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Abstract. In tﬂis paper we prove the NP-hardness of the bottleneck graph bipartition
problem and study the complexity status of possible approximation algorithms for some
related problems.

Our standard reference to graph theory is [CL86]. For standard concepts and
definitions on approximating combinatorial problems, the reader should consuit
[PS82]; throughout this paper, however, we will give a brief description of the
concepts which are relevant to our work.

For a graph (V, E), and B C V, we denote by e(B) the edge set induced by
B. For disjoint A, B C V, we denote by e( A, B) the set of all edges with exactly
one end point in A and one end point in B. A partition (B, B) of V is called a
cut.

The bottleneck bipartition problem (BBNP) is to find a cut (B,B) in G =
(V, E) with the smallest possible max { |e( B) |, |e( B)|}. We denote this number,
which was introduced by Entringer [En88], by 4(G) and observe that y(G) = 0
for bipartite graphs. Erdds [Er88] conjectured that v(G) < |E|/4 + O(\/]E).
This was recently proved by Porter [Po89] in a nonconstructive and nonproba-
bilistic fashion. Clark [C188] proved a weaker version of this conjecture using
a probabilistic argument. Clark, Shahrokhi and Szekély [CSS92] gave an algo-
rithm to approximate the BBNP and verified constructively a weaker version of
the ErdGs’ conjecture,

Define 5(G) = min(p 5,{|e(B)| + |e(B)|}. Observe that 5(G) is the mini-
mum number of edges in G whose removal leaves a bipartite subgraph of G, and
if5(G) = |e(C)| + |e($)| for some cut (C, C), then (C, C) is a maximum cut.
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The problem of computing 7(G) is called the minimum edge deletion bipartite
subgraph problem (MEDBP) {Se89]. It is easy to verify that,

7HE) < 2B <HE). ®

The maximum cut problem (MXCP)is to findacut (B, B) inG = {V, E) with
the largest possible |e( B, B)|. Although MXCP is NP-hard, [GJ78], the special
case in which the underlying graph is planar, can be solved in polynomial time
[Ha75], [KCS88].

Lemma 1. Let (C,0) be a maimum cut in G with |e(C)| = le(0)|, then
1
5'7(6') =1(G).

Proof. Observe that for the cut (C,C), [e(C)| = |e(C)| > v(G) and [e(O) | =
[e(&)] = $7(G) so that 4(G) < $7(G) while 4(G) > F(G) by (1). Conse-
quently, 7(G) = }7(G). N
Theorem 2. Computing «(QG) is NP-hard.

Proof. We reduce the maximum cut problem to the problem of computing . For
G = (V, E) a graph, construct the cartesian product G’ of K, and G (see [CL86]).
Note that G' consists precisely of two isomorphic copies of G such that identical
vertices in these copies are joined by an edge. An edge e in G is called a cross
edge if the end points of e are located in different copies of G (in G'). Observe
that there are exactly |V| cross edges in G'.

Let (C, €) be a maximum cut in G, and (D, D) be any cutin G', we claim that

(D, D)| < 2[e(C,0) |+ IVI.

To see this, note that D = AU B and D = AU B, where (4, A) and (B, B) are
cuts in two different copies of G in G'. It is easy to verify that,

e(D,D) = e(A,A) Ue(B,B) Ue(A,B) Ue(B, A).
However, [e( 4, 4)| < [e(C,C)|, and |e(B, B)| < |e(C,C)|, since (C,0) is
a a maximum cut in G. Furthermore, |e(A, B)| + |e(B, A)| < |V|, since any
edge in e( A, B) U e(B, A) is a cross edge in G'. It follows that |e(D, D)| <
2|e(C,O)| + |V|, as we claimed. Next, consider a cut (K, K) in G’ by letting K
be the union of C from one copy of G and C from the other copy of G. Then

le(K,K)| = 2|e(C,O) | + V. (03]
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Therefore, (K, K) is a maximum cut in G'. However, (K, K) has |e(K)| =
le(K)] = |e(C)| + |e(O) | so that by Lemma 1

NG =29(G). ©))

Now assume that (G') is computed in polynomial time. Then (3) implies that
F(G") is also computed in polynomial time. Therefore, |e( X, K') | for amaximum
cut (K, K) in G' is computed in polynomial time. However, then (2) implies that
|e(C, C)| for a maximum cut in G is computed in polynomial time which verifies
the result. [ |

Theorem 2 emphasizes the significance of the estimating 4(G) by deriving up-
per bounds such as the upper bound of ErdSs proved by Porter [P092]). Theorem 2
also suggests that since it is less likely to compute «(G) in polynomial time, one
should concentrate on approximating (&) in polynomial time. In the rest of the
paper we explore the relative degree of difficulty with respect to e-approximation
of BBNP, MEDBP, and MXCP.

Let P be a combinatorial optimization problem with a positive integral cost
(or objective) function; denote the optimal cost value for any instance I of P
by ¢(I). Assume A is an algorithm which, given an instance I of P, returns a
feasible solution to I with cost value c4(I). Lete > O be fixed; we say A is an
e-approximate algorithm for P, if

[&(D) — ca(D)]
—xD ) <e @

for any instance I of P. If (4) holds for every fixed e > O for all instances I of
‘P, then A is called an e-approximate scheme. An e-approximate algorithm whose
running time is polynomially bounded in the problem size I is termed a polynomial
time approximate algorithm. Similarly, an e-approximate scheme whose comput-
ing time is bounded in the problem size is called a polynomial time approximation
scheme (PTAS).
A very strong type of approximation for a combinatorial optimization problem
P occurs when we wish to satisfy (4) for any e > 0 within a time bounded by a
polynomial in both €~! and the input size. More formally, we say that algorithm
4 is a fully polynomial approximation scheme (FPAS) for P, if and only if given
any instance I of P and any e > 0, A computes within a time bounded by a
polynomial in both ¢! and the size of I, a feasible solution to P such that (4)
holds.
Theorem 3.
(i) For MXCF, BBNP or MEDBP there is no FPAS unless P = NP,
(ii) Any e-approximate algorithm A for MEDBP is also an e-approximate al-
gorithm for MXCP.
(iii) Let A be any e-approximate algorithm for BBNF, then there is an approxi-
mate algorithm for MEDBP with the same time complexity as A.
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Proof. Part (i) follows from Theorem 17.12 of [PS82; p.430].
To verify (ii), note that for the cut (B, B) produced by .A and a maximum cut
(C,0) in G. We have

[e(C,C)| - |e(B, BY| = |e(B)| + |e(B) | — |e(C) | — |e(D)|-

Next, observe that any maximum cut in G contains at least half of the edges of G.
Thus,

.0 > 2 5 o]+ o]

It follows that
6¢C.0)| - |e(B, B)| _ [e(B)| + |e(B)| — |e(C)| ~ [e(O)|
c.o)] O+ D] '
However,

|e(B) | + |e(B)| - |e(C) | - Ie(C)I
@[+ O] “

since (B, B) is the cut constructed by algorithm .A. Consequently,

le(C,O) | - |e(B, B)I ce
[e(C,O)| =
Finally to verify (iii), consider the cartesian product G’ of K, and G as in the

proof of Theorem 2. Let (K, K) and (C,C) be maximum cuts in G’ and G,
respectively. We have [e( K, K)| = 2[e(C, O)| + |V|, by (2), so that

HG') = 2|E|+ |V| - |e(K, K)| = 2 (|E| - |e(C, D)) = 27(G).

By (3) (in Theorem 2), we have 7(G') = 25(G). It follows that

WG =5G). 5)
Now let A’ be an algorithm which first constructs G’ from G (in O(|E| + [V |)
time) and then applies algorithm A to G'. It is clear that A' has the same time
complexity as.A. For the cut (D, D) in G' produced by A’ we have

max {|e(D)|,|e(D)|} < (1+ )HG).

Employing (5), we get

max {|e(D) |, |e(D) |} < (1+ OF(G). ©)
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However, D = A)UB,; and D = A, U B, where (A, A;) and (B, B) are cuts
in the two different copies of G in G'. Assuming (with no loss of generality that)
le(A) |+ [e(A)| < [e(B)| + [e( B)|, and using (6), we get

le(An) |+ |eCAn)| < (le(D)l‘;Je(D) )
< max {|e(D)|, |e(D)|} < (1+ &F(G).

Thus (A;, A;) is a desirable cut. |

Part (i) of Theorem 3 justifies the significance of weaker types of approximation
algorithms than FPAS for our problems. Parts (ii) and (iii) of Theorem 3, however,
establish the relative degree of difficulty between these problems with respect to
e-approximation.

For the MXCP efficient § -approximate algorithms are known [PY88], [CSS92].
We have not been able to find an efficient e-approximate algorithm for the MXCP
with € < 1/2, neither have we been able to show that one does not exist (unless
. P = NP). We note here, that effective algebraic upper bounds for MXCP by
Delorme and Poljack [DP91], are conjectured to be within a multiplicative factor
of 1.14 from the max cut, although this method did not yield yet provably good
polynomial time approximation algorithms.

For MEDBP an efficient 1-approximate algorithm has been discovered [Se89].
No e-approximate algorithms for BBPN are known, for any e. We indicate that
the algorithm in [CSS92] computes a good upper bound on 4(G). However,
this algorithm is not an e-approximate algorithm. We believe that finding an e-
approximate algorithm for BBPN (if possible) is important and at the same time
difficult, since by Theorem 3 such algorithm would imply new e-approximate al-
gorithms for MXCP and MEDBP.
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