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Abstract

We introduce a complex version of Golay sequences and show how
these may be applied to obtain new Hadamard matrices and complex
Hadamard matrices. We also show how to modify the Goethals-Seidel
array so that it can be used with complex sequences.

1 Preliminaries

For background on Hadamard matrices and complex Hadamard matrices,
see [7] and [8]. Hadamard matrices are conjectured to exist in all orders 4p,
and complex Hadamard matrices are conjectured to exist in all orders 2p,
where p is any positive integer. With a couple of trivial exceptions, these are
the only possible orders in both cases. One of the most effective methods
for obtaining Hadamard matrices uses sequences with zero autocorrelation.
We introduce here some conventions for working with sequences.

A sequence a = (aj,...,an) (of real numbers) is said to have length
n. To each sequence we associate a polynomial fs(z) = Y i, aiz’. We
define an involution on the set of (Laurent) polynomials by f*(z) = f(z™!).
The autocorrelation (respectively periodic autocorrelation of period p) of a
sequence a is the sequence associated with the positive degree terms of
the polynomial f,f,* (respectively fofs* mod (z? — 1))!. We define the
autocorrelation of a set of sequences to be the sum of the autocorrelations of
the sequences in the set. When dealing with (nonperiodic) autocorrelation,
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1 Autocorrelation is usually defined as a function based on convolution of sequences,
which amounts to the same thing.
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we generally understand every sequence to have an arbitrary number of
zeros appended to it, although these are not neccesarily counted in its
length.

k sequences a, b, ..., z are complementary if they have zero autocorrela-
tion. The weight of a set of complementary sequences is the constant term
(ie, the only nonzero term) of the polynomial f,f,* + fofo* + -+ fof2".
Displaying sequences, we use the convention that — represents —1.

For example, the sequences

a = (1000100)
b = (01010 0)
¢ = (0010000)
d = (0000001)

comprise a set of four complementary (0, +1)-sequences of length 7 with
weight 7, for

(fafa. + fbfb‘ + .fcfc‘ + fdfd‘)(x)
= 1+z2Y)Q+z Y+ @@+ -2z '+ 3 -5 + 2222 4 262°
= Q2+zi+zH)+@B-z' -z +1+1
= T

We use a* to denote the sequence whose elements are those of a, in
reverse order (Warning: f,* = '™ f,., in general, rather than f,.). If a,b
are sequences of lengths m, n respectively, we use a®b to denote their direct
product, (a1b, ..., a,b), which will have length mn (here a;b represents the
“scalar” product of the number a; and the n-tuple b; commas indicate
concatenation of sequences).

To each sequence, a = (ay,...,an), We associate the n x n circulant
matrix A with first row (ay,...,as) (denoted A = circ(ay,...,a,)). We
can also write A = f,(X), where X = ¢irc(0,1,0,...,0), and note that
At = f,*(X), and so if A = circ(a), B = circ(b), etc., the set {a,b,...} has
zero autocorrelation with weight w precisely when AA* 4+ BBt + ... = wl.
The matrices A, B, etc. naturally commute, since they are all polynomials
in X.

One last cbservation: if R is any back-circulant matrix, then AR is
backcirculant, and therefore symmetric, when A is circulant. It follows
that AR' = RA*. Henceforth, we shall use R to denote some fixed back-
circulant permutation matrix of appropriate size.
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2 Hadamard matrices from sequences

Two complementary (+1)-sequences, a,b of length g are called Golay se-
quences. If A = circ(a) and B = circ(b), it can be verified directly that the

matrix g, :ﬁB is an Hadamard matrix of order 2g.
There are Golay sequences of lengths 1,2,10 and 26, as follows.

g=1: a=(1),b=(1)

g=2: a=(11),b=(1-)

g=10: a=(11—1-1--11),b=(11-11111 - -) 1)

g=26: a=(1111-11—-1-1~1——-1-111—-111),
b=(1111-11--1-11111-1- - -11 - —=)

The following result is well-known [7].

Lemma 1 If a,b are Golay sequences of length g, and c,d are Golay se-
quences of length g2, then

b= sl@+h)@ct(@-b)ad]
and
ko= %[(a+b)®d—(a—b)®c‘]

are Golay sequences of length g192.

It follows that there are Golay sequences for all lengths g = 2°10%26°,
a,b, ¢ > 0, and Hadamard matrices constructed as above from each of these.

Theorem 2 There is an Hadamard matriz of order 2°10°26¢ (constructed
from Golay sequences), for anya >0, b,c > 0.

We may also use the circulant matrices corresponding to four comple-
mentary (Z1)-sequences of length n in the Goethals-Seidel array,

A -BR -CR -DR
BR A -D'R C'R .
CR DR A -BR| )
DR —-C'R B'R A

To obtain an Hadamard matrix of order 4n. There are a good many con-
structions for such sequences {7, but we mention here one which uses Golay
sequences.
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Lemma 38 If u,v are Golay sequences of length g1 and z,y are Golay se-
quences of length g3, thena = (u,z), b= (4, —z), c = (v,y) andd = (v, —y)
are four complementary sequences of length g1 + go.

This has the following immediate consequence.

Theorem 4 There is an Hadamard matriz of order 4(g, +g2) (constructed
from the Goethals-Seidel array), where g, and gy are the lengths of any
Golay sequences.

Powerful as these results may be when they apply, they are nevertheless
quite minor in their impact on the known orders for Hadamard matrices,
for a couple of reasons. First, in spite of much work on the part of some
rather good mathematicians armed with computers, no new lengths for
Golay sequences have been found to add to the rather sparse set used
for theorem 2. In fact all lengths up to 100, except 68, 74 and 82 have
been eliminated and Eliahou, Kervaire and Saffari [4] have recently shown
that Golay sequences do not exist for any length divisible by a number
= 3 mod 4. Some researchers are now of the opinion that no new ones are
likely to be found. Second, the only possible cdd length for Golay sequences
is 1, and for any t there are only finitely many known Golay sequences not
divisible by 2¢, and so there are only finitely many Hadamard matrices of
orders 2¢p, odd p, known to be obtained by theorem 2, and theorem 4 gives
only a very sparse, albeit infinite, set of matrices of orders 2¢+1q, odd q.

3 Complex sequences and Hadamard matri-
ces

Theorem 5 If A, B are (0,%1)-matrices such that A+ Bi is a complez
Hadamard matriz of order n, then A® ( } 1 ) +B® ( I i ) i3 an
Hadamard matriz of order 2n.

It was this fact that motivated Turyn [8] to study complex Hadamard
matrices. We shall consider how to use complez sequences to obtain complex
Hadamard matrices.

We adopt the same conventions for complex sequences as for real ones,
except that for a sequence a = (ay,...,a,), a* is defined as (@,,...,a),
and fo*(z) = T, @z

We say that complementary complex (1, +i)-sequences a,b of length
g are complez Golay sequences. As before, if A = circ(a) and B = circ(b),

then ( ;‘ ;1,,3 ) is a complex Hadamard matrix of order 2g.
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Every (real) pair of Golay sequences is obviously also a pair of complex
Golay sequences. In addition to these, we offer the following examples.

=3: = (11—), b= (1 '1)
z =5: : =(iil-1), b= (3'111,'_) @)

Evidently, some of the theoretical restrictions associated with Golay
sequences do not apply to complex Golay sequences, for both these lengths
are odd, and 3 = 3 mod 4. Now, as with Golay sequences, it is possible to
multiply the lengths of complex Golay sequences, although if neither pair
is real, there is an extra factor of 2 in the resulting length.

Lemma 6 Let a,b be complex Golay sequences of length g1 and c,d be
complez Golay sequences of length g2. Then

1. (a®c,b® d*) and (a ® d,—b ® c*) are complez Golay sequences of
length 29:192;

2. if we further assume that a and b are real, 3[(a+b)®c+(a—b) ®d*]
and }[(a+b)®d—(a —b)®c*] are complez Golay sequences of length
9ng2.

This gives us complex Golay sequences of all lengths 203%5¢26¢, a,b,¢,d >
0,a>b+c~—1.

Theorem 7 There is a complez Hadamard matriz of every order 2°113%5°26¢
(constructed from complex Golay sequences), a,b,c,d >20,a 2 b+c—1.
Consequently, there is also an Hadamard matriz of order 2°+23%5°264.

Obviously, the next step is to use complex Golay sequences to obtain
sets of four complementary complex (+£1, &4)-sequences.

Lemma 8 If u,v are complez Golay sequences of length g1 and z,y are
complex Golay sequences of length g2, then a = (u,z), b = (u,—x), c =
(v,7) and d = (v, —y) are four complementary sequences of length g1 + ga.

To use such sequences, we can no longer rely on strict analogy to the
real case, for we see that a complez circulant matrix A does not neccesarily
satisfy AR* = RA*, and because of this, complementary sequences used in
the obvious complex version of the Goethals-Seidel array do not neccesarily
give a complex Hadamard matrix.

To resolve this difficulty, we require only a very simple application of
signed groups. See [2] for a brief introduction to these; this, however, is
not neccesary in order to follow the method given here. Here, we simply
consider the group, S, of all 2 x 2 signed permutation matrices (this is
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an example of what we call a signed group), and the ring of 2 x 2 (real)
matrices, which contains it. There is a well-known embedding of the set of
complex numbers into this ring given by the identifications

1o (01) @

i o ((1);) (5)

Let us introduce another symbol, s, such that s> = 1, is = —is, thereby
extending the complex numbers to a larger ring, R, with subgroup {31,
&4, %3, +is}, which is identified with S by the (unique) ring isomorphism
extending (4), (5) and
10
oo (52) ®

Complex conjugation extends to an involution in R such that = s, which
corresponds to the transpose of 2 x 2 matrices. Now we say that an n x n
matrix H with entries in S is a signed group Hadamard matriz SH(n, S) if
HH* = nl, where * is the extension of the Hermitian adjoint to matrices
with entries in R, using this involution in place of complex conjugation.

This is a simple generalization of the notion of a complex Hadamard matrix.

There is no “penalty” (in terms of higher powers of 2 in the order of the
resulting matrix) associated with converting these signed group Hadamard
matrices to ordinary Hadamard matrices, beyond that already present in
theorem 5.

Theorem 9 If A, B, C and D are (0,+1) matrices such that A+Bs+Ci+
Dis = SH(n,S), thenA@( 11 )+B®( 11 )+C’®( 1 })+

D® ( 1 ) 13 an Hadamard matriz of order 2n.

and

11

Now consider the fact that, for all complex numbers )\, we have A5 = s\.
It follows that if A is any complex circulant matrix, A(Rs)* = (Rs)A*.
Therefore we may modify the Goethals-Seidel array as follows so that it
can be used with complex sequences.

Theorem 10 Ifa,b,c and d are complementary (£1, :I:i)-eequencea of length
n, then

A —-BRs -CRs -DRs
BRs A -D*Rs C*Rs
CRs D*Rs A —B*Rs
DRs —-C*Rs B*Rs A

= SH(4n, S). )
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Table 1: Some “new” Hadamard matrices 2°p, p odd

p= | 419 | 479 | 491 | 653 | 659 | 839 | 1257 | 1319 | 2033 | 3749 |
[ “new” t| 3 4 5 3 4 4 4 4 3 3
“previous best” | 4 | 5 | 15 | 4 | 17 | 8 5 18 4 4

Consequently, there is an Hadamard matriz of order 8n.

Lemma 8 and theorem 10 together give a large new class of Hadamard

matrices.

Corollary 11 There are signed group Hadamard matrices SH(4n, S), and
therefore Hadamard matrices of orders 8n, for any n = 2%13b15¢126%1
2%3ba50226d31 a4, bia Gi,d.’ 2 0; a; 2 bi +¢; — l,i= 1’2-

Table 1 indicates some Hadamard matrices that can be obtained in this

fashion, that are “new” in the sense that they are not found in the most
comprehensive tables to date, [5] and [7]2.

4

Concluding remarks

. The results of theorem 10 are somewhat less sparse than those of theo-

rem 4. Our method is not bound by the same theoretical constraints
as the original, so the possibility remains, and indeed seems quite
likely, that it can be further extended by finding more complex Golay
sequences, particularly of odd order. In any case, it is evident that
every new complex Golay sequence found will give new infinite classes
of Hadamard matrices. A search for more complex Golay sequences
may therefore be worthwhile.

. For simplicity, we have not considered more general sets of four com-

plementary complex sequences, but these clearly exist in greater abun-
dance than is known for real ones. One way to get more is to use a
complex version of base sequences (for example, complex Golay se-
quences of lengths g; and g2 give complex base sequences of lengths
g1, 91,92, 92). Yang multiplication [7], [9] happens to work for com-
plex base sequences, and so we have four complementary complex
sequences of lengths y(g1 + g2), where some known admissible values

2These are not truly new in all cases, as we have elsewhere used signed groups to

provide comprehensive constructions for Hadamard matrices which equal or better these
results in some—but not all—cases. See, for example, [2], [3].
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ofyare 3,5, 7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 31, 33, 37, 41, 45,
51, 63, 59 and 2g + 1, where g is the length of Golay sequences.

3. We can also perform a complex version of Yang multiplication, multi-
plying real or complex base sequences by 2g + 1 (for example), where
g is the length of complex Golay sequences.

4. We can apply the methods given in [2], [3] to get SH(4(n+1), SPys)3
from four complementary complex sequences of length n. This gives
an Hadamard matrix of order 27(n +1). A few examples (all new)
are Hadamard matrices of orders 27p, p = g, + g2 + 1 = 1447, 1571,
2039, 2671, 3359, 3437, improving on the previous best known 2'p,
namely ¢t =19, 8, 10, 9, 22, 9 respectively.

5. There are other uses for complex sequences, such as the construction
of complex orthogonal designs [6]. There are complex versions of T-
matrices, which can be used in combination with complex versions of
Williamson-type matrices to further multiply the possibilities, as in
the method of Cooper and J. Wallis [1).

Note added in proof. Holzmann and Kharaghani report that an ex-
haustive computer search turned up no complex Golay sequences of lengths
Tor).
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