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Abstract. This paper concems neighbour designs in which the elements of each block

are arranged on the circumference of a circle. Most of the designs considered comprise
a general class of balanced Ouchterlony neighbour designs which include the balanced
circuit designs of Rosa and Huang [30], the neighbour designs of Rees [29], and the
more general neighbour designs of Hwang and Lin [13]. The class of Rees neighbour
designs includes schemes given in 1892 by Lucas [22] for round dances. Isomorphism,
species and adjugate set are defined for balanced Ouchterlony neighbour designs, and
some seemingly new methods of constructing such designs are presented. A new class
of quasi Rees neighbour designs is defined to cover a situation where Rees neighbour
designs cannot exist but where a next best thing may be needed by experimental scien-
tists. Even-handed quasi Rees neighbour designs and even-handed balanced Quchier-
Jony neighbour designs are defined too, the latter being closely related 1o serially bal-
ariced sequences. This paper does not provide a complete survey of known results,
but aims to give the flavour of the subject and to indicate many openings for further
research.

1. Definition of a balanced Quchterlony Neighbour Design

We define a balanced Ouchterlony neighbour design (BOND) to be an arrange-
ment where the members of a set S of v distinct elements are disposed in b blocks

so that

@
(i)
(iii)

@iv)
()

each block contains & elements (k > 2) that are drawn from S but are not

necessarily all distinct;

the elements in each block are arranged on the circumference of a circle so

that each of these elements has 2 neighbours;

each member of S appears exactly r times throughout the arrangement;

no element from S ever has itself as a neighbour;

every element from § has each other element of S as a neighbour exactly

X' times throughout the arrangement.

The parameters v, 7, b, k, A’ of a BOND clearly satisfy the equations

vr = bk
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and
MN=2r/(v-1). (1.2)

In general, the parameter k may be less than, equal to, or greater than v; the upper
limit for k is v» = bk , which is attained for a BOND with just one block. If
k = v, each block may contain each member of S exactly once, or may have some
element(s) of S repeated (i.e. present twice or more than twice) and therefore some
other element(s) of S absent. Even if k& < v, a block of a BOND may have some
element(s) of S repeated.

A BOND with (v,b,\") = (5,2,1), and so with k = v, is as follows:

4 3 25 1.3)

whereas a BOND with (v, b, \') = (5,1, 1), and so with k = vr, is the following:

1 (14)
In an obvious linear notation, these two designs can be written respectively as
(1,2,3,4,5) (1,3,5,2,4) (1.5)

and
(1,2,3,4,5,1,3,5,2,4), (1.6)

each block being read clockwise. A BOND with (v,b,)) = (7,7,1), and so
with k < v, is the following:

(2,3,5)(3,4,6)(4,5,7(5,6,1)(6,7,2)(7,1,3)(1,2,4). )]

The examples (1.5), (1.6) and (1.7) were given by Hwang and Lin [13, p. 304].
Equation (1.2) for a BOND can be rearranged as

v=1+2r/). (1.8)
Thus, if X' is odd, so is v. In particular, if )’ = 1, then v is odd and

r=(v—1)/2, b=vr/k =v(v-1)/2k. (1.9
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If) = 1land k = 3, then b = v(v — 1)/6, which restricts v to the values
7,9,13,15,19,21,...; indeed a BOND with k = 3 and )’ = 1 is merely a
Steiner triple system with the elements of each block arranged on the circumfer-
ence of acircle.

If a Steiner triple system contains the block (a, b, ), this block can be used to
produce either the block (a, b, ¢) or the block (a, ¢, b) in a corresponding BOND.
Therefore, unlike some previous authors, we do not regard a Steiner triple sys-
tem as being the same as a BOND with k = 3 and )’ = 1. Indeed, we regard
the circumference of a circle, which features in condition (ii) of our definition of a
BOND, as having a direction that can be reversed by reading anticlockwise (back-
ward) instead of clockwise (forward ). [We nevertheless regard the orientation of
a block as immaterial; i.e. a block is unchanged by rotation; e.g. the block (a, b, )
is the same as the block (b, ¢, a). For convenience of exposition, we regard the
elements of each block as being positioned at equidistant points on the circum-
ference of a circle.] A practical motivation for taking account of the direction of
each block is discussed in Section 2 below.

Modem study of BOND’s stems from a 1967 paper by Rees [29], who gave
examples of and constructions for BOND’s with \' = 1; for these designs he sug-
gested the name neighbour designs on his p. 787, but the present paper refers to-
BOND’s with \' = 1 as Rees neighbour designs (RND’s). Subsequent to Rees’s
paper, Lawless [19], Hwang [10], Dey and Chakravarty [8], Hwang and Lin [12,
13, 14], Nair {25], and Chandak [5] used the name neighbour designs more gen-
erally to cover designs with \' > 1 toco. Nowadays, though, the mathematical and
statistical literature contains so many types of design having neighbour properties
of one sort or another, perhaps in a linear sense or in two dimensions (see Street
and Street [33, Chapter 14]), that a distinctive name is needed for designs where
neighbours, defined as above, are on the circumferences of circles; we therefore
now adopt the terminology balanced Ouchterlony neighbour designs as above, to
reflect the practical background that gave rise to the designs (see Section 2 below).

Street and Street [33, Section 14.2] used the name circular block design for a
BOND, but we recommend allowing this name its natural and much more general
meaning, to cover (a) designs such as the quasi Rees neighbour designs of Section
8 below, which do not satisfy condition (v) of the definition of aBOND; (b) designs
that do not satisfy the equal-replication condition (iii) of the BOND definition; and
(c) designs where the number of elements on the circumference can differ from
one block to another. Furthermore, but much less importantly, the name circular
block design invites confusion with the circular repeated measurements designs
of Magda [23] and Kunert [18], described as designs balanced for circular residual
effects despite their circularity being artificial.

Hwang and Lin [13] and Street and Street [33, Section 14.2] permitted k =
2 in BOND’s, but inclusion of this degenerate possibility leads to unnecessary
complications that we prefer to avoid. Hwang and Lin [13, 14] and others used
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the notation ) , not )\’ , for the number of times that any two members of S are
neighbours in a BOND, but we prefer to follow Lawless [19], Street [32] and
Street and Street {33, Section 14.2] in using )\’ , thereby avoiding confusion with
the parameter ) of a balanced incomplete block design (BIBD).

Rosa and Huang [30], Hwang and Lin [13], and Bermond, Huang and Sotteau
[4] used the term balanced circuit design for a BOND in which no block has a
repeated element. Thus k£ < v for a balanced circuit design. We therefore use
the terminology balanced circuit RND for an RND that is also a balanced circuit
design. In the terminology of Lindner, Phelps and Rodger [20], Adams, Billington
and Lindner [1] and others, a balanced circuit RND with parameters v and k is a
k-cycle system of order v.

Keedwell [16] considered 2-fold perfect circuit designs, these being balanced
circuit designs whose neighbour properties apply not only to immediate neigh-
bours but also to neighbours that are 2 places apart. Likewise, Lindner, Phelps
and Rodger [20] considered 2-perfect k-cycle systems of order v, i.e. balanced
circuit RND’s whose neighbour properties hold both for immediate neighbours
and for 2-places-apart neighbours. However, 2-perfect designs, and indeed the
more general -perfect designs with 1 > 2 (see, for example, Adams, Billington
and Lindner [1]), do not concern us in this paper, except in passing. Nor do we
concern ourselves with the neighbour designs of Colbourn, Lindner and Rodger
[7], where each block has k + 1 treatments, of which k are arranged round the
circumference whilst the remaining one is at the centre of the circle.

2. The Ouchterlony Double Diffusion Test

In Iaboratory research on viruses, the Quchterlony method, Ouchterlony gel dif-
Jusion test, or Ouchterlony double diffusion test uses plates or Petri dishes con-
taining a suitable medium (e.g. an agar gel) through which antigens (e.g. viruses)
and antiserum can diffuse. On each plate, antigens are arranged at equidistant
points on the circumference of a circle centered on the point where an antiserum
has been placed; the experimenter subsequently observes what occurs at the meet-
ing points of the diffusion areas of the antiserum and two adjacent (neighbouring)
antigens. For a particular set of antigens and a single antiserum, a complete story
will emerge only if each antigen has each other antigen as a neighbour. This pro-
vides the practical motivation for finding BOND’s, particularly those with k = 5
or 6, each of these numbers being appropriate for the number of antigens per plate.
As the Ouchterlony test is not run as an experiment in the usual statistical sense
of that term, there may be no strong need to replicate each pairing of two antigens
as neighbours, so a design with A’ = 1 may well be judged to be adequate. Some
of the standard statistical arguments for some randomisation of the design may
nevertheless still be relevant. The randomisation procedures to be considered for
BOND?’s will not be discussed in detail here but are as follows:

(i) For the required v, & and )/, select a BOND at random from a set Z of
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BOND’s having these parameter-values.
(ii) Take the blocks of the selected BOND in random order.
(iii) For each block of the selected BOND, select an orientation at random.
(iv) Allocate the antigens at random to the elements of S. -

Procedure (i) provides a motivation for enumeration of BOND’s for any given set
of values (v, k, \’). Some or all of the members of the set Z might differ from one
another merely in the directions of some of the blocks, so we see that procedure (i)
can be equivalent to taking at randoin the direction of each block of a BOND. Such
randomisation might be thought desirable if the experimental technique were to
require every block to be set up in a systematic clockwise (or anticlockwise) way
that might introduce a temporal/directional effect on the experimental material.
Depending on Z , the above procedures (i) to (iv) are equivalent to or wider than
the procedures (i) to (iv) given by Azais [3] for a radically different practical back-
ground from that considered in the present paper.

The Ouchterlony method, as outlined above, is named after Professor Orjan
Ouchterlony, of the Department of Bacteriology, University of Gothenburg [Gote-
borg], Sweden, but is only one of several methods that he described and discussed.
Full background and details were given by Ouchterlony [26, 27, 28].

In practice, the “antigens” in a particular Ouchterlony gel diffusion test might
include successively weaker dilutions of a bacteriological preparation; the BOND’s
of the present paper are not suited for use in such circumstances.

3. A “Round-dance” problem, including the “Ramsgate Sands” Problem

A general request for a balanced circuit RND with v = k& was made in 1892 by
Lucas [22, pp. 162-166], as part of his Sixiéme récréation (TOme II) entitled Les
Jeux de Demoiselles [Games for Young Ladies). As the writings of Edouard Lucas
have been much overlooked in English-speaking lands, his own statement of the
problem is worth quoting here:

LES RONDES ENFANTINES [CHILDREN'S ROUND-DANCES]
Des enfants dansent en rond en se tenant par la main; on demande
comment il faut disposer les enfants, de telle sorte que chacun d’eux
se trouve successivement voisin de tous les autres, soit a droite, soit &
gauche, mais ne puisse 1'étre qu’une seule fois.
Lucas, followed by Kraitchik [17, pp. 227-229] and by Sainte-Lagué [31, pp.
163-168), gave a solution that is equivalent to Method B of Section 7 below; the:
solution is for any odd number of children. Lucas [22, p. 162] indicated that his
exposition included les solutions simples et ingénieuses de M{onsieur] Walecki,
but whether the Lucas solution to les Rondes Enfantines is due to Walecki is not
clear from Lucas’s text.
Dudeney [9, pp. 147 and 242, Miscellaneous Puzzle 100], seemingly inspired
by Lucas, posed a special case of Lucas’s problem, with the title “On Ramsgate
Sands™:
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Thirteen youngsters were seen dancing in a ring on the Ramsgate sands.
... How many rings may they form without any child taking twice the
hand of any other child —right hand or left? That is, no child may ever
have a second time the same neighbour.

This is a request for a balanced circuit RND with v = k = 13, Dudeney gave the
solution obtained by the Method A described in Section 7 below.

4. Isomorphism of balanced Ouchterlony Neighbour Designs

The literature to date seems to contain no definition of isomorphism of BOND’s.
We therefore repair the omission, to provide a basis for enumeration of non-iso-
morphic BOND’s for any particular set of values (v, b, \’). Other new definitions
for BOND'’s are given in Sections 5 and 6 below.

In this paper, two BOND’s with the same set of values (v, b, \') are said to be
isomorphic to one another if either can be obtained from the other by a succession
of the following operations:

(i) Permutation of the v distinct elements;
(ii) Permutation of the b blocks;
(iii) Rotation of a block through an angle that is a multiple of 2 #/k radians,
different angles being used, if necessary, for different blocks.

If such a succession of operations maps a BOND onto itself, the succession is an
automorphism of the BOND. The automorphisms of a BOND clearly constitute a
group in the mathematical sense.

5. Adjugate sets of non-isomorphic balanced Ouchterlony Neighbour Designs

The reflection of ablock (a, b, ¢,...,y,z) ofaBONDIis theblock(a, z,y,...,c,b).
Here, reflection is used in the sense of a mirror-image, otainable by reading the
original block anti-clockwise (backward) instead of clockwise (forward).

A BOND D1 that has b blocks is a member of a set C of 2® BOND?s, each
obtained by copying the blocks of D1 one by one except that each copied block
may be replaced by its reflection. For example, the BOND (1.5) is the first member
of the following such set of 4 BOND’s;

Dl: (1,2,3,4,5 (1,3,5,2,4) (5.1)
D2: (1,2,3,4,5) (1,4,2,5,3) 5.2
D3:  (1,5,4,3,2) (1,3,5,2,4) (5.3)
D4:  (1,5,4,3,2) (1,4,2,5,3) (5.4)

In general, the members of C might all be isomorphic to one another, or none of
them might be isomorphic to any other, or some (but not all) might be isomor-
phic to others. (In the above example, D1, D2, D3 and D4 are all isomorphic

202



to one another.) Thus the set C contains a subset C* whose cardinality c* satis-
fies 1 < ¢* < 2% and whose members are such that none is isomorphic to any
other, whilst any member of C — C* is isomorphic to some member of C*. In vo-
cabulary taken from the theory of Latin squares, two distinct members of C* are
adjugates of one another, and the members of C constitute a species of BOND’s.
Any particular member of C, and all other members of C that are isomorphic to
it, constitute an adjugate set of BOND's. Thus a species comprises c* adjugate
sets. When the randomisation protedure (i) of Section 2 above is used, it might
well be appropriate for the set Z to comprise one representative of each adjugate
set for each species having the required set of values (v, &k, \") .

6. Forming BOND’s by Concatenation, Intramutation and Intermutation

We now describe a method that permits us, in certain circumstances, to use a
BOND with block size k to construct a BOND with block size mk , where m is
an integer greater than 1.

Suppose a BOND with block size & contains the blocks

(a)b)c)'°')f’g’h”"!ylz) }
6.1)

(A,B,C,...,F,g,H,...,.Y,2)

that have the common element g. Then the following block, of size 2 k, has the
same pairs of neighbouring elements as do, jointly, the two blocks (6.1):

(a,b,c,...,f,9,H,....Y,Z2,A,B,C,...,F,g,h,...,y,2) 6.2)

Adopting vocabulary of Street and Street [33, Chapter 14], we say that the block
(6.2) has been formed by concatenation from the blocks (6.1), the second of the
blocks (6.1) having been concatenated within the first. Similarly, any further
block of size k that contains an element that is present in block (6.2) could be con-
catenated within the block (6.2) without changing the overall pairings of neigh-
bours.

Suppose now that we have a BOND DO with parameters (v,b, \') such that
b = mb*, where m is an integer greater than 1 and b* is an integer greater than
or equal to 1. Then a BOND with parameters (v, b*,\") can be constructed by
concatenation so long as the blocks of DO can be grouped into b* non-overlapping
sets each containing m blocks that can be concatenated into one another. Trivially,
the BOND (1.4) is obtainable in this way when the BOND (1.3) is used as DO.
More generally, this method of construction is available if DO has the handcuffing
property (more concisely, property H), namely that the blocks can be arranged in a‘
sequence such that blocks sand i+ 1 (wherei=1,2,...,b—1) have at least one
element in common (see Street and Street {33, p. 321]). Street and Street [33, pp.
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322-324] gave existence theorems for two classes of BOND's that have property
H

Whenever a block is concatenated as just described, its reflection could have
been concatenated instead. Likewise, the concatenating block could have been
replaced by its own reflection.

These comments lead naturally to a more general result, namely this: If an
element x is repeated within a block of a BOND, as in

("')d)eiz’gihl"')p!qlz)s!t)"')’

the design remains a BOND if the ordering of the elements between the two oc-
currences of z is reversed, as in

("')d’elzlq!p"",h’giz)sltl"°)

or
(---.t,s.x,g»h,---,P:Q;z:e»d,m)o

" We call such a reversal an intramutation. As a BOND obtained by means of an
intramutation may well not be isomorphic to the starter design, intramutation pro-
vides a method of generating designs where at least one block has at least one
repeated element.

A further method of generating additional BOND’s is available when we have
a BOND where a block contains the sequence

(.e0%,01,82,..4,845,¥,...)

and another block, or a separate (i.e. non-overlapping) section of the same block,
contains the sequence

(.ovyz, by, b2, by, 0).

Then, if the entry q; is swopped with the entry b; foralli = 1,2, ..., n, the resul-
tant design will still be a BOND. Likewise, swapping is possible, with reversal of
the order of the swapped elements, if the 2 initial sequences are

(--*:z»al)a2;---a°n;y:-';)
and
(-":y:bn'bw-l)"'nblszs-")°

‘We use the term intermutation for either of these processes of swapping.
Sometimes, when sequences a;,a3,...,a, and by, by, ..., b, are found to lie

between the elements z; and y; in blocks B1 and B2 respectively, they are also

found to lie between the elements x2 and y; in blocks B2 and B1 respectively.
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Then, after the intermutations for both (z1,y1) and (z2,y2) have been made,
each of blocks B1 and B2 will contain the same elements as at the start. An
example with n = 1 is provided by the balanced circuit RND (7.5) given in Sec-
tion 7 below, where the elements 4 and 8 lie between 3 and 5 in blocks 1 and 3
respectively, and between 7 and 9 in blocks 3 and 1 respectively; after both inter-
mutations have been made, the design remains a balanced circuit RND. Making
both such intermutations is akin to intercalate reversal in Latin squares, i.e. to
interchanging the two symbols of a2 x 2 Latin square embedded in a larger Latin
square.

7. Rees Neighbour Designs

Table 1 lists parameter sets for RND’s with v < 15, k& < 15, and indicates how
at least one RND can be obtained for each parameter set. This Section discusses
some of these RND’s. We do not discuss the balanced circuit RND’s in full detail,
but refer readers instead to the review papers of Alspach, Bermond and Sotteau
[2] and Lindner and Rodger [21].

We first present general methods A and B that produce balanced circuit RND’s
withv = k.

Method A for v = k = an odd prime (see Sainte-Lagué (31, p. 176], Rees [29,
p.782] and Street {32, p.122]):

The blocks are as follows, except that every entry greater than v must be reduced
modulo v to give an entry from the set S = {1,2,...,v}:

(19 2, 3, .ooy v)
(1, 3, 5, 2u—1)
(1, 4, 7, 3v=-2)
(i, (v+1)/2, v, v 1+ (v=12/2)

Method B for v = k = any odd integer (see Rees [29, p.783] and Street [32,
p-122]):
The blocks are as follows:

(v, 1, 2, v-1, 3, v-2,. ceer ‘%—Q)
(v, 2, 3, 1, 4, wv-—1, O D)
(v, 3, 4, 2, 5, 1, B
(v, !1);]! , !U;l!, (9;3), (IJ;S)’ (IJ;S)’ e v— 1 )

Sainte-Lagué [31, p. 176] presented Method A geometrically as the regular poly-
gons solution. The Compass-needle Method of Lucas [22, pp. 162-164] and
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of Sainte-Lagus [31, pp. 163-168 and 174-177] is merely a geometrical way of
presenting Method B. Also equivalent to Method B is the construction given by
Kraitchik [17, pp.. 227-229], with

go=v, a1=1, ay=i+1(i=1,2,...,(v-1)/2),

a1 =v—i(i=1,2,...,(v=3)/2).

Method B is also the basis of a method for constructing serially balanced se-
quences (see Street and Street [33, p. 331]). With its first element omitted, the
first block from Method B is the basis of a construction given by Williams [34, p.
152] for a row-complete Latin square of order (v — 1), with v odd.

Any RND with v = k = 5 must be a balanced circuit design. It follows almost
immediately that, for v = k = 5, all RND’s are isomorphic to (5.1). Forv = k =
5, Method A gives (5.1) immediately, whereas Method B can quickly be shown to
give an RND isomorphic to (5.1). The isomorphism here between the outcomes
of methods A and B arises merely because v is so small, Forv = k = 7 , the
RND’s obtained by Methods A and B are, respectively,

(1’213I4!5,6J7) (113)5)712)4!6) (1)4)7!3’6)2)5) (7'1)
and
(7,1,2,6,3,5,9 (7,2,3,1,4,6,5 (7,3,4,2,5,1,6) (7.2)

If, starting in any position, we take the successive elements of any block of (7.1),
these are seen to be the pth, (p+ 1) th, (p+ 21)th, ... elements of any other block,
for some p and 4, with reduction modulo 7; this is not true of (7.2), so the RND’s
(7.1) and (7.2) are from different species. Indeed, for v = k = any odd prime
greater than 5, the RND’s obtained by Methods A and B come from different
species; this can readily be shown by examining 2-places-apart neighbours, as the
RND’s obtained by Method A are 2-perfect whereas those from Method B are not.

Forv = k = 7, there are, apart from the balanced circuit RND’s (7.1) and
(7.2), the following other RND’s where, to illustrate such structure as the designs
possess, symbols other than 1,2, ...,7 have been used for the set S :

I,z,y,¢,b,y,0) (I,9,2,0,c,2,b) (I,2,2,b,0,z,0) (7.3)
and
(3,4,5,z,9,1,2) (5,1,2,4,2,2,3) (1,4,y,2,5,v,3) 7.4

In (7.3), each block has a duplicated element (respectively y, 2 and x), and each
block can be obtained from either of the others by use of the cyclic permutation
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(abc)(zyz) once or twice. In (7.4), the second and third blocks each have a du-
plicated element (respectively z and y), but the first block does not.

For each of the parameter sets v = k = 9 and v = k = 11, Sainte-Lagué [31, p.
167] gave a second balanced circuit RND, namely

(1’2)3!4l5’637)819) (1l7l3,5!9’214)6l8)
(1,3,8,5,2,7,4,9,6) (1,4,8,2,6,3,9,7,5) (7.5

and

(1,2,3,4,5,6,7,8,9,10,11) (1,6,4,7,10,3,5,11,9,2,8)
(1,3,7,11,8,4,9,5,2,6,10) (1,4,10,5,7,2,11,6,8,3,9)
(1,5,8,10,2,4,11,3,6,9,7) 1.6)

Sainte-Lagué claimed that each of (7.5) and (7.6) comes from a different system
from that of the corresponding balanced circuit RND obtainable by Method B, but
his exposition falls short of a formal proof that he was using system in the sense of
species. In fact, examination of 2-places-apart neighbours readily shows that, for
v =k =9 ,design (7.5) and a Method B design come from different species, and
forv = k = 11 , the design (7.6), a Method A design and a Method B design all
come from different species. For the parameter set v = k£ = 13, Sainte-Lagué [31,
p. 177) similarly gave an example of a third system (i.e. other than the systems
obtainable by Methods A and B):

(1,2,3,4,5,6,7,8,9,10,11,12,13)(1,4,9,12,2,8,13,10,5,7,3,6, 11)
(1,8,3,5,9,7,4,11,13,2,6,10,12)(1,6,4,13,5,12,3,9,2,11,8,10,7)

(1,5,11,7,12,6,8,4,2,10,3,13,9)(1,3,11,9,6,13,7,2,5,8, 12,4, 10)
.7

Again, examination of 2-places-apart neighbours establishes that the 3 systems
are indeed 3 species.

Forv = k = 7 and 9, Colbourn [6] showed that there are, respectively, 2 and
122 species of balanced circuit RND’s. For v = k = 11, he showed that there are
3140 such species that have non-trivial automorphism groups.

Forv = 5, k = 10, we have the RND (1.6), obtained by concatenation from
the RND (1.5):

(1,2,3,4,5,1,3,5,2,4). (7.8)
Applying the permutation (25)(34) to its elements gives
(1,5,4,3,2,1,4,2,5,3); 7.9

rotating this through « radians gives
(1,4,2,5,3,1,5,4,3,2), (7.10)
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i.e. the reflection of (7.8), which can thus be described as self-adjugate. Another
self-adjugate RND with v = 5, k = 10 and obtained by intramutation from (7.8)
is

(1,2,3,4,5,3,1,5,2,4); (7.11)

this RND, however, has no element that is in positions p and p + 5, for some p,
and so it cannot be obtained by concatenation from an RND having two blocks of
equal size.

For an RND with k = 3, the parameter v must, as shown in Section 1 above,
take one of the values 7, 9, 13, 15 within the range of Table 1. To write down
an RND with k& = 3, we merely need a Steiner triple system (BIBD with k = 3,
) = 1) with the same values of v, r and b; the blocks of the BIBD can be used
for the blocks of the RND, each block (z, y,2) of the BIBD giving rise to either
(z,y,2) or (z,z,y) in the RND. An RND withv = 7, k = 3 is the following,
already given as (1.7): ,

(2,3,5)(3,4,6) (4,5,7 (5,6,1) (6,7,2) (7,1,3) (1,2,4). (7.12)

Applying the permutation (235)(764) to the elements of (7.12), rotating each
block through 2#/3 radians, and appropriately reordering the blocks gives us
(7.12) back again; so too, of course, does the permutation (1234567) and a re-
ordering of the blocks. Thus the RND, like the corresponding BIBD, is rich in
automorphisms. So too is the adjugate RND obtained from (7.12) by taking the
reflection of every block. However, other adjugates of (7.12), obtained by reflect-
ing some blocks but not others, lack these automorphisms.

The RND (7.12) is one of many RND’s that can be developed cyclically from
one or more initial blocks. For such RND’s we henceforth use an obvious succinct
notation that is used also for cyclically developed BIBD’s; in this notation, (7.12)
is written

(2,3,5) modulo 7. (7.13)

The blocks of cyclically developed RND’s may or may not come¢ from the
blocks of a BIBD. Thus, for example, thereisno BIBD withv = b=9,r=%k =4,
yet we have Rees’s own RND for these parameters, as follows:

(1,4,9,8) modulo9. (7.14)

Likewise there isno BIBD forv =15, =7,k = 5, b = 21, yet Rees [29] and
Hwang and Lin [13, p. 307] were able to give an RND for these parameters as
follows:

(1,2,15,4,9) modulo 15
(1,4,7,10,13) modulo 15 (partial cycle, of length 3)
(1,7,13,4,10) modulo 15 (partial cycle, of length 3) (7.15)
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Forv = b= 11,r = k = 5,Rees [29] and Street [32, p. 127] gave the following
2-perfect RND, whose blocks come from those of a BIBD:

(1,4,5,9,3) modulo 11. (7.16)
Another RND with the same parameters is
(1,4,8,9,3) modulo 11, (7.17)

which is not 2-perfect nor do its blocks come from those of a BIBD. Thus (7.16)
and (7.17) come from different species.

Comparison between (7.16) and (7.17) shows how one cyclically developed
RND can be constructed from another. For this, we copy Rees [29], Street [32]
and Street and Street [33, p. 322] by defining the forward differences of an initial
block to be the quantities

e;+1 — e; modulo n, i=1,2,...,k

where e; is the i’th element of the block (eg = ex) and where the cyclic devel-
opment is done modulo » (the integer n not necessarily being equal to v); we
similarly define the backward differences o be

€; — €41 modulo n, ‘i=l,2,...,k.

For an RND having just a single initial block that is developed with n = v, the
following must be satisfied:
@@ k=r—(v=-1)/2;
(b) the (v — 1) forward and backward differences must together constitute the
set{1,2,...,v—1}
(c) the forward differences (and therefore the backward ones too) must sum to
v modulo v.

For (7.16) the differences are as follows:

forward: 3 1 4 5 9
backward: 8 10 7 6 2 (7.18)

For (7.17), the forward differences (and therefore the backward ones too) are the
same except in their ordering:

forward: 3 4 1 5
backward: 8 7 10 6 2 (7.19)
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Other orderings are possible, for example the ordering

forward: 1 9 4 5 3

obtained when the general half cycle solution given by Azais [3, p. 338] for
v = 2k + 1 = 3 (modulo 8) is used for v = 11; however, checking all the
corresponding RND’s for isomorphism or non-isomorphism would need care. A
change of ordering of the forward differences in the first initial block of (7.15)
gives the alternative initial block (1,2, 6,11, 3), also produced by a construction
of Hwang and Lin [14, p. 114]. A change of ordering of the forward differences
in the reflection of the initial block of (7.14) gives the alternative initial block
(1,2,8,3), obtained when the general Azais solution for v = 2k + 1= 1 (mod-
ulo 8) is used forv =9,

For RND’s withv = b, 7 = k = (v — 1) /2, the scope for obtaining designs
increases as v increases. We make no attempt here to give an exhaustive account
of possibilities; we merely give examples within the range of Table 1. Forv = b =
13, r = k = 6, Rees [29] and Lindner, Phelps and Rodger [20] respectively gave
the non-isomorphic RND’s

(1,11,2,7,13, 12) modulo 13 (7.20)

and
(5,2,8,7,9,13) modulo 13 (7.21)

- the second of these being 2-perfect, but not the first - whereas the RND
(1,2,5,1,3,8) modulo 13 (7.22)

can readily be obtained by concatenation from an RND withv = 13, k = 3.
A change of the ordering of the forward differences in the reflection of the ini-
tial block of (7.21) gives the alternative initial block (1,2,13, 3, 11, 5) obtained
when the general solution given by Azais [3, p. 338] forv = 2k+ 1 = 5 (modulo
8) isused forv = 13. Forv = b = 15, r = k = 7, Rees [29] gave the RND

(1,3,6,11,5,9,2) modulo 15, (7.23)

whose blocks come from those of a BIBD but which is not 2-perfect, whereas the
2-perfect balanced circuit RND

(1,4,10,8,13,6,5) modulo 15 (7.24)

given by Manduchi [24, p. 106] has blocks that do not come from those of a BIBD,
and the seemingly unrelated balanced circuit RND

(1,2,15,4,14,5,13) modulo 15 (7.25)
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obtained from the general Azais solution for v = 2k + 1 = 7 (modulo 8) is not
2-perfect nor do its blocks come from a BIBD. Two further RND’s for this set of

parameters are
(1,2,4,1,5,15,9) modulo 15, (7.26)

where each block has a single duplicated element (see Hwang [10, p. 788], Street
{32, pp. 123-125] and Street and Street [33, p. 320]), and

(1,2,4,1,12,2,8) modulo 15, (7.27)

where each block has two duplicated elements.

Forv =9,k = b = 6, we offer 3 RND’s. For each of these we take § =
{1,2,3,4,B,C,a,b,c} and give only 2 initial blocks, the remaining blocks be-
ing obtained by applying the permutation (123) (ABC) (abc) once and twice to
the initial blocks:

(1,2,4,B,0,b) (1,4,b,2,C,0); (1.28)
(1,2,4,B,a,b) (1,4,0,2,C,0); (7.29)
(B,2,A,B,a,b) (1,3,4,2,C,0). (7.30)

In the RND obtained from (7.28) no block has a duplicated element, in the RND
obtained from (7.29) exactly 3 blocks have a single duplicated element, and in the
RND obtained from (7.30) every block has a single duplicated element; the RND
obtained from (7.30) can be obtained by concatenation from a design with k = 3.
An RND with v = 9, k = 12 can clearly be obtained by concatenation in many
ways from RND’s above.

8. Quasi Rees Neighbour Designs

For practical applications, e.g. in the microbiological laboratory, the non-existence
of RND’s for even values of v might be thought vexatious, especially when no
need is perceived for replicating each pairing of two antigens as neighbours. To
suggest blocks of different sizes may provide no solution of the difficulty, as prac-
tical considerations may well require each block to have the same geometry. As
the next best thing to an RND, we therefore define a quasi Rees neighbour de-
sign (QRND) exactly as an OND save that condition (v) (see Section 1 above) is
replaced by the following:

(v*) every element from S has each other element as a neighbour exactly
once, except that it has just one of the other elements as a neighbour
exactly twice,

This definition implies a partitioning of the set S = {1,2,...,v— 1, v} into pairs
such that the two elements within any pair are neighbours twice, whereas any two
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elements from different pairs are neighbours just once. The parameters v, r, b, k
of a QRND satisfy the equations

vr = bk 8.1
and
r=y/2, 8.2

with v required to be even,

A QRND does not correspond to any of the Jeux de Demoiselles of Lucas [22,
PP. 161-197], nor are we aware of any corresponding problem in the literature of
recreational mathematics. The closest problem, given by Lucas [22], seems to be
where condition (v) for a BOND is replaced by

(v**) every element from S has each other element as a neighbour exactly
once, except that justone of the other elements is never its neighbour.

A QRND with k = 3 must have
b=vr/3=1%/6, 8.3)

which restricts v to the values v = 6,12,.... AQRND withv =6 and k = 3 is
the following:

(1,2,3) (1,2,4) (3,4,5) (3,4,6) (5,6,1) (5,6,2). @4
A QRND with k& = 4 must have
b=vr/4=1%/8, 8.5)

which restricts v to the values v =4,8,12,.... AQRND withv =4 and k = 4
is
(1,2,3,4) (1,2,4,3). (8.6

Method B for constructing balanced circuit RND’s can readily be modified to
produce QRND’s in which the pairs duplicated as neighbours are the pairs in the
set{(1,v),(2,v-1),...,(v/2,(v+2)/2)}. The blocks of the QRND produced
by this modified method are as follows:

(ug ly 2, ‘U—l, 3' v—2’ . 1052! )
(”s 2, 3, 1, 4, V- 1' e (054! )
@3 42 s on L day
(vo 3 42, G2 ) (-9 - 1)
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If the last block of this modified construction is omitted, condition (v**) of Lucas
[22] is met.

No systematic attempt has been made to construct, study or enumerate QRND’s.
However, QRND’s can be given definitions of isomorphism, sepecies, adjugate
set, etc., that are analogous to the corresponding definitions for BOND’s,

Preliminary investigations suggest that QRND’s have more mathematical ap-
peal ahd interest than is initially apparent. Consider, for example, the following
three QRND’sforv=k =6 :

(1,2,4,5,6,3) (1,2,6,5,3,49) (1,5,2,3,4,6) ®.7

(1,2,4,5,6,3) (1,2,6,4,3,4) (1,5,2,3,5,6) (8.8)
and

(1,2,3,1,2,4) (3,4,5,3,4,6) (5,6,1,5,6,2) 8.9

In each of these three QRND’s, the pairs that are duplicated as neighbours are
the pairs in the set P = {(1,2),(3,4),(5,6)}. Design (8.7) has each element
exactly once in each block, but the neighbouring pairs in blocks 1, 2 and 3 include,
respectively, 2, 3 and 1 of the pairs in P; design (8.7) can thus be said to be
irregular in structure. This can be said even more strongly of design (8.8), which
has element 4 twice in block 2 (the occurrences being 2 places apart) and element 5
twice in block 3 (the occurrences being 3 places apart). Contrariwise, design (8.9),
which has two repeated elements in each block, is very regular in structure, each
block being obtained from either of the others by use of the permutation (135)(246)
once or twice. In an obvious extension of earlier terminology, design (8.9) can
also be said to be consistently 2-perfect, the consistency arising because the pairs
that are duplicated as immediate neighbours are the same as those duplicated as
2-places-apart neighbours.

A QRND with v = k = 8 is as follows, where P, defined as above, is now

P={(1,2),(3,4,(5,6),(7,8) }:

(1,2,3,6,8,7,5,9) (1,3,4,8,2,5,6,7)
(1,2,4,6,5,3,7,8) (1,5,8,3,4,7,2,6) (8.10)

Once again, despite the appearance of each element of S in each block, examina-
tion of the positionings of the pairs from P as neighbours shows the structure to
be irregular.

Further mathematical interest can be introduced into the study of QRND’s by re-
quiring that, if p and ¢ are any 2 elements that are neighbours twice, then p should
occur once as a forward neighbour of ¢ (i.e. as a left neighbour, if we think of
children dancing in a ring whilst facing the centre of the ring) and once as a back-
ward neighbour (right neighbour). We use the terminology even-handed QRND
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for a QRND with this property. An example obtained from (8.8) by first taking
the reflection of block 1, then the other two blocks unchanged, is the following:

(1,3,6,5,4,2) (1,2,6,4,3,4 (1,5,2,3,5,6) @.11)

9. Balanced Ouchterlony neighbour designs having \' > 1

Hwang and Lin [11, 12, 13, 14] established that a BOND exists for any set of
parameters v, 1, b, k, \' satisfying equations (1.1) and (1.2).

Literature sources already referred to and listed at the end of this article give a
few constructions for BOND’s with )’ > 1, but much remains to be discovered
about such designs. The foregoing sections of the present paper suggest clearly
that, for any particular parameter set, enumeration of designs will generally pose
greater problems than mere construction of a single example.

Further mathematical interest can be introduced into the study of BOND’s hav-
ing an even value of )\’ by requiring that, if p and ¢ are any 2 elements from S,
then p should occur \'/2 times as a forward neighbour of ¢ and \'/2 times as a
backward neighbour. We describe a BOND with this further property as an even-
handed BOND. Consider, for example, the following two BOND's obtained by,
respectively, Dey and Chakravarti [8, p. 103] and Chandak [$, p.3] for v = 13,
k=4,)=2:

(1,2,4,8) (3,6,12,11) (4,8,3,6) all modulo 13 .1
and
(1,8,12,5) (2,3,11,10) (4,6,9,7) all modulo 13. 9.2

Here, design (9.2) is an even-handed BOND, but the BOND (9.1) is not even-
handed and cannot be made even-handed by reflection of one or more of the initial
blocks. The blocks of each of (9.1) and (9.2) come from those of a BIBD.

Even-handed BOND’s are closely related to serially balanced sequences (see
Street.and Street [33, Section 14.5]). Indeed, the following even-handed BOND
withv = k = 5, ) = 2 is obtainable directly from the first serially balanced
sequence in Table 14.10 of Street and Street (33, p. 331]:

(1,2,4,3,5) (2,3,1,4,5) (3,4,2,1,5) (4,1,3,2,5) 9.3

With the element 5 printed first instead of last in each block, the construction is
seen to be that of Method B of Section 7 above, extended to v — 1 blocks. More
generally, extending either Method A or Method B to v — 1 blocks (v odd) gives
an even-handed BOND with \' = 2.

The even-handedness of (9.3) holds not only for immediate neighbours but also
for 2-places-apart neighbours. So, in an obvious extension of earlier terminology,
design (9.3) is a 2-perfect even-handed BOND.
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A general construction similar to Method B, except that an extra block is added
at the end, can be used to produce BOND’s withv even, k = v— 1 and \' = 2
(see Street [32, p. 125]). The BOND’s produced by this construction are not
even-handed, as is illustrated by the following example for v = 6 :

(6,1,5,2,4) (6,2,1,3,5) (6,3,2,4,1) (6,4,3,5,2) (6,5,4,1,3)
plus the block (1,2, 3,4,5). 04

The blocks of (9.4) come from those of a BIBD.

The total cycles of Azais [3, pp. 337-338] provide even-handed BOND’s with
vodd, k = v—1and )’ = 2, whose blocks come from those of a BIBD. Examples
forv=15,7,9 and 11 are, respectively, the following:

(1,2,5,4) modulo 5 ©.5)
(1,2,7,4,6,5) modulo7 9.6)
(1,2,9,3,8,5,7,6) modulo 9 ©.7)
(1,2,11,3,10,5,9,6,8,7) modulo 11 ©.8)

These q_xa‘mples all arise as special cases from the general construction (2) given
by Azais for any odd value of v > 3.

10. Openings for further research

Much remains to be done in the study of BOND’s and of QRND'’s. Despite some
recent relevant work by Igbal [15], there is a dearth of general methods of con-
struction. Studies of non-isomorphism for particular parameter-sets are conspicu-
ous by their almost total absence from the literature, as are enumerations of non-
isomorphic designs for particular parameter-sets. Tabulations of known designs
with particular properties are lacking. Theorems on possible patterns for repeated
elements in the blocks of BOND’s with )\’ > 1 are not available, nor are many
results on even-handed BOND’s. If we compare present knowledge about BIBD’s
with that about BOND’s and QRND’s, we see that study of BOND’s and QRND’s
is still in its early stages.

Also, as Rees himself has pointed out in private correpondence with the present
author, many other openings for further research are revealed when we consider
3-dimensional analogues of RND’s and BOND's. Suppose, for example, that a
design has elements located on spheres. If there are 8 locations on each sphere and
these are at the corners of a cube, we might define two locations to be neighbouring
if they are joined by an edge of a cube. Then the following design [Rees, private
communication] is analogous to an RND:
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13 22

modulo 25
(10.1)

(We use the Schafli representation of a cube.) Likewise, the following is analogous
to a BOND with )’ = 2:

13 3
6 7
8 12
10 4
modulo 13
(10.2)
whereas the following is analogous to a BOND with )\’ = 3:
3 5
7 8
2 1
6 4
modulo 9
(10.3)

In an obvious sense, analogous to that for 2-dimensional designs, none of (10.1),
(10.2) or (10.3) is 2-perfect, although similar 2-perfect designs might well be ex-
pected to exist. The 3-dimensional designs seem to offer a field of reseach as
fertile as that for 2-dimensional designs.
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Table 1

Parameter sets for RND’s withv < 15,k < 15

v r kb Possible method of construction
=(v—-1)/2 =vrfk
5 2 5 2 Method AorB
10 1 Concatenation (from design with k = §), or
(7.11) in text
7 3 3 7 BIBD (Steiner triple system)
7 3 Method A or B, or (7.3) or (7.4) in text
9 4 3 12 BIBD (Steiner triple system)
4 9  Rees’sdifferences [29] or see Azais [3, p. 338]
6 6 Concatenation (from design with k = 3), or
(7.28) or (7.29) in text
9 4 Method B, or see Sainte-Lagué [31, p. 167]
or concatenation (from design with k = 3)
12 3 Concatenation (from design with k = 3 or 6)
11 5 5 11 Suitably ordered BIBD difference set (Rees
[29]), or (7.17) in text, or see Azais [3, p. 338]
11 5 Method A or B, or see Sainte-Lagué (31, p.
167] -
13 6 3 26 BIBD (Steiner triple system)
6 13 Rees’s differences [29], or (7.21) in text, or
see Azais [3, p. 338}, or concatenation (from
design with k = 3)
13 6 Method AorB
15 7 3 35 BIBD (Steiner triple system)
5 21 Rees’s differences [29] (despite non-existence
of BIBD)
7 15 Suitably ordered BIBD difference set (Rees
[291), or (7.24), (7.25), (7.26) or (7.27) in text
15 7 Method B, or concatenation (from design with

k=3or5)
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