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ABSTRACT. A dependence system on a set S is defined by an
operator f, a function on the power set of S which is extensive
(A is included in f(A)) and monotone (if A is included in B,
then f(A) is included in f(B)). In this paper the structure
of the set F'(S) of all dependence systems on a given set S is
studied. The partially ordered set of operators (f < g if for
every set A, f(A) is included in g(A)) is a bounded, complete,
completely distributive, atomic and dual atomic lattice with an
involution. It is shown that every operator is a join of transitive
operators (usually called closure operators, operators which are
idempotent ff = f). The study of the class of transitive opera-
tors that join-generate all operators makes it possible to express
F(n) (the cardinality of the set F'(S) of all operators on a set S
with n elements) by the Dedekind number D(n). The formula
has interesting consequences for dependence system theory.

1. Introduction

A dependence system (S, f) is a structure defined on a set S by an operator
[, an extensive and monotone function on the power set of S(VA,BC S :
AC f(A)and A C B = f(A) C f(B)). The notion of a dependence system
is a generalization of the notion of a closure space. Indeed, a dependence
system is a closure space if f is idempotent, i.e. for every subset A of
§: ff(A)= f(A). :

Motivations for this generalization and an extensive study of properties
of dependence systems may be found in the author’s dissertation [9] and
a series of papers in which ideas of the dissertation have been developed
[10-13]. In this paper we consider the structure of the set F(S) of all
dependence systems on a given set S, in particular a partial order relation
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on F(S) defined by: for all f,g in F(S), f < gif VAC S: f(A) C g(A).
This partially ordered set is a bounded, complete, completely distributive,
atomic and dual atomic lattice with an involution (atomic fuzz according to
the recently introduced terminology [1]). There is also a natural structure
of a monoid on F(S) with respect to the composition of operators. The
partial order is compatible with the monoid operation so that (F(S), o, <)
is a po-monoid, but not divisibility monoid. The connections between the
ordering and monoid structure seem to be rather loose, therefore we will
study mainly the former one.

The set of join-irreducible elements, essential in every complete, com-
pletely distributive lattice, consists of operators of a special type which we
study in detail. Surprisingly, these operators are transitive, hence every
operator is a join of transitive operators. Also, a more extensive class of
operators of elementary type will be considered. We use the representation
of operators by join-irreducible operators to find a formula for the cardinal-
ity F(n + 1) of the set F(S) of all operators on an (n + 1) element set S in
terms of the n-th Dedekind number D(n) (the number of antichains in the
power set of an n-element set ordered by inclusion): F(rn+1) = [D(n)]"*!.
The problem of finding an eflective formula for D(n) is still open (the for-
mula given by Kisielewicz [7] requires more operations in calculations than
the number itself, so can not be used even for n = 8), therefore the search
for an alternative formula for F(n) indicates a new possible direction in at-
tempts to solve the Dedekind problem. Recently D(8) has been found [17],
so F(n) is known now for n < 9. However, the formula for F(n) in terms
of D(n) can be used to solve the problem of determination of operators
by families of subsets. The classical results of particular kinds of depen-
dence systems (closure spaces, topological spaces, matroids etc.) show that
those systems are uniquely determined by the choice of some family of sub-
sets (closed subsets, open subsets, independent subsets, generating subsets,
bases etc.). The problem was: what family of subsets (if any) determines a
general operator. In our paper we show that for finite n > 4 operators on
an n element set can not be determined uniquely by any family of subsets.
Moreover, they can not be determined by any fixed number of families.

2. Preliminaries of dependence system theory

For brevity we will use the symbol Fin(A) for the family of all finite subsets
of a set A. Also, superscript ¢ will be used for the complementation in a
universe set S when from the context it is clear which universe set is meant.

Definitions of lattice-theoretical concepts not given in this paper may
be found in Birkhoff’s monograph [2]. Here we will recall only that a
strong orthocomplementation, called also an involution, on a poset P is
defined as a mapping * : P — P satisfying the following conditions:
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Vz,y € P:z <y =>y* < z*and z** = z. If P is a bounded lattice with the
least and greatest elements 0 and 1, then a strong orthocomplementation
* is an orthocomplementation if additionally Vx € P : z Az* = 0 and
zV z* = 1. We follow the literature of the subject in using this confusing
terminology.

Definition 2.1: A pair (S, f) where S is a set and f is a function from
the power set of S into the power set of S satisfying the following two
conditions:

i) VACS:AC f(A),
i) VAL BCS:AC B= f(A)C f(B),

is called a dependence system on set S defined by operator f.

If f satisfies also: (I) VA C S : f(f(A)) = f(A), then (S, f) is called
a transitive dependence system and f is called a transitive or idempotent
operator. Transitive dependence sytems are often called closure spaces and
transitive operators, closure operators. The set of all operators on a set
S will be denoted F(S), the set of all transitive operators I(S). We will
consider also other classes of operators distinguished by some conditions. -
They will be denoted by capital letters possibly preceded by some small
letters indicating variations of the property. If a given class is the intersec-
tion of some other classes, its name will be denoted by the juxtaposition of
the names of the intersecting classes; for example the intersection of classes
abX(S) and cdY(S) will be denoted by abXcdY(S). We will omit S and
write F, I, abXcdY if no confusion is likely.

There is a partial order defined on F(S) by: Vf,g e F(S): f < g

iff VACS: f(A) C g(A). We can also define a semigroup structure on
F(S) with respect to the composition of operators written as juxtaposition:
Vf,g,h € F(S): f=ghif VAC S : f(A) = g(h(A)). F(S) is a monoid
with respect to composition as there exists an operator e defined by: VA C
S : e(A) = A which satisfies Vf € F(S) : ef = fe = f. Moreover there
exists a zero operator defined by: VA C S : o(A) = S which satisfies
VfeF(S):of = fo=o.
Definition 2.2: For every dependence system (S, f) the derived set oper-
ator is the function from the power set of S into itself given by: df : A —
A¥ = {z € S:z € f(A\{z})}. We will use either the traditional notation
A¥ | or the more convenient one: df(A). The notion of a derived set op-
erator provides an equivalent way dependence systems can be defined. For
every function d : 25 — 2° satisfying conditions:

i) VA,BCS:AC B= d(A)C d(B),
i) VACSVzeS:zedA)iff zed(A\{z}),
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the function f defined by: VA C S: f(A) = AUd(A) is an operator on S
and df = d.

‘Definition 2.8: For every dependence system (S, f) the following function
from the power set of S into itself constructed by the consecutive applica-
tion of the operator df and the set-theoretical operations in the power set
of S defined by: VA C S': f*(A) = AU A°¥€ is an operator called the dual
operator of f.

Also, we say property X is dual to property Y(X = Y*) if for every
operator f, f has property Y iff f* has property X.

Definition 2.4: For every dependence system (S, f) the following families
of subsets of S are distinguished: VAC S:

i) A € f-Cl C 25 iff f(A) = Aiff AY C A, and we say that A is
f-closed, or closed if no confusion is likely.

ii) Aef-Ind C 25 iff ANAY =0 iff Vz€ A:z ¢ f(A\z) and we say
that A is f-independent or simply independent.

iii) A € f-Gen C 25 if AUAY = S iff f(A) = S and we call A an
f-generating set or simply a generating set.

iv) A € f-Base C 25 iff A € f-Ind N f-Gen iff AY = A° and we call
A an f-base or simply a base.

The particular cases of dependence systems can be distinguished by some
additional conditions imposed on the operator.

A topological space can be described by INfA-operator (i.e. operator
which has the properties I, N, fA), where: N means the normalization
condition: f(0) = 0, fA means the finite additivity: YA, B C S : f(AUB) =
J(A)U f(B), and I is the transitivity (or idempotence) condition mentioned
above which completes the set of assumptions for the standard closure
operator. This condition can be formulated in a few eqivalent ways for
instance by the formulas: VA,B C S: A C f(B) = f(A) C f(B), or
VA,BC S:AC f(B)= f(AUB) C f(B).

An algebraic generating operator (subalgebra operator) is an IfC-operator,
where fC means finite character: Vzx € SYAC S:z € f(A) = 34 €
Fin(A) : z € f(Ao).

A matroid can be defined as an IWEfC-operator where WE is weak ez-
change: Vz,yVAC S:z ¢ f(A)and z € f(AUy)=>y € f(AUz).

The name weak ezchange indicates the existence of more restrictive prop-
erty called exchange: (E) : Vx € S VA B C S : z € f(A) and
z¢ f(A\B)=>3yeB:ye€ f(A\yUz). :
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The notion of a geometry requires slightly more restrictive conditions. It
is defined by IWEfCNt; S-operator, where t;S denotes the well-known Ty
condition from topology, also known as the separation axiom of Frechet:
Vz e S: f({z}) = {=}.

The transitivity condition can be weakened in many ways. For instance.
weak idempotence wl is given by: VA, B C S : A € Fin(S) = [A C
" f(B)= f(AUB) C £(B)]. |

It appeared [6] that the weak exchange is the dual property to the weak
idempotence i.e. WE(S) = wI*(S) (also E(S) =I*(S)).

We can write the fundamental relations among the properties of operators
using the symbol of inclusion of classes: I(S) C wiI(S), wIfC(S) C I(S),
wEWIfC(S) C IE(S). Certainly, for a finite set S we have wI(S) = I(S)
and wE(S) = E(S).

We will refer to the notion of a direct sum of dependence systems [13].

Definition 2.5: Let {(S;, f;) : ¢ € I} be a family of dependence systems
defined on the disjoint family of sets {S; : i € I'}. Let $ = |J{S; : i € I}.
Then the dependence system (S, f), where f is defined by: VA C S :
J(A) = U{fi(AN S;) : i € I} is called the direct sum of {(S;, f) : i € I'}.
We will write (S, f) = Y {(Si, fi):i€l}or f=3{fi:ieI}.

3. Basic properties of the structure of operators on a set S

In the preliminaries we defined a partial order on the set of operators on a
givenset S: f < gif VAC S: f(A) C g(A). With respect to this partial
order (F(S), <) is a complete, completely distributive lattice. This follows
directly from the fact that meets and joins are given by intersections and
unions of sets. Indeed, given a family of operators {f; : ¢ € I} on a set
S,then VAC S:v{fi:ie I} A) =u{fi(A):ieI}andMfi:ie€
I}A) = ~{fi(A) : i € I}. Therefore VAC S: Mv{fi;:jeJ}:i¢€
IY(A) = n{"{fi;(A): € J}:ie I} ="{n{fuw(A) :i€l} ke J} =
v{MFikiy 1 € I} : k€ JI}(A) (J! is the set of all functions from I to J.

(F(8), <) is a lattice with least element the identity operator e (VA C
S : e(A) = A) and greatest element o (VA C S: o(A) = S).

Recall that the operator dual to f is f*, where YA C S : AY* = Acdfc
Evidently f** = f, and for all operators fandgon S: f < g iff VACS:
AY C A% iff VAC S : A¥ C A°Y iff VAC §: A°¥° C A°¥e jff g* <
f*. Therefore the duality on operators defines an involution (strong ortho-
complementation) on the lattice (F(S), <).

Now we can summarize:

Proposition 3.1. The set of all operators on a given set S with respect to
the ordering of operators is a bounded, complete, completely distributive
lattice with an involution.
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We have also the structure of a noncommutative monoid with zero under
composition of operators. The unity is the identity operator VA C S :
e(A) = A, the zero operator is VA C S: 0o(A) = S. The monoid operation
is compatible with the order: Vf,g,h € F(S): g < h = [fg < fh and
gf < hf], so that (F(S), o, <) is a po-monoid, but it is not a lattice ordered
monoid as only one-sided distributivity condition is satisfied: VA C S :
V{fi 11 € I}fo(A) = U{fifo(A) 11 € I} = V{fifo 11 € I}(A) When
multiplying a join from the left we get only inequality: YA C S: fov{f; :
;}G(AI)}(A) = foU{fi(4) : i € I} D U{fofi : i € INA) = V{fofi : i €

The following example shows that F(S) is not necessarily a divisibility
monoid, i.e. there exist f, g on every sufficiently big set S, such that f < g,
but there is no operator & on S, such that g=hf. Assume U, T, W C S,
T=UnW. Write T as a disjoint union of two nonempty subsets Ty and
Tw. Let 0# Ny C Ty, D # Nw C Tw. Let f(A)=TifACT,and =8
otherwise.

Let g(A)=U if AC Ty,
=Wif AC Tw,
=UUWIfACTand ANTy #0and ANTw #0
= S otherwise

It is easy to show that f < g. Now suppose there exists an operator h, such
that g = hf. Then g(Ny) = U, g(Nw)=W. But T = f(Ny) = f(Nw),
so h(T) = U and h(T) = W, contradiction.

This shows that connections between the ordering and monoid structures
seem to be rather loose, and we will focus our attention at the former one.
An example of a self-dual matroid on a set with two elements given by
Bondy and Welsh [3] shows that the involution defined on the lattice of
operators by the duality need not be an orthocomplementation. We will
show that actually for any set S with more than one element there exist
self-dual operators. First, we have to recall a proposition:

Proposition 3.2. [13] Let (S, f) = > {{(S:, fs) : i € I}. Then: (S, f*) =
S(Si, £7) i € I).

Bondy and Welsh gave the following example of a self-dual matroid
(Slafl) : Sl = {Ov 1}1 fl(ﬂ) = @7 fl({o}) = fl({l}) = Sl' Itis easy to show
that ff = fi. Now let us consider a dependence system (S, f2) : Sz =
{a,b,¢c}, f2(0) = 0 and f2({a}) = {a,b}, fo({8}) = {b,c}, fo({c}) = {c,a},
f2(A) = S, otherwise. Then f3 = f;. Now, every set of cardinality greater
than one can be considered as a disjoint union of sets of cardinality two and
three. Therefore using the direct sum we can construct from operators f;
and fo a self-dual operator on an arbitrary set of cardinality greater than
one. So we get:
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Corollary 3.3. If the cardinality of S is greater than 1, then there exists
a self-dual operator on a set S.

4. Join-irreducible elements

Before we proceed to the more detailed study of the structure of the set -
. of all dependence systems we will distinguish a class of operators of a very
elementary form.

Definition 4.1: Let A C S, z € S\ A. Then f4 . is an operator on S
defined by: VB C S: faz(B) = BU{z}if A C B, faz(B)= B otherwise.
It will be shown that far = fpy if A= B and z =y. We will write
Fz(S) for the set {faz : A € S\ {z}}. The class of all operators of this
form will be written Fi(S), i.e. Firr = U{Fz : x € S}.

Proposition Proposition 4.2. For all subsets A, B of S and all elements
z,ysuchthat r€ S\ A, y€ S\B: faz < fpy iff BCAandz=y.

Proof: (<) Suppose BC AC Sandz € S\ A Then VCC S:AC
C = B C C. Therefore for every subset C of S, if A C C, then f4,2(C) =
CU{z} = fB«(C); if A is not included in C, then f4z(C) = C C f5,z(C).

(=) Suppose z =y € S\ A and B is not included in A. Then f4z(A4) =
Au{z} is not included in A = fp-(A). Nowz € S\Aand y € S\ B, hence
fan(A) = AU{z} # Aand f5,(A4) C AU{y}. Iz #y, then z ¢ AU{z},
and therefore f4 (A) is not included in fpy(A).

Proposition 4.8. For every operator g on S different from the least oper-
ator e on S there exists a subset A of S and element z of S\ A such that

fA,z <g.

Proof: g#e,50 JAC §: A # g(A), hence 3A C S3z € S\ A: z € g(A).
If A is not included in B, then f4-(B) = B C g(B). So assume A C B.
Then faz(B) = BU {z}, but z € g(A) C g(B), so BU {z} C g(B).

Proposition 4.4. The atom space At(F(S)) of (F(S), <) consists of op-
erators from the set {faz : z € S,A = S\ {z}}. Moreover the lattice
(F(S), <) is atomic, i.e. every nonzero element is greater than some atom.

Proof: For every z € S, faz # e 88 fax(S\{z}) =5 # S\ {z}. If
g=< fs\{z},z and g # fS\{z},z': then VBC S': g(B) c fS\{z},z(B) and for
every B # S\ {z}, 9(B) = B. If g(S\ {z}) = S, then g = fs\{z} 2+, hence
VB C S : g(B) = B. Therefore we have {faz : z € S,A =S\ {z}} C
At(F(S)). Now suppose g # e. We will show that there exists z in S such
that fs\({z},= < g. From Prop. 4.3 we know about the existence of fa 5 such
that f4 z < g, but by Prop. 4.2 we have fs\(z},z < faz < g Therefore we
get {faz:z €S, A= 8\ {z}} = At(F(S)) and the second statement in
the proposition.
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Corollary 4.5. (F(S), <) is atomic and dual atomic.

Proof: The dual atoms (in the lattice theoretical sense) are operators dual
to atoms (in the sense of dependence system duality).

Proposition 4.6. Let g be an operatoron S, AC S, and = € S\ A. Then:
z € g(A) iff faz<g

Proof: (=) Suppose fa,: is not less than g, i.e. 3B C S: A C B and
z ¢ g(B). But z € g(A) C g(B), contradiction.
(<) faz < giff YBCS: fax(B) C g(B),so AU {z} C g(A).

Proposition 4.7. For every operator gon S : g = v{faz : faz < g}

Proof: Certainly f = v{faz : faz < g} < g. Suppose f # g, i.e.
3B C S3z € g¢(B) : = ¢ f(B) and = € g(B). But then by Prop. 4.6 we
have fg . is less than g, but not less than f, contradiction.

The class of operators Fi,(S) join-generates F(S). We will show that
all operators of the form f4 . are completely join irreducible, so this repre-
sentation is unique.

Proposition 4.8. For every subset A of S and every element of S\ A,
fa,z is completely join-irreducible, i.e. for every family of operators {g; €
F(S):iel}, if faz =v{gi € F(S) : i€ I}, then there exists j in I such
that fA,z = gj.

Proof: Certainly Vi€ :g; < faz. Now VBC S: faz(B) =J{g:(B) :
i € I'}. Therefore, if A is not included in B, then Vie I : g;(B) = B =
faz(B). If AC B, then 3j € I : z € gj(B), so for this j we have fa . = g;.

Corollary 4.9. F;..(S) is the set of all completely join-irreduciirrble ele-
ments of the complete lattice (F(S), <).

Proof: We have to justify only why every completely join-irreducible el-
ement belongs to F;,.(S). But by Prop. 4.7 every operator is a join of
elements from Fy.(S), so by irreducibility it belongs to Fi.(S).

Recall that in a poset (P, <) a poset ideal Q is a subset of P such that
ifreQandy <z, theny € Q.

The set F;.. inherits a partial order from F(S). By Prop.4.7 there is
a bijective correspondence between poset ideals of (F, <) and operators of
F(S). Certainly, every subset of F(S) generates some operator, but the
correspondence between subsets of ., and operators in F(S) is of many-
to-one type. However, we have:

Proposition 4.10. Let F1(S), F2(S) be two antichains in (Firr, <) (no
two elements are comparable), f = vFy(S), g = vF2(S). Then f = g =
F1(S) = Fa(S). The correspondence is one-to-one, but not necessarily onto
if S is infinite.
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Proof: Suppose f = g but F;(S) # F2(S) (we will write Fy, F3). We can
assume that there exists faz € F1\ F2. Then z € f(A), ie. fax < f=
g=vF2, hence z € yF2(A),s03fpy EF2: fax < fBy,and finallyz =y
and BC A. But fa; # fBy so BC Aand B # A. Now faz(B) = B and
f3,2(B) = BU{z}. Hence f(B) = g(B) = BU{z}, s0 Ifc € F,: CC B,
but then f4 - < fco, a contradiction. This proves that the correspondence
between the antichains of (Fi.r, <) and operators in F(S) is one-to-one.
Now if f = yF, where F is an antichain in Fy, and faz < f, then
fA,z = fA,:l: ANf= fA,z A (VFI) = V{fA.z A fB,z : .fB,z € Fl} But fA,:: €
F,r, so there exists fB'zinFl such that fa - = fA'z/\fB,zl, ie. fA,z < fB,;,,-.
Therefore, F; is a set of all maximal elements of the poset ideal in F,.. that
corresponds to f. To show that the correspondence is not onto for infinite
S suffices to find an operator f whose ideal of irreducible elements does not
have minimal elements. Consider an operator f defined by: f(A) = A if
A € Fin(S), f(A) = S otherwise. The ideal of all irreducible operators less
than f consists of all the operators fp : such that z € S and B is an infinite
subset of S\ {z}. Certainly this ideal does not have maximal elements as
we do not have minimal infinite sets. This concludes the proof.

On the other hand if S is finite, so is Fy,., and every ideal F;,,. is gener-
ated by its maximal elements. Therefore we have:

Corollary 4.11. If S is finite, then there is a bijective correspondence
between antichains in (F,,, <) and operators in F(S).
\

Propositibn 4.12. Every operator of the form fa. is transitive, i.e.
Firr(s) _C. I(S)

Proof: C C fa(B) iff (AC B and C C BU {z}) or (A is not included
in B and C is included in B). Therefore if A C B, then CU {z} C BU{z},
80 fa,z(C) C faz(B). Now, if A is not included in B, then also it is not
included in C, and f4 2(C) = C C B = fa(B).

Corollary 4.13. Every operator on a set S is a join of transitive operators
on S. Also, every operator on a set S is a meet of operators having exchange

property.
Proof: The second statement follows from the fact that E = I*.

We already considered the set of dual atoms which consists of operators
dual to atoms and the set of completely meet irreducible elements of F(S)
which consists of operators dual to operators in F;.-. Now we will find the
explicit form of those operators.

Proposition 4.14. The set of all completely meet irreducible elements of
F{(S) consists of the operators defined by: For every subset A of S and every
z¢ A YBCS: [i,(B)=5\{z}if AU{z} CS\B, and f; (B)=S
otherwise. Therefore the set of all dual atoms consists of the operators
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defined by: For every element z of S, VB C S : fo\gz} =(B) = S\ {z} if
B =0, f3\(2},2(B) = S otherwise.

Proof: dfsz(B) = {z} if A C B, and dfsz(B) = 0 otherwise. So
df3 2(B) = dfaz(B°) = S\ {z} if AN B = 0, and equals S otherwise.
Finally we get f} ,(B) = BU df}, .(B).

All operators in Fy,. are transitive. Some joins of these operators preserve
transitivity.

Proposition 4.15. Let {A; : j € J} be a family of subsets of S\ {z}.
Then v{fa;z :J € J} is a transitive operator.

Proof: Let f = v{fa;,z :5 € J} and D C f(C). Then D C f(C) = CU{z}
ifdje J:A; CC, f(C) = C otherwise. If f(C) = C, then D C C and
f(D)=D ¢C f(C). If A; C C for some j, then f(D) C DU{z} C CU{z} =
f(C). Therefore if D C f(C), then f(D) C f(C), ie. f € I(S).

Proposition 4.16. Let A be a subset of S, X C S\ A. Then an operator
faz=v{faz:z € X} is transitive.

Proof: Let D C faz(C) =v{faz:2€ X}C) = J{fa(C):z€ X} =
CUX if A C C and is equal C otherwise. Then f4 (D) C DUX C CUX =
faz(C)if AC C. If Ais not included in C, then D C f4.(C) = C and
therefore fa,z(D) C fa,z(C).

Observe that an operator f4, can be defined as follows: Assume that
XCS\A Then VBC S: fpz(B)y=BUX if AC Band fo.(B)=B
otherwise. The operators of the form f, . have several properties in F;,,.
We will provide some examples without proof.

Proposition 4.17. Let A, B,CC S, X C S\ A, andY C S\ B. Then:
) fax=fpyiff A=Band X =Y,
ii) fax <fpy f BCAand XCY,
iif) If f is an operator on S, then fa x < f iff X C f(A),
iv) If f is an operator on S, then f = v{fa x : fax < f},

v) If f is an operator on S, then:
J(B)=Ciff fe\p < fand (fae\B < fBy < f=Y=C\B).

Although we decided not to consider the monoid structure of operators
in this paper, let us write explicitly the formula for the composition of
operators from Fi... Recall that if f and g are transitive operators, then
fg is transitive if fg = gf. Also if fg is transitive, then fV g = fg [16].
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Proposition 4.18. Let z € S\ A and y € S\ B. Then:

faxfey(C)=CU{z,y} f BCCand AC CU{y},
= CU{y} if BC C and A is not included in C U {y},
= CU {z} if B is not included in C and A C C,
= C if neither B, nor A isin C.

If z,y ¢ A and z,y ¢ B, then: fA.sz,y = fB.yfA,z = fA,:c VfB,y-

Proposition 4.19. Let X C S\ (AUC). Then: faxfex = fexfax.
Therefore fA,XfC,X is transitive and fA,X \% fc,x = fA,XfC,X-

Proposition 4.20. Let XUY C S\(AUC). Then fa x fcy = fe,yfa,x =
fA,X A fc,y and fA‘xfc'y is transitive.

Proof: In general when X C S\ Aand Y C S\ C:

fA‘xfc,y(B)=BUXUYifAQBandC§BUX,
= BUX if AC B and Cis not included in BU X,
= BUY if Ais not included in B and C C B,
= B otherwise.

Hence when X UY C S\ (AUC):

. \
faxfey(By=BUXUY ifAUCC B,
= BUX if AC B and C is not included in B,
= BUY if A is not included in B and C C B,

= B otherwise.

5. Cardinalities of classes of operators for infinite S

It happens very often that trivial problems for finite structures are very
difficult for an infinite case, and simple proofs for infinite structures do
not suggest how to prove or disprove extremely difficult finite versions of
problems. The problem of finding the cardinality of classes of dependence
systems of specified properties is a good example of the latter situation.
First we will study the cardinalities of the basic classes of dependence sys-
tems on an infinite set S.

Let |S| = m, an infinite cardinal. Then certainly |F(S)| < 22", as every
operator is a function on the power set of S which has the cardinality 2™.
Sierpinski proves the following [14]: For every infinite set S of power m
there exists a family A composed of 2™ subsets of the set S none of which
is a subset of any other. The proof is based on the formula 2m = m for
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infinite cardinal numbers. From this theorem we can deduce [15]: The total
number of different hereditary families of subsets of a given infinite set S
of power m is 22".

Every hereditary family of subsets of a set S is closed with respect to
arbitrary intersections, therefore the family C of families closed with respect
to arbitrary intersections has its cardinality greater than or equal to 227,
but the cardinality is bounded above by the cardinality of the set of all
operators, so the cardinality of C is exactly 22",

Larson and Andima [8] quote the result of Frohlich [5] which states that
if S is an infinite set of cardinality m, then [INfA(S)| = 22".

This can be summarized as follows:

Proposition 5.1. Let S be an infinite set of cardinality m. Then:
i) |fC(S)| = [IfC(S)| = 2™.
i) |[F(S)| = [I(S)] = |E(S)| = |IfA(S)| = |WI(S)| = |WE(S)| = 2*"

Proof: i) We have m = |S| = |Fin(S)|. Every operator f in fC(S) is
determined by the action on the finite subsets of S. Therefore |fC] is less
than the number of all relations between S and Fin(S) (f is determined by a
relation R C S x Fin(S) defined by: zRA iff z € f(A)), i.e. |{C] < 2™™ =
2™, Certainly, [IfC(S)| < |fC(S)| and we have the following example
of a family of IfC(S) operators of cardinality greater than 2™. Consider
the family of the operators described in Prop. 4.17 defined by: {f4 x: A €
Fin(S) and X C S\ A}. These operators are transitive and also they belong
to fC(S) as if y € fa,x(B), than for y in B we have y € fa x({y}), for
y¢ Bwehave AC Bandy € X,soy € fa,x(A). Certainly the cardinality
of this family is greater or equal 2™. So 2™ < |IfC(S)| < |fC(S)| < 2™. ii)
Recall that I(S) € wI(S), so [I(S)| < |wI(S)|, and WE(S) = wI*(S), so
|[WE(S)| = [wI(S)|. Also, by the duality |I(S)| = |E(S)|. Every operator
in I(S) is determined by its set of closed subsets (family of subsets closed
with respect to arbitrary intersections and containing S) so we have 22" <
[I(S)| < [WI(S)| < F(S)| < 2%7. Also, 22" = [INFA(S)| < |fA(S)] <
[F(S)|. This concludes the proof.

6. Number of dependence systems on a set with n elements

The problem of enumeration of all dependence systems on a set with n
elements is equivalent to the classical, almost one hundred year old problem
of Dedekind: What is the number D(n) of all antichains in the power set
of an n-element set.

We will write X(n) for the cardinality of all operators on a set with n
elements having the property X. For instance F(n) is the number of all
dependence systems on a set with n elements.
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Proposition 6.1. i) F(n) = [D(n —1)]*, ii) N(n) = [D(n — 1) — 1]™.
D(n) is the n-th Dedekind number.

Proof: First observe that for every z in S, F, with the ordering inherited
from F(S) is isomorphic to the Boolean algebra of all subsets of S \ {z}
ordered by inclusion (notice: f4z V fBz ¢ Fr when join is in the lat-
tice (F(S),<); in (Fz,<), fazV fBz = fc,z', where C = AN B). Also
faz and fpg, are incomparable when = # y. Therefore every antichain
in Fiyr consists of (possibly empty) antichains in particular F;’s. So we
have in each F; (Boolean algebra of subsets of n — 1 elements) D(n — 1)
antichains. Therefore in F;, we have [D(n—1)]" antichains which together
with Cor. 4.11 proves i). For ii) observe that f is normalized (f(0) = 0} iff
Ve e SVAC S\ {z}: A=0= fa. is not less than f. Therefore count-
ing the number of the normalized operators we have to exclude antichains
containing operators f4; for A =0. In each F there is only one such an
antichain {faz : A = 0}. Therefore in each F, we have [D(n — 1) — 1]
antichains. This concludes the proof.

There is only one class of operators for which we can give the explicit
numerical value of its cardinality:

Proposition 6.2. i) fA(n) = [2°~! + 1]*, ii) NfA(n) = 2(n~1n,

Proof: Every fA-operator is determined by the choice of its action on one-
element sets. For NfA-operators we have for each of n one-element sets
271 choices as the given element has to belong to the image of the operator
on its one-element set). This gives us (2"~1)" choices of operators.

If we admit non-normalized operators, then we have to consider sepa-
rately every choice of f(@). Suppose |f(@)] = k. We have (}) different
choices of f(#). Then for n — k one-element subsets of S\ f (ﬂ) we have 2
choices of images of the operator f (subsets of an (n — k — 1)-element set
because k elements of f(() already belong to the image and also the given
one-element set is included in its image.) For k one-element subsets of f(@)
we have 2"~* choices Therefore for given k we have (})2("—%~1(n—k)o(n—k)k
different operators. So fA(n) = Y p_, (})2(r—*-Din=kon-kk — s~
(20100 = o0, () p-IjirR = - 4 1P

Effective formulas have not been found for D(n), nor for I(n), INfA(n)
(number of topological spaces), INfAtoS(N) (number of partially ordered
sets), IWEfC(n), IWNEfCNt;S(n) (number of geometries). However, there
is quite a rich literature on these issues [cf. 4, 7, 17 for references] and some
revitalization of interests in enumeration and estimation of these numbers
can be recently observed. The Dedekind numbers are known for n < 8,
which gives us values of F(n) for n < 9. However, the formula expressing
F(n) by D(n) can be useful in proving properties of dependence systems
on sets of arbitrary finite cardinality.
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One of the earliest results about closure systems (transitive operators)
states that there is a bijective correspondence between closure operators on
a set S and families of subsets of S containing S and closed with respect
to arbitrary intersections (Moore families). Certainly, we have also similar
connection between closures and families of subsets containing the empty
set and closed with respect to arbitrary unions. For matroids we have also
a connection between families of independent subsets and closures (actually
matroids are usually defined by a family of independent subsets, and topo-
logical spaces by a family of open sets). We can uniquely characterize a
matroid by a family of bases, minimal non independent sets (circuits), etc.
The old folklore problem was: Is it possible to characterize a dependence
system by a family (or families) of subsets. The answer is ‘no’ for a finite
set S with more than 3 elements. The proof follows from the following
proposition.

Proposition 6.3. For n > 4, 22" is strictly less than F(n).

Proof: Using values of D(3) = 20, D(4) = 168, D(5) = 7581, we get
F(4) = 160000, F(5) = 2153575, F(6) = 367619!2, Certainly these numbers
are greater than 65536, 232, 264 respectively. Now we will show that for
n > 7, 2" is strictly less than n("zl) where k = [(n — 1)/2] (the greatest
integer less than (n—1)/2). We have 27 = 128 and 7(§) = 140. To complete
proof by induction we have to show that from the inequality above for n

(2 7) follows: 27+! < (n+1)(;,75). We have G =R n+1)/(k+1)
and ("}!) = (})(n+1)/(n+1—k). Now let n be even. Then [n/2] =
[(rn-1)/2] -|; 1, and tlle_rffore (ln/2l)n"' ([(n-l)/zj)"'/[""/2] = 2([(“_1)/2)) SO
we have 2"+1 < 2n(( ") o) = (7)) <£rlz+ 1)(jnj2)- Now let n be odd.
Then [n/2] = (v~ 1)/2] 3 (i7) = (o33 )/ [(n =1)/2) = (2~2/n+
D) (gnm1y/2)» 50 that 27F < 2n(i, "5 0) = 20/(2 = 2/(n + 1)) ((u)) =
(n+ 1)(1 /2]) This concludes the induction part of the proof. By Sperner’s
Lemma we have 1032(([(,:_1)1/2]) < logy(D(n — 1)), and as we have shown
n< IOEz(n([(n’:_l)l/m)) for n > 7,50 22" < F(n) = (D(n—-1))".
As a corollary we get:

Theorem 6.4. Let S be a finite set of cardinality n > 4. Then the number
of all operators on S is greater than the number of all families of subsets of
S, i.e. an operator can not be uniquely determined by a family of subsets of
S. Moreover, if k is any fixed positive integer, then for S with big enough

cardinality an operator can not be uniquely determined by k families of
subsets of S.

Proof: Only the second statement requires an explanation. For even n
we have 2" < n((,"7)0) = ((ne1y/z)s 50 27 < (D(n - 1))*/m where
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m = ([(n':‘l)l /2;)- Therefore 22"9m < F(n). Therefore the ratio of the
number of operators to the number of all families of subsets is an increasing

function of n. F(n) is a monotone function of n, hence the conclusion is
valid also for big enough odd n.
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