+2,2k+2 (,2),(2s+3,1),(4s - j +5,3)

k,2k, 3k (j+2s+1,2),(4s+4,1),(k—35+1,3).

That is, we have the triangles ((i,1), (j + 45+ 2 +1,2), (28 — j + 2 +1,3))
for 1 < i < 63+ 5 = k, addition modulo k. For 1 < j < k, clearly (:,1)
occurs with all (z,2) and (z,3), 1 < z <k (since k is odd)

6 Further.values of k

6.1 Thecasek=7

Since k = 1 (mod 6), we have (Theorem 5.1) a 7-perfect 21-cycle decom-
position of K777. The necessary conditions for existence of a 7-perfect
21-cycle system of order v are v = 1, 7, 15 or 21 (mod 42).

For v = 1 (mod 42), let v = 42n + 1 and use the Construction with
a =17, 8=06nand ¢ = 1. There is a GD(3,6;6n) for n > 3; since 43 is
prime and 21 is odd we have a 7-perfect 21-cycle system of order 43 (Lemma
2.3). Also there is a 7-perfect 21-cycle system of order 85, to deal with the
case n = 2.

EXAMPLE 6.1.1 Let (V,C) be given by V = Zg5 and C as follows:
C={0+14%1+4i,3+4,6+42+4,7+4,13+4,44+4,11+4,19+4,5+

i,15+4,26 + 4,8+ 4,21 +4,9 + 4,25+ 4,40 + 1,57 + 4,14 4+ i,33 +9),
(0-+3,20+14,41 414, 144, 23+4,46+1,2+14, 37+i, 74+t,44+z,72+z, 124+

$,70+4,17+14, 76 414,38+ 1,67 +1,28 +1i,52+1,18+1,49+1) | 0 < i < 84}.
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Summarising,‘ we have:

THEOREM 6.1.2 The spectrum for T-perfect 21-cycle systems includes
the set of allv=1 (mod 42).

6.2 Results for some general k
As a consequence of Theorem 5.1 and Lemma 2.3, we have:

THEOREM 6.2.1 When k=1 or 5 (mod 6) and 6k + 1 is prime, then
there exists a k-perfect 3k-cycle system of order 1 (mod 6k), ezcept possibly
one of order 12k + 1.

Proof: Lemma 1.3 ensures that a k-perfect 3k-cycle system of order 6k+1
exists. Let v =1 (mod 6k), so say v = 6kn+1. Then we use the Construc-
tion in Section 2 above with € = 1, a = k, 3 = 6n, and GDD(3, 6; 6n) for
n 2> 3. This leaves possibly the isolated case (when n = 2) of order 12k +1.
a

COROLLARY 6.2.2

(i) When k = 11, since 67 is prime, the spectrum for 11-perfect 33-cycle
systems contains all v =1 (mod 66) ezcept possibly 133.

(#) When k = 13, since both 79 and 157 are prime, the spectrum for
13-perfect 39-cycle systems contains all v=1 (mod 78).

(#i) When k = 17, since 103 is prime, the specirum for 17-perfect 51-
cycle systems contains all v=1(mod 102) ezcept possibly 205.

We summarise our results in an easy-to-read table.
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The spectrum for k-perfect 3k-cycle systems for small &

k 3k Spectrum includes Undecided

2 6 1or9(mod12), NOT9 [13]

3 9 1 or9 (mod 18) (5]

4 12 1 or 9 (mod 24)

5 15 1,15,21 or 25 (mod 30) 55 '

7 21 1 (mod42) 7,15,21 (mod 42)
11 33 1 (mod 66) 33,45,55 (mod 66), 133
13 39 1 (mod 78) 13,27,39 (mod 78)
17 51 1 (mod 102) 51,69,85 (mod 102), 205

Clearly, much work remains to be done, in particular for cases with
k =0 (mod 3). At present, no suitable 6-perfect 18-cycle decomposition is
known of Kg 6, or of Kis,18,18. However, the authors have further partial
results, in particular, 6-perfect 18-cycle systems of orders 37 and 73, and
8-perfect 24-cycle systems of orders 33, 49, 81 and 97. '
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