Orthogonal Diagonal Latin Squares
with Orthogonal Diagonal Subsquares

B. Du

Department of Mathematics
Suzhou University
Suzhou 215006 China (PRC)

Abstract. It is proved in this paper that for any integer n > 100, a (v,n)-IODLS
(incomplete orthogonal diagonal Latin squares) exists if and only if v > 3 n+2. Results
for n= 2 are also mentioned.

1. Introduction

A Latin square of order n is an n x narray such that every row and every column
is a permutation of a n-set. A transversal in aLatin square is a set of positions, one
per row and one per column among which the symbols occur precisely once each.
A transversal Latin square is a Latin square whose main diagonal is a transversal,
It is easy to see that the existence of a transversal Latin square is equivalent to the
existence of an idempotent square. A diagonal Latin square is a transversal Latin
square whose back diagonal also forms a transversal.

Two Latin squares of order n are orthogonal if each symbol in the first square
meets each symbol in the second square exactly once when they are superposed.
t pairwise orthogonal (transversal, diagonal) Latin squares of order n, denoted
briefly by ¢ POLS(n) (POILS(n), PODLS(n)) are ¢ pairwise orthogonal Latin
squares each of which is a (transversal, diagonal) Latin square of order n. We let
OLS(n) (OILS(7n), ODLS(7)) denote 2 POLS(n) (POILS(n), PODLS(n)).

The spectrum of orthogonal diagonal Latin squares was finally determined by
Brown, Cherry, Most, Most, Parker and Wallis [3].

Theorem 1.1. Anorthogonal diagonal Latin squares of order n exists if and only
ifn#2,3,0r6.

The problem we study in this paper is the orthogonal diagonal Latin squares
analogue of the Doyen-Wilson theorem [5]. We begin with some definitions.
If two orthogonal dialgonal Latin squares have subsquares occupying the cen-
tral positions in each, the subsquares themselves must be orthogonal dialgonal
Latin squares. We refer to them as orthogonal dialgonal Latin subsquares. We
denote by ODLS(v,n) a pair of orthogonal dialgonal Latin squares of order v
with orthogonal dialgonal subsquares of order n. It is easy to see the existence
of an ODLS(v, n) required that v — = is even. In particular, any ODLS(v) is an
ODLS(v, 1) when v is odd. In view of Theorem 1.1, no orthogonal dialgonal Latin
squares can contain orthogonal dialgonal subsquares of order 2, 3, or 6. However,
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we can construct orthogonal dialgonal Latin squares missing subsquares of these
orders. We have the following more general definition.

A (v,n)-IODLS (incomplete orthogonal dialgonal Latin squares) is a pair of
v X v arrays which satisfy the following:

(1) they are OLS(v) with sub-OLS(n) missing

(2) the first v — n elements in the main diagonal of each square are distinct and
different from the missing elements

(3) theelementsinthecells (1,v—n),(2,v—-n—1),...,(v—n,1) of each
square are also distinct and different from the missing elements.

If the condition (3) is missing, the resulting pair of latin squares is called (v, n) -
IOILS (incomplete orthogonal transversal Latin squares).

We refer to the subsquares as the hole. Observe that the hole can be filled in
with any orthogonal diagonal Latin squares of order » (provided n # 2, 3, or
6), thereby constructing orthogonal diagonal Latin squares of order v containing
orthogonal diagonal subsquares of order n when v — n is even.

Theorem 1.2. If there exists a (v, n)-IODLS, thenv > 3n+ 2.
Proof. Write v = n+ m and put the (v, n)-IODLS L; and L, as follows:

m R, Ui m R, U,

n Vi S n V2 S

Suppose S, S, are based on the elements m,m + 1,...,v— 1 and L, L, are
based on the elements 0,1,...,m — 1,m,m + 1,...,v — 1. Notice Uy, Uy,
Vi, V2 only contain the elemts 0,1,...,m — 1, the ordered pairs (i,), (f,1),
i=0,1,...,m—1,7 =m,m+1,...,v—1 must be included in the superposition
(Ry, R2) and cannot appear in the cells (0,0),(1,1),...,(m —1,m — 1) and
(0,m-1),(1,m-2),...,(m—1,0). We than have

2nm+2m<m? or 2nm+2m—1< m?

so
2n+2<m or 2n+2<m+1/m

then
v>3n+2

IODLS have been studied by several researchers. Some applications to the
construction of other types of designs are as follows: orthogonal diagonal Latin
squares, incomplete self-orthogonal Latin squares and magic squares with magic
subsquares.

In this paper, we prove the necessary condition is also sufficient for n > 100.
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Theorem 1.3. For any positive integer n > 100, then there exists a (v,n) -
JODLS ifandonly if v > 3n+ 2.

2. Direct construction
First we state a starter-adder type construction for (v, n)-IOILS. The main idea is
to generate each square under a cyclic group of order v — n, from its first row and
from the last » elemnts of the first column. Let X = {0,1,...,v—n—1}UY,
where Y = {z;,z3,...,%,}. Suppose L is a square based on X with a hole
indexed by Y. We shall denote by e, (1, ) the entry in the cell (3, j) of the array
L. The first row is given by the vectors e = (e£(0,0),...,e.(0,v—n—1)) and
fF=(e,(0,v—m),...,e,(0,v—1)),and the last nelements of the first column
are given by the vector g = (e, (v—mn,0),...,e,(v—1,0). The L is constructed
modulo v — nin the range {0, 1,...,v — n— 1}, where the z;’s act as “infinity”
elements as follows:
(1) er(s+1,t+1) = er(s,t) ifer(s,t) = x;,andes(s+1,t+1) = ey (s,t)+1
(mod v — n) otherwise, where 0 < s,t<v—mn—1
) e(s+l,v—n—-1+t)=er(s,v—n—1+1t)+1 (mod v— n), where
1<t<n0<s<v—n-1
3 ef(lv—n—1+t,s+1)=e(v—n—1+t,5)+1 (mod v—n), where
1<t<n0<s<v—n-1,
We remark that there are obviously conditions which the vectors e, f, g must
satisfy in order to produce the (v, n)-IOILS, but we shall not concern ourselves
with that, the reader may see [11].

Lemma 2.1. Suppose there exists a (v, n)-IOILS constructed by the starter-
adder method, v — m is even and the (1 + (v — n) /2) -st element in the starter set
e is not infinity element. Then there exists a(v,n) -IODLS.

Proof. We begin with the (v, n)-IOILS and permute rows and columns with per-
mutation o
1 2 (v-n)/2  (v-n)/2+1 (v-n)/2+2 v-n

911 2 (vn)2 v v-n-1 (v-n)/2+1

Then we obtain the required design.

Lemma 2.2. For (v,n) € F, there exists a (v, n)-IOILS constructed by the
starter-adder method such that the (1 + (v — n) /2) -st element in the starter set is
not an infinity element, where

F={(t,2,(3t+6,t): teE ={8,10,12,14,16,18}}

Proof. For (v,n) = (8,2), see [11], for the other cases (v, 2), see [13]; and for
the cases (v,n) = (3t + 6,1), see [20].
Combining Lemmas 2.1 and 2.2 we have
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Lemma 2.3. There exists a (v,n)-IODLS for (v,n) € F.

In the remaining of this paper we shall assume that the reader is familiar with
the various methods of constructing (v, n)-IOLS starting with an OLS(n) (see,
for example, [2,4]), and starting with an (n, k)-IOLS (see, for example, [8,22]).
We shall also assume that the reader is familiar with the various techniques of
constructing ODLS(v) from OLS(v) by permuting rows and columns (see, for
example, [7,14,17]).

3. The case neven

A Latin square is self-orthogonal if it is orthogonal to its transpose. A Self-
orthogonal Latin square (SOLS) of order v will be denoted by SOLS(v). We also
denote by (v, n)-ISOLS an incomplete self-orthogonal Latin square,

A Latin square is symmetric if it is equal to its transpose. We denote by
USOLSSOM(v) a self-orthogonal Latin square of order v with a constant main
diagonal symmetric orthogonal mate. It is easy to see that the existence of an
USOLSSOM(v) required that v is even.

Lemma 3.1. (/6,18)) If even n ¢ E,, then there exists an USOLSSOM(n),
where

By ={2,6,10,14,46,54,58,62,66,70}

Lemma 3.2. If there exists a USOLSSOM((n), then there exists an ODLS(n)
which posesses n disjoint common transversals including the main diagonal and
the back diagonal,

Proof. Suppose C is a constant main diagonal symmetric orthogonal mate. By
applying a permutation simultaneously to the rows and columns, as Wallis did in
[14], we can produce a Latin square with constant main diagonal and constant back
diagonal. We do the same permutation to self-orthogonal Latin squares A, A’, and
obtain required ODLS(n).

Lemma 3.3, If there exists an ODLS(n) with k disjoint common transversals
including the main diagonal and the back diagonal, then there exists a (3n+k, ) -
IODLS,2 < k<nand k#2,3,0r6.

Proof. We begin with the ODLS(#%), and fill the k disjoint common transversals
with (4, 1)-IOILS and the others with OLS(3), but the back diagonal with mod-
ified (4, 1)-IOILS, that is, by permuting the first 3 columns so that the main di-
agonal of the upper left part in the (4, 1)-IOILS becomes its back diagonal. Note
that there exist ODLS(k) from Theorem 1.1, we obtain the required design by
permuting rows and columns, in which the size n hole consists of the central cells
of filling 3 x 3 arrays in ODLS(n).
Combining Lemmas 3.1 and 3.3 we have
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Lemma 3.4. Ifeven n ¢ Ey, then there exists a (3n+ k,n)-IODLS, for 2 <
k<nand k+#2,3,0r6.

Lemma 3.5. Ifeven n > 70, then there exists 2 (3n+ 2,n) -IODLS.

Proof. We begin with the (n, 2) -IODLS for which existence comes from Lemma
5.6 below. We fill the diagonals in the upper left part with (4, 1) -IOILS but the
back diagonal with modified (4 , 1) -IOILS, and the others with OLS(3). We then
have a (3n+ 2, 8)-IODLS. Note that there exists a (8,2)-IODLS, so the result
follows. The size n hole consists of size 2 hole in (8,2)-IODLS and the central
cells of filling 3 x 3 arrays in (n,2)-IODLS.

For the case k = 3 we need

Lemma 3.6. Ifevenn > 72, then there exist 4 PODLS(k) suchthat n= 4 k+1
orn=8k+t,te F.

Proof. From [9], it is not difficult to check that the assertion is true.

Lemma 3.7. If there exist 4 PODLS(k), then there exist (4k + t,2)-IODLS
and (8k + t,2)-IODLS, t € Ey, and t < k, each of which possesses a common
transversal which meets each of the diagonals of the subarray in the upper left part
precisely once.

Proof. We begin with 4 PODLS(k). Then there exists an ODLS( k) which pos-
sesses one common T transversal which meet each of the diagonals precisely once,
and k disjoint common transversals each of which meets the above transversal pre-
cisely once. From this ODLS( k), we fill ¢ disjoint transversals with (5, 1) -IODLS
or (9,1)-IODLS from ODLS(5) or ODLS(9) respectively, and the others with
ODLS(4) or ODLS(8) respectively. In particular, two cells which be contained
one common transversal T" and one transversal of k disjoint common transversals
and diagonal respectively, we fill (5, 1)-IOILS or (9, 1) -IOILS from ODLS(5) or
ODLS(9), or modified (5, 1)-I0ILS or modified (9, 1)-IOILS. Then we obtain
the required design by filling the size ¢ hole with (¢,2)-IODLS and permuting
rows and columns. The required common transversal consists of the back diag-
onals (about ODLS(5) or ODLS(9)) of filling IOILS and the main diagonals of
filling ODLS or IODLS in T'.
Combining Lemmas 3.6 and 3.7 we have

Lemma 3.8. Ifevenn > 72, then there exists an (n,2) -IODLS with a common
transversal wich meets each of the diagonals of the subarray on the upper left part
Dprecisely once.

Lemma 3.9. Ifevenn > 72, then there exists a (3n+ 3,n) -IODLS.

Proof. We begin with (7,2)-IODLS as in Lemma 3.8, and fill the diagonals of
the subarray on the upper left part with (4, 1)-IOILS or modified (4, 1)-IOILS,
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and the others with OLS(3) but the common transversal with (4, 1)-IOILS or
(5,1, 1)-IOILS (two holes of size 1, or modified (5, 1, 1)-IOILS. Then we obtain
the required design by filling the size 8 hole with (8,2)-IODLS and pemuting
rows and columns.

For the case k = 6, we need the following result from Lemma 3.1.

Lemma 3.10. Ifeven n > 56, then there exists an USOLSSOM (k) such that
n=3k+t,t € E.

Lemmia 3.11. If there exists an USOLSSOM( k), then there exists a (3k+t,t) -
IODLS with t disjoint common transversals including the main diagonal and the
back diagonal which consist of the elements which is not in the subarray.

Proof. We begin with the USOLSSOM( k), then we have an ODLS(k) with k
disjoint common transversals including the main diagonal and the back diagonal.
From this ODLS(k), we fill ¢ disjoint transversals including the main diagonal
and the back diagonal with (4, 1) -IOILS or modified (4, 1) -IOILS, and the others
with OLS(3). The result follows.

Combining Lemmas 3.10 and 3.11 we have

Lemma 3.12. Ifevenn > 56, then there exists an (n,t) -IODLS,t = 8,10, 12,
14, 16, or 18, with t disjoint common transversals including the main diagonal
and the back diagonal which consist of the elements which are not in the subarray.

Lemma 3.13. Ifeven n > 56, then there exists a (3n+ 6,n) -IODLS.

Proof. We begin with the (n,t)-IODLS as in Lemma 3.12, and fill 6 disjoint
common transversals including the main and back diagonals with (4, 1) -IOILS or
maodified (4, 1)-IOILS, and the others with OLS(3). Then we obtain the required
design by filling the size 3t + 6 hole with (3t + 6,t)-IODLS and permuting rows
and columns.

Up to now, we have obtained

Theorem A, Ifevenn > 72, then thereexistsa (3n+k,n)-IODLS,2 < k < m.

4. The case nodd
We need the following results about ¢ PODLS(n).

Lemma 4.1. (/7,21]) Ifodd n ¢ E3s, then there exist 3 PODLS(n), where
E; = {3,5,15,21,33}
Lemma 4.2, (/9,17]) Ifodd n ¢ E,, then there exist 4 PODLS(n), where

Es = B3 U{39,55,69}
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Lemma 4.3. ([10,17]) If odd n ¢ Es, then there exist 5 PODLS(n), where
Es = B4 U {51}

Lemma 4.4. Suppose n odd, and there exist t PODLS(n). Then the following
exist: :

1. t—1 PODLS(n) & — 3 PODLS(n)) with w disjoint common transversals,
one of which contains the central cell, and such that other n— 1 meet both
the main and back diagonals (4 common transversals meeting in the central
and including the main and back diagonals) in one cell each.

2. t—2 PODLS(n) with 4 common transversals, meeting including the main
and back diagonals , which contain the central cell but are otherwise disjoint.

Proof. Note that if we begin with the t PODLS(n), from t-th DLS we may deter-
mine int — 1 DLS n disjoint common transversals, in which one pass the central
cell and the others meet each of the diagonals precisely once, or one common
transversal which meet each of the diagonals precisely once. The result follows.

Lemma 4.5. Suppose n odd and there exists an ODLS(n) with n disjoint com-
mon transversals, in which one contains the central cell and the others meet each
of the diagonals precisely once. Then there exists a (3n+ 2 + k,n)-IODLS,
0<Lk<nandk#2,30r6.

Proof. Begin with the ODLS( ), and fill the diagonals and the k disjoint transver-
sals which do not contain the central cell with (4, 1)-IOILS, (5, 1)-IOILS, mod-
ified (4, 1)-IOILS or modified (5, 1)-IOILS, but leave the central cell comply.
Fill all other cells with OLS(3). Finally, fill the size 5 hole with ODLS(5) and fill
the size k hole with ODLS( k}, and permute rows and columns.

Lemma 4.6. Suppose n is odd and there exists an ODLS(n) with 4 common
transversals meeting in the central cell and including the main diagonal and the
back diagonal. Then there exists a (3n+ 4,7n)-IODLS.

Proof. We begin with the ODLS(7) and fill the 4 transversals with (4, 1)-IOILS

ormodified (4, 1)-IOILS and let the central cell be empty, the others with OLS(3).
Then we obtain the required result by filling the size 7 hole with modified ODLS(7),
that is, by moving the first two rows and columns to the last such that the back di-
agonal of the ODLS(7) possesses the cells (2,0), (1,1), (0,2), (6,3),(5,4),
(4,5) and (3, 6), and permuting rows and columns.

Lemma 4.7. Suppose n is odd and there exists an ODLS(n) with 4 common
transversals meeting in the central cell and including the main and back diagonals,
and = further disjoint common transversals, in which one contains the central cell
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and the others meet each of the above 4 transversals precisely once. Then there
existsa (3n+ k,n)-IODLS, k=5 and 8.

Proof. Begin with the ODLS(7), and fill the 4 ransversals meeting in the central
cell and including the main diagonal and the back diagonal and the one or four in
n transversals which do not contain the central cell with (4, 1)-I0ILS, (5,1, 1)-
IOILS, modified (4, 1)-IOILS or modified (5, 1, 1)-IOILS, but leave the central
cell comply. Fill all other cells with OLS(3). Finally, fill the size 1 or 4 hole with
ODLS(1) or ODLS(4) and fill the size 7 hole with modified ODLS(7) as in Lemma
4.6, and permute rows and columns.
Combining above lemmas we have

Lemma 4.8.

(1) Ifodd n¢ Es, then there exists a (3n+ k,n)-IODLS,2 < k<mn

(2) Ifodd n ¢ E, then there exists a (3n+ k,m)-IODLS,2 < k < nand
k#5.

(3) Ifodd n ¢ Es, then there exists a (3n+ k,n)-IODLS,2 < k < nand
k#4 ors.

Up to now we have obtained
Theorem B. Ifodd n > 69, then there existsa (3n+ k,n)-IODLS,2 < k < n.

5. The main result

Let P = {51,52,...,8:} be a partition set S, where n > 2. A partitioned in-
complete Latin square (or PILS) having partition P is an |p| x |p| array L, indexed
by S, which satisfies the following properties:

(1) acell of L either contains a symbol from S or is empty
(2) the subarray indexed by S; x S; are empty, for 1 < i < = (these subarrays
are called holes)
(3) theelements occurring in row (or column) s of L are precisely these in S\ S;,
where s € S;.
The type of L is the multiset {| S|, | Sz, . . ., |Sa|}. We use the notation 1%12%
to describe a type, where there are precisely u; occurrences of 4, fori=1,2,....
Suppose L and M are PILS having the same partition P. We say that L and
M are orthogonal if their superposition yields every ordered pair in $2 \ (US?).
The term “orthogonal PILS” is abbreviated to OPILS.
We shall assume that the reader is familiar with the standard terminology of
group-divisible designs (GDDs) and Wilson’s “Fundamental Construction” (see,
for example, [19]). Of course, a GD[k, 1, n; kn] is equivalent to k —2 POLS(n).

LemmaS.1. (13))If v >3n+ 1 and v # 6, then there exists a (v,n) -ISOLS
except possible for (v,n) € (6m+14,2m): =2 o0r6}.
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Lemma 5.2. If positive integer n ¥ 2,3 or6, then there exists an
OPILS(1%) with transversal back diagonal,

Proof. By Theorem 1.1, there exists an ODLS(7) . By applying a suitable permu-
tation to the rows, and permuting symbols, we can ensure that cell (3, ) contains
the pair (4, 1), for all 5.

We need the following recursive construction for OPILS

Lemma 5.3. ({4]) Suppose that (X,G,A) is a GDD, w is a weighting, and let
k > 1. Further, suppose that, for every block A € A, there are k OPILS of type
w(A). Then there are k OPILS of type {}_,.qw(z) : G € G}.

We now state the main construction.

Lemma 5.4. If n,m, k be positive integers,m 0dd,2 < n<3m-3,1< k<
2m and k # 3,4, such that there exsts a GD[ 10, 1, m; 10m]. Then there exists
a(7m+ n+ k,7) -IODLS. Further, for Tm+ n+ 5 < v < 9m + n, there exists
a (v,n)-IODLS.

Proof. In all but three groups of the GD[ 10,1, m; 10m], we give the points
weight 1. In the third last group, we give s (s odd and s > 1) points weight 1
and give the remaining points weight 0. In the second last group, we give t points
weight 1 and give the remaining points weight 0. We observe thatif s+t = k > 1
and k # 3,4, then we can choose s and ¢ such that both ODLS(s) and ODLS(¢)
exist. In the last group, we give weight 0, 2, or 3, such that the total weight
be n. We can apply Lemma 5.3 with the necessary input designs from Lemma
5.1 in which one size 8 block input is an OPILS(1%) from Lemma 5.2 (or when
s+t = 2m, one size 9 block input is an OPILS(1%) from Lemma 5.2), to obtain
an OPILS(m”s't!n'). We then fill the size m holes with ODLS(m, 1), the size s
hole with ODLS( s, 1) and the size ¢ hole with ODLS(¢), and obtain the required
design be permuting rows and columns as Wallis did in [16].

Lemma 5.5. There is a series of positive inegers
M=(m;:i=1,2,3,...) =(17,19,23,25,27,29,31,37,41,...),

such that myy — mi < 8, Tmi1 + 4 < 9my, and there exist
GDI[10,1,m;; 8m;) forall i > 1.

Proof. From existing tables on the number of POLS (see, for example, [1]), it is
not difficult to check that such a series M exists with m;,; — m; < 8 and there
exist GD[10,1, my; 10m;). Since m;1 — m; < 8, it is also easy to see that
Tm;1+4 < 9myif m; > 31. Moreover, for 17 < m; < 31, simple calculation
shows that we have 7m;.1 + 4 < 9m,.

We are now in a position to prove

237



Theorem C. For any positive integer n > 48, if v > 10n/3 + 66, then there
exists a (v,m) -IODLS.

Proof. Our proof relies heavily on Lemmas 5.4 and 5.5. First of all, for any fixed
n > 48, there exists an 1 > 1 such that 3m; — 3 < n < 3m;1 — 3. Thus
we have 3my1 — n < 3(mu1 — my) +3 < 27 and my1 < (n+ 26)/3.
Applying Lemmas 5.4 and 5.5 recursively, we know that there exist (v, n)-IODLS
whenever v > 7my.1 + n+ 5. Therefore there exist (v, n)-IODLS whenever
v > 7(n+ 26) /3 + n+ S, that is, whenever v > 10n/3 + 66.

Lemma 5.6. For any positive integer v > 70, there exists a (v,2)-IODLS.

Proof. First we apply Lemma 5.4 withn= 2 andm € MU{9, 11,14 }. We then
have the result is true except for 120 < v < 125. Then we also apply Lemma 5.4
with n = 8 and m = 13, so we have (v, 8)-IODLS for these values. Note that
there exists a (8, 2) -IODLS, so the result follows.

Proof of Theorem 1.3

Since 10n/3 + 66 < 4n whenever n > 100, the result is an immediate conse-
quence of Theorems A, B, and C.

Remark

The starter-adder method devised by Wu [20] to construct ISOLS(3¢ + 6,t) has

been introduced in [12, Theorem 2.1], which also gave the required IOILSs in
Lemma 2.2 except for t = 18. For the IOILS(3 x 18 + 6, 18) we may choose
m,a,a,b in [12, Theorem 2.1] as follows:

m=9 a=3
a=(16,38,32,36,18,22,19,39,20,40,21,8,13,6,23,24,1)
b = (14,35,28,31,12,15,11,30,10,29,9,37,41,33,7,17,25).
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