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Abstract. Let p(k) (g(k)) be the smallest number such that in the projective plane
every simple arrangement of n > p(k) (2 q(k)) straight lines (pseudolines) contains
k lines which determine a k-gonal region. The values p(6) = q(6) = 9 are determined
and the existence of g(k) (> p(¥)) is proved.

In 1931 Esther Klein asked for the smallest number f( ) such that in the Eu-
clidean plane every set of n > f(k) points, no three collinear, contains a convex
k-gon. The existence of f(k) can be deduced with Ramsey’s theorem ([5]). The
exact values f(3) = 3, f(4) =5, and f(5) =9 are known, but in general only
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is proved (see[1), F8).

If straight lines are used instead of points one can ask for the smallest number
f1(k) such that in the Euclidean plane every arrangement of n > fi(k) straight
lines, no two parallel, and without multiple intersections, one can find & straight
lines which contain the sides of a finite convex k-gon. From the unique arrange-
ments of 3 and 4 straight lines it follows trivially f;(3) = 3 and fi(4) = 4.
However, for k > 5, arrangements as in Figure 1 prove the nonexistence of f1 (k)
since any set of k lines determines only triangles and quadrilaterals.

Since duality of points and lines holds in the projective planc a subsequent ques-
tion could be as follows. What is the smallest number p( k) such that in the pro-
jective plane every set of » > p(k) points, no three collinear, contains a convex
k-gon where k points are considered as vertices of a convex k-gon if there exists a
mapping of the projective plane onto itself such that the k points form a convex k-
gon in the Euclidean sense, that is, the convex k-gon has no point in common with
the line at infinity. Then by duality it is also guaranteed that p( k) is the smallest
number such that in the projective plane every simple arrangement of n > p(k)
straight lines (simple means, no multiple intersections) contains a simple arrange-
ment of k straight lines such that a (convex) k-gon occurs among the regions the
plane is partitioned into by this arrangement of k lines.

The existence of f( k) implies trivially the existence of p(k):

p(k) < f(k).
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Figure 1
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Figure 2

The numbers of nonisomorphic arrangements of 3, 4, and 5 straight lines in the
projective plane are one in each case (see [4]). Since these unique arrangements
determine a convex 3-gon, 4-gon, and 5-gon, respectively, it holds

p(k) =kfork=3,4,5,

Here we will determine the next value.
Theorem 1. p(6) = 9.

Proof. Two arrangements are called isomorphic if there exists a one-to-one inci-
dence-preserving correspondence between their intersection points, line segments,
and regions. There exist 11 nonisomorphic simple arrangements of 7 lines (see [4,
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Figure 3

p-395]). Only 3 of them do not contain a simple arrangement of 6 straight lines
such that one of its regions is a hexagon. These 3 arrangements are shown in
Figure 2. In Figure 3 the same arrangements are represented by the corresponding
pseudolines where one line is mapped to the line at infinity, represented by the
circle. It may be noted that for n pseudolines with » < 8 every arrangement
is stretchable (see [2]), that means, there exists an isomorphic arrangement of
straight lines.

Now an eighth pseudoline will be added to the arrangement (34),1=1,2,3 in
all possible ways avoiding that this additional line together with five lines of (31)
determines a hexagonal region. If the regions are labelled as in Figure 3 and if
symmetry is considered then all possibilities are covered by the rows in Tables 1
to 3 where the eighth line always starts with the intersection of the line at infinity.
Only those rows with (4.1) or (4.2) at the end guarantee an eighth line which does
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not determine a hexagonal region together with five of the other pseudolines. All
possible arrangements are isomorphic to the two pseudoline arrangements (4.1)
and (4.2) in Figure 4. The corresponding straight line arrangements are repre-
sented in Figure 5. These arrangements prove p(6) > 9.

The same procedure as above for the arrangements (4.1) and (4.2) leads to Ta-
bles 4 and 5. Since it comes out that no row can be completed cyclically it is
proved that every arrangement of nine pseudolines contains six which determine
a hexagonal region, and p(6) < 9 is proved. 1

Figure 4

Figure 5
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(3.1): 19111314151617 20121415161719
3276 18
20 51819 (4.1)
109 876 619
20 7 (42)
2120 4 51819 (4.2)
222120 619
7 @4.1)
1619
2
1110 9 8 7
21
221
Table 1
(32): 19111314151617 20121415161719
31518 (41) 5 619
720 7
276 (41) 4 51819
20 619
109876 7
1110 9 8 7
222120 21
2221
Table 2
(3.3): 221415161920 211331 5 620 20121314171819
6 821 7922 151819
56 821 2762 1619
17 9@2 10 922 (4.1) 1110 9 8 6
4 5 62021 (42) 21
89 2221
21
327
10 9 (4.2)

11

1911 3 4141718 (4.2)
562
1 51518
620
76

181023131417 (4.1)
41417 (4.2)
5
7 61615
19
2019 (4.1)
98 6 §
1615
19
2120

Table 3

175

17 97131314
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6161514
865 414
1518
161514
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2120
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@1 2918192124

28141516 11

2613141819 5 6 7

543109 3272 212427
29 41299 20232425
6 726 625 27
8 9 121110 92928
28 8 7
171516 11 28
32
56789
28
26
25
271215 4 1 2 2411161514182023 2310 3 4 51918
62524 17 52225 2124
52221 21 222120
2526 182023 25
1756 72 34522
25 21
22124 2 72627
252 10 929282625
27
876
28
20921 41514
6252423
126272421
23
87651718
1918
21
28
Table 4

For k = 7 the arrangement of 13 lines in Figure 6 does not contain 7 lines which
determine a heptagon. This proves p(7) > 14.
In general
p(k) > 1+ 2072

can be deduced from f(r) > 272 since any Euclidean set of points without
a convex r-gon does not contain a convex (2 — 1)-gon in the corresponding
projective plane.

If in the definition of p(k) pseudolines are used instead of straight lines then
for the corresponding function g( k) holds

q(k) > p(k).

176



(42) 291819 5 625 28141516 11 26131215 4 1 2
726 32172 625
89 41292 1110 9 8 7
28 625 28
4310 17 4 310 929 2928
141516 11 2 929 141719212427
32 726 412
1292 625
625 1819 5 625
1921242726 7
212427
20232425
27
271215 4 5 6 726 2411161514182023 2310 3 41714
2524 3272627 192124
22252 109 87 625 51918
21 2627 2124
12 28 2225
62524 29282625 2120
27 24
209 21 41514
1714
1918
21
6252423
726272423
87 6 51918
21
252423
26272423
28
Table 5

From the preceding arguments g(k) = p(k) for k < 6 follows immediately.
However, in general there are more arrangements of pseudolines than of straight
lines and thus the existence of g( k) remains questionable.

Theorem 2. There exists a smaller number g( k) such that in the projective plane
every simple arrangement of n > g( k) pseudolines contains k pseudolines which
determine a k-gonal region.

Proof. At first we prove the following Lemma,
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Figure 6

Lemma. In the projective plane an arrangement of k pseudolines determines
a k-gonal region if and only if every arrangement of six of the k pseudolines
determines a hexagonal region.

Proof of the Lemma. One part of the proof follows immediately.
If every set of six lines determines a hexagon then we assume that s < k is
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the largest cardinality of a subset of the k pseudolines L;, 1 < i < 5, which
determines an s-gon R,. Consider one of the k — s > 1 additional lines, say
L. If L intersects R, then L does not intersect consecutive sides of R, since s
is a maximum. Thus three of the s lines can be chosen which together with the
two lines of the intersected sides of R, determine a pentagon such that L does not
intersect consecutive sides of the pentagon. Since there exists only one pentagon
in the unique arrangement of five lines (see{4]) a hexagon can be originated only if
the sixth line intersects consecutive sides of the pentagon. Thus the five lines of the
pentagon together with L determine six lines without a hexagon which contradicts
the assumption.

It remains that L does not intersect R,. Consider those neighbored triangles
T; of R, which are determined by the lines of three consecutive sides of R,. If L
intersects one T; then L instead of L; together with the remaining s — 1 sides of R,
determine an s-gon R!, which is intersected by L; as above. If L does not intersect
any of the T; then deletion of one line L, leaves s — 1 lines which determine an
R,—1 by the union of R, and T,. Since L does not intersect R, the arguments
can be repeated as long as a pentagon Rs remains which is not intersected by L.
Then, however, six lines exist which do not determine a hexagon in contradiction
to the assumption. This proves the Lemma.

To continue the proof of Theorem 2 the existence of the Ramsey numbers Rg(9, k)
(see [3]) can be used. All six-tuples of n pseudolines are partitioned into two
classes those which determine a hexagon and those which do not. Then for n >
Rs(9, k) either 9 pseudolines can be found such that no six-tuple determines a
hexagon, or k pseudolines exist such that every six-tuple determines a hexagon.
Since the first case contradicts Theorem 1 the second case remains, and together
with the Lemma k pseudolines determine a k-gonal region. 1

Although the existence of g(k) is guaranteed by Theorem 2 no example is
known so far where g( k) exceeds p( k).
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