A Note on a Generating Set for N_5^{∞}

Y. Miao*

Mathematics Teaching-Research Section Suzhou Institute of Silk Textile Technology Suzhou, 215005, P. R. China

Abstract. In this note, we construct a (39, $\{5,6,7\}$, 1)-PBD. Thus we have a finite generating set for the PBD-closed set N_5^{∞} with at most three inessential elements, where $N_5^{\infty} = \{1\} \cup \{v : v \ge 5\}$.

The theory of PBD-closure was developed by R. M. Wilson in a series of papers (see [5], [6], [7] and [8]). Given a set K of positive integers, we denote by B(K), the closure of K, the set $\{v: a(v, K, 1)\text{-PBD exists}\}$. A set is a PBD-closed set if B(K) = K.

Wilson showed

Theorem 1. [8] If K is a PBD-closed set, then there exists a finite set $J \subseteq K$ such that K = B(J).

Such a set J is called a *finite generating set* for the PBD-closed set K. Wilson also observed that each PBD-closed set K has a unique minimal generating set which is contained in every finite generating set of K. An element $x \in K$ is called essential in K if and only if $x \notin B(K - \{x\})$, or equivalently, $x \notin B(\{y \in K : y < x\})$.

It can be quite difficult to determine whether or not a particular element is not inessential. The following lemma can be of help.

Lemma 2. [4] Let P be a PBD whose smallest block size is at least s and largest block size is m. Then P contains at least m(s-1) + 1 elements.

Let
$$N_k^{\infty} = \{1\} \cup \{v : v \ge k\}$$
. Hanani proved

Theorem 3. [3] Let $K_3 = \{3,4,5,6,8\}$, $K_4 = \{4,5,\ldots,12,14,15,18,19,23,27\}$, and $K_5 = K_5^{\circ} \cup \{32,33,34,39\}$ where $K_5^{\circ} = \{5,6,\ldots,20,22,23,24,27,28,29\}$. Then K_k is a finite generating set for N_k^{∞} for each k=3,4 and 5.

The fact that K_3 is the minimal finite generating set for N_3^{∞} is an immediate consequence of Lemma 2. It is also well known (see, for example, [1] and [2]) that $K_4 - \{27\}$ is the minimal generating set for N_4^{∞} . But for N_5^{∞} , we do not know whether the elements of $\{32,33,34,39\}$ are inessential.

^{*}Research supported by the Excellent Young Teacher Funding of State Education Commission of China.

It is the purpose here to construct a $(39, \{5,6,7\}, 1)$ -PBD, which implies that $K_s^2 \cup \{32,33,34\}$ is a finite generating set for N_s^∞ which contains at most 3 inessential elements.

We assume familiarity with standard terminlogy and results in design theory ([1]).

Theorem 4. $A(39, \{5, 6, 7\}, 1)$ -PBD exists.

Proof. Remove 6 points from two groups respectively of a TD(7,8) to get a $\{6,7,8\}$ -GDD of type 1^27^6 which contains a unique block of size 8. Remove 5 points from a block of size 6 which intersects the unique block of size 8 at one of these 5 removed points. Then we obtain a $\{5,6,7\}$ -GDD of type $1^26^57^1$, which implies the existence of a $(39,\{5,6,7\},1)$ -PBD.

Thus we have

Theorem 5. Let $K'_5 = K^\circ_5 \cup \{32, 33, 34\}$, where $K^\circ_5 = \{5, 6, ..., 20, 22, 23, 24, 27, 28, 29\}$. Then K'_5 is a finite generating set for N^∞_5 which contains at most three inessential elements of 32, 33 and 34.

Acknowledgement

The author would like to thank Professor L. Zhu for his supervision.

References

- T. Beth, D. Jungnickel and H. Lenz, *Design Theory*. Bibliographiisches Institut, Zurick, 1985.
- [2] S. Furino, α-Resolvable structure. Ph.D. Thesis, Univ. of Waterloo, 1990.
- [3] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255–369.
- [4] R. C. Mullin, On a generating set problem of Rosa, Ars Combinatoria 27 (1989), 75–84.
- [5] R. M. Wilson, An existence theory for balanced designs I, J. Combin. Th. (A) 13 (1972), 220-245.
- [6] R. M. Wilson, An existence theory for balanced designs II, J. Combin. Th. (A) 13 (1972), 246-273.
- [7] R. M. Wilson, An existence theory for balanced designs III, J. Combin. Th. (A) 18 (1975), 71–79.
- [8] R. M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts 55 (1974), 18-41.