Efficient Algorithms For Computing The Matching And Chromatic
Polynomials For Series-Parallel Graphs

N. Chandrasekharant? and Sridhar Hannenhalli
Department of Computer Science
University of Central Florida
Orlando, FL 32816
email: chandra@eola.cs.ucf.edu

Abstract. We present efficient algorithms for computing the matching polynomial and
chromatic polynomial of a series-parallel graph in O(n®) and O(x*) time respectively.
Our algorithm for computing the matching polynomial generalizes and improves the
result in [13] from O(n? log n) time for trees and the chromatic polynomial algorithm
improves the result in [18) from O(n*) time. The salient features of our results are
the following: Our techniques for computing the graph polynomials can be applied to
centain other graph polynomials and other classes of graphs as well. Furthermore, our
algorithms can also be parallelized into NC algorithms.

1. Introduction and Previous Work

A graph G = (V, E), where V is the vertex set and E is the edge set, is con-
sidered here as being finite, undirected, connected, and without multiple edges
or self-loops. For most of our presentation, we follow the standard terminology
of Golumbic [8], unless otherwise indicated. For obtaining complexity of algo-
rithms, we use the standard RAM with integer operations (multiplication, addi-
tion, etc.) taking O(1) time. The class of series-parallel (two-terminal) graphs is
a subclass of planar graphs, which finds important applications in the fields such as
electric networks and the scheduling problems [6, 15, 12]). Many standard graph
problems which are NP-complete for general graphs such as Domination, Vertex-
cover, Independent set are solvable in linear-time on series-parallel graphs [19].
All of these problems can also be solved fast in parallel on series-parallel graphs
[9]. We define the class of series-parallel graphs as follows:

Definition 1.1: A graph G = (V, E,u,v) where u,v € V are distinguished
vertices called the terminals, is a series-parallel (sp) graph, if it can be obtained
by finitely many applications of the following rules:

L. G=({s,v},{(y,v)},u,v) is ansp graph.

2. IfGl = (VlsEl)ul)vl) and GZ = (W)EQ)uZ;vZ) arengraphs then:

(a) the series composition of the graphs G 0, G2 = (ViU V2 —
{v2}, By U E; U {(z,u)|(z,u2) € B2} — {(z,u2)|z €
V2},u1,vz) is also an sp graph.

tResearch supported in part by a National Science Foundation Grant No. NSF-CCR-9110159
$Current address: Department of Mathematical Sciences, Loyola Universiry of Chicago, Lake Shore
Campus Chicago, IL 60626. email: Chandra@math.luc.edu

JCMCC 15 (1994), pp. 19-32

(b) the parallel composition of the graphs G10,G2 = (V; UV —
(UZ)UZ))EIUEZU{(z)uI)I(zt uZ) € EZ}U{(I,‘UI)I(-'B,Uz) €
E2}—{(z,9)|z € V2,y € (u2,v2) }, u1, 1) is an sp graph.

Several graph polynomials have been proposed and studied extensively in the
literature. These include the Tutte polynomial [21], the characteristic polynomial
[7], the o-polynomial [11], the rook polynomial (8], the matching polynomial [13]
and the dichromatic polynomial [22]. We would like to study the computational
aspects of the matching and chromatic polynomials here because of their signifi-
cance. A matching in a graph G = (V, E) is a set of edges F' C E such that no
two edges in F have a vertex in common. The problem of finding a maximum car-
dinality matching is one of the most extensively studied graph problems [13). Let
¢«(G) denote the number of k-clement matchings in G. We define ¢o(G) = 1
by convention. Let vg denote the matching number of G (which is the cardinality
of a maximum matching set in G). Then the matching polynomial of G is

v
9(Giz) =) ou(G)z*

k=0

The complexity of computing the matching polynomial even for a bipartite graph
is NP-hard, because it has been shown in [23] that the problem of counting the
number of perfect matchings in it, is #P-complete. To the best of our knowledge,
the only nontrivial algorithmic result for computing the matching polynomial is
given in [13].

Theorem 1.2, If G is a forest then

In/2]
m(Giz) =) (-D*¢(Gz™*

k=0

(called the matching defect polynomial) is equal to the characteristic polynomial
of the adjacency matrix of G.]

It is easy to see that from m(G; x), the matching polynomial can be computed.
Since the coefficients of the characteristic polynomial can be computed in O(r
log ») time [10], so can the matching polynomial be. Furthermore, in [13], it is
noted that the matching polynomial for an outerplanar graph can be determined
in polynomial time, without explicit mention of the time bound. In this paper,
we generalize this result by developing an algorithm for computing the matching
polynomial in O(n) time for sp graphs.

20

A proper coloring of a graph G = (V, E) is simply a function f from V into
a set of colors such that f(v) # f(w), whenever (v,w) € E. For a given in-
teger t > 0, the chromatic polynomial P(QG;t) is the number of distinct proper
colorings of G using at most ¢ colors. Chromatic polynomials are of interest in
many ways. They arise in the context of graph coloring and are related to the fa-
mous graph reconstruction conjecture [2]. Furthermore, they capture a good deal
of combinatorial information about a graph, describing its acyclic orientations, its
all terminal reliability, and its spanning trees [5]. While computing the chromatic
polynomial of an arbitrary graph is also NP-hard, polynomial time algorithms are
known for chordal graphs [5] and sp graphs [18]. These algorithms take O(m+ n)
and O(n*) time respectively. In [18], computing the chromatic polynomial of an
sp graph G is reduced to counting the homomorphisms from G to K;, for i ranging
from 1 to n+ 1. We follow, a completely different approach that not only results
in an improved O(n?) time algorithm, but also has the same flavor as our algo-
rithm for computing the matching polynomial. The data structure we use for our
algorithms is called the parse-tree of an sp graph (also called the decomposition
tree [9]). A related result to ours is in [17] where it has been shown that for any
accessible class of matroids of bounded width, the Tutte polynomial is computable
in polynomial time.

As opposed to constructing an sp graph as in Definition 1, given an sp graph
G = (V, E,u, v), we can break G down into two sp subgraphs G and G such
that either G = G 0, G2 or G = G1 o, G2. This procedure can be performed
recursively until we get to isomorphic copies of the basis graph which is a single
edge. Such a procedure uncovers the history of constructing G. The binary tree
representing this procedure is called the parse-tree. Given an sp graph G, a parse-
tree for G can be found in O(=n) time [20]. We define the parse-tree of an sp graph
G as follows:

Definition 1.3: A parse-tree of an sp graph G is a rooted tree S such that:

(a) each leaf of S corresponds to a single edge,

(b) the internal nodes of the tree S are labeled by either s or p representing the se-
ries and the parallel operation respectively. An internal vertex u of S corresponds
to the sp graph obtained by composing (series or parallel) the two series-parallel
subgraphs corresponding to the children of u.

(c) the sp graph corresponding to the root of S is isomorphic to G. | |

Merits of our Results: There is a vast amount of literature on combinatorial as-
pects of graph polynomials, but only a few on sequential algorithmic aspects, and
with the exception of parallel algorithms for obtaining the chromatic polynomial
of a chordal graph in [4,16], hardly any on parallel algorithmic aspects. Our al-
gorithmic results on computing graph polynomials either generalize or improve
existing results, and in the context of parallelism provide new results. The parse-
tree data structure used in this paper to compute the polynomials can also be used
for certain other classes of graphs and graph polynomials.

21

The paper is organized along the following lines. The next section describes
the design of the algorithm for computing the matching polynomial and Section
3 that of the chromatic polynomial. - In Section 3 we also outline how to obtain
parallel algorithms for the above problems.

2, Matching Polynomial

The main idea behind the algorithm for computing the matching polynomial is as

follows: Given an sp graph G, we find ¢, for k ranging from O to v¢, by using
a variation of the methodology described in [3, 24]. The miethodology involves
finding a homomorphism from (graph, subgraph) pairs to an appropriate set pre-
serving certain properties. More details can be found in [3], but our presentation
here is self-contained. Traditionally, the methodology has been used to solve a
variety of graph optimization problems and their counting versions. Here, we
vary the technique to obtain the number of subgraphs (satisfying a certain prop-
erty) having a certain fixed size. We first start by considering the following four
recurrence classes for an sp graph G = (V, E, u,v):

[UN(G®):{(G, F):F is a matching in G, u is matched and v is not matched inF.}
[VI(G):{(G, F):F is a matching in G, v is matched and u is not matched in F'.}
[WI(®) : {(G, F) : Fis amatching in G, both u and v are matched in F'.}
[N)(@) : {(G, F) : Fis amatching in G, neither u nor v is matched in F.}

Sometimes when the graph G is implied by the context, we will simply use [U],
[V1, [W] or [N] to denote the classes. We now extend the definition of the compo-
sition of two sp graphs G = (V1 E1,u1,v1) oGz = (V2,Ea,u2,v2), where o is
either o, or o,, to elements of the above classes in the following natural manner:

(G1,F1) o (G2,) = (G, F) =(G10G2, F UF)

The next step is to consider all possible ways of composing elements taken from
the classes [U], [V], [W], and [N] above. As a consequence, we can get the fol-
lowing recurrence equations. We get two sets of recurrence equations, one for the
series and the other for the parallel composition operations.

Theorem 2.1. If G = G 0, G isan sp g)aph, tizen the follovlving equations
hold:

[UI(G) = [UN(G1) 06 [UI(G2) UIUI(G1) 05 [NI(G2) UTW]I(G1) 0, [N](G2)
[VI(G) = [VI(G1) 0s[VI(G2)UIN](G1) 05 [VI(G2)UINI(G1) 0, [WI(G2)
[WI(G) = [UI(G)1) 0, [VI(G2) UUI(G1) os [W](G2)
ULWI(G)) o, [VI(G2)

[NI(G) = [VI(G1) 0, [N](G2) UINJ(G1) 0, [Ul(G2) U[N](G1) 0, [N](G2)
Proof: Following the definition of series composition operation, in order for G to
be a member of [U(G), u; has to be matched in F (hence in F}) and v, cannot
be matched in F (hence in F3). Moreover, v, and uz can’t be matched together.

22

From this the first equation readily follows. The other equauons can be proved
similarly. |

Theorem 2.2 If G = G, o, G, is an sp graph, then the following equations hold:

[U(G) = [UJ(G)1) op [NJ(G2) U [NI(G1) op [UNG2)
[VI(G) = [VI(G1) op [NI(G2) UINI(G)) o, [VI(G2)
[WI(G) = [UI(G1) 0p [VI(G2) ULVI(G1) 0p [WI(G2)

ULWI1(G1) o, [NI(G2) U[NI(G1) op [WI(G2)
[NI(G@) = [NI(G1) op [NI(G2)

The proof is similar to that for theorem 2.1. 1

The above theorems can be used for finding a maximum cardinality matching
in an sp graph. However, our interest is in counting the number of solutions of
different sizes.

Theorem 2.3. Let G = (V,E,u,v), Gy = (W}, Ey,u1,v) and Gy = (V,,
By, uz,vy) be sp graphs such that G = Gy o, G2. Then the following hold:

(@) The total number of matchings in G is equal to |[UI(G)| + |[[VI(G)| + -
[[WI(&)] + JINI(Q)|.

® [[UI(&)] = [[U(GNI|IIUKG2)| + [[UNG)|I[NI(G2)|
+|[WI(GD|[[NI(G2)|

©) V(@) | = [[IVI(GDILVI(G2)| + [IN)(G)I[VI(G2)]
+|[NI(G)|I[WI(G2)]|

@ [[WI(®)]=[[UI(GDIIIVI(G2)| + I[Ul(G1)II[W](Gz)I

— HIWHG)(IIVI(G2)]

© [INI(GQ)| = [[VI(G) ||IINI(G2)| + [[NI(G1) |I[UN(G2) |
+|[NI(G1)[|[N](G2)]

(f) If G is the base graph i.e., K, then let (J[UI(G)|, [[VI{®|, [WI(G)|,
[INI(&))) = (0,0,1,1)

Proof: First observe that The recurrence classes [x] for x € {U,V, W,N} are
pairwise disjoint. Therefore, for each composite class {x](G1) o [y1(G2) shown
in Theorem 2.1, we can write |[x]1(G1) o5 [YI(G2)| = |[X](G1)] x |[[Y]1(G2)]-
For counting all the matchings in G we need to find |[[UI(G)]| + |[[VI(G)]| +
[IW1(G@)] + |[N1(G)|, establishing (a)-of the Theorem. Furthermore, it can be
seen that the right-hand sides of each equation in Theorem 2.1 are made of disjoint
unions of composite classes of the form [x] o [y]. Hence, to find [[UJ(G)|, for
example, it is enough to find the sum of products of the sizes of the composite
classes making up the right-hand side. This fact establishes the validity of the
equations (b) thru (e). The validity of statement (f) is obvious. [|

The following theorem applies to the parallel operation and it is similar to Theorem
2.3.

23

Theorem 24. Let G = (V,E,u,v),G1 = (1, E1,u1,vn) and G, = (W2, E,,
u2, v2) be series-parallel graphs such that G = G op G2. Then the following
hold:

(a) The total Number of matchings in G is equal to |[[UI(G)| + |[[VI(G)| +
[{WI(&)] + [IN(B)|.

() (VNP = [[UI(G|[NI(G2)] + |[NI(G1)||[[UI(G2)|

© |IVI(G)] = |[[VI(G)]|INJ(G2)| + [INI(G)|[[VI(G2)]|

@ [[WI(@|= [[UI(GDIIIVI(G2) |+ [[VI(G)|[[UI(G2)|
+|[[WI(GD||INI(G2)| + |[IN}(GD) [l WI(G2) |

(© [INI(@)] = [[INI(GDI|INI(G2)I|

(f) If G is base graph i.e. K3, then let (JLUN(@)|, [[VI(G)],I[WI(G)],
[IN)(&@)D=(0,0,1,1).

Note that the empty matching is included in the set of all matchings. [|

The above theorems are crucial to computing the number of “k-matchings”
(¢+) for sp graphs. Let |[x](G) |* denote the number of k-matchings belonging
to class [x]. We then have the following theorem: .

Theorem 2.5. Let G =(V,E,u,v),G1 = (W}, Ey,u;,v) andG, = (W5, E;,
uz, v2) be sp graphs such that G = G, o, G2. Then the following hold:

(a) The total number of k-matchings in G is equal to |[UI(G) [F+ [[VI(G) |F+
[[WI(G)[* + |INI(D) .
®) [[UP* = 314 ek ILUIG) FILUNG) ™+ |[[UNG) I INI(G2) ™+
[[WI(G) [IINI(G2) ™)
© VDI = T meik (ILVIG) FILVI(G2) ™+ INI(G) L VI(G2) ™+
[INI(G) IIWI(G2)[™)
@ [[WHRD ¥ = T4 et (TUIG) FILVI(G2) ™ +|[UG FILWI(G2) ™
[[WI(G)FIEVI(G2)[™)
© [INIG) Ik = Ty ek ILVIGD FIINI(G2) [™+|INN(G) FILUN(G2) I+
[[N)(G) [|IN)(G2)|™)
Proof: Statement (a) follows from Theorem 2.3. Each class |[x](G)| contains
matchings of various sizes which can range from O to v¢. Further, if (G, F) =
(G1,F) o (G, F,) then |F| = |Fi| + |F2]. Therefore, to find the number of
k-matchings in G, we have to compute all possible ways of adding up matchings
in G and G to give rise to matchings of sizes k. Hence, we have the theorem.
|
The proof of the following theorem is precisely along the lines as Theorem 2.5.
Theorem 2.6. Let G =(V, E,u,v),G1 = (W1, E\,u1,v1) and G = (W2, B,
u2,v2) be sp graphs such that G = G\ op G2 . Then the following hold:

'(3) The total number of k-matchings in G is equal to [[UI(G) |¥ + |[VI(G) |F +
(W) |* + [IN(D|*.

+

®) (UG = ¥ et {TUIG) FIINI(G2) ™+ |INI(G1) [ILUI(G2) |™)

© VIO = Xt mei ([TVIGD FIINI(G) ™+ [INK(GD) FILVI(G2) ™)

@ (WO |* = L1 e LUIGD) FILVI(G2) ™ + L VI(GD) U G) |™
+|[[WI(G1) |IN)(G2)|™ + |INI(G) L WI(G2) ™)

© [INKDIF = T ek UINIGD) FIINIG2) ™) B

- In the following section we present the algorithm to compute all the k-matchings
in an sp graph G, given its the parse-tree.

2.1. Algorithm

Let G = (V, E, u,v) be an sp graph. The root of its parse-tree T° corresponds
to G. Define the structure matching associated with each node of T as:

Uo n cee Ul_n/Z]

Vo Vi vee V2]
SP

Wy W . Wins2)

No N . NL,sz

where U}, denotes the number of matchings of cardinality k£ when u is matched and
v is not, Vi denotes the number of matchings of cardinality k£ when v is matched
and u is not, W} denotes the number of matchings of cardinality k& when u is
matched and v is matched, N denotes the number of matchings of cardinality &
when neither « nor v is matched. The field “SP” takes either of the two values
viz. “s” or “p” to denote the type of operation (series or parallel) at each node of
T. The leaf nodes of the decomposition tree are single edges. The field “SP” is
undefined for the leaf nodes. In order to get the total number of matchings of size
k in a graph G for each k, we need to compute the value of matching associated
with the root of the decomposition tree for G. The algorithm to compute this, takes
as input, the matchings associated with the leaves of the decomposition tree. We
refer to this as the basis structure. The basis structure for an edge (corresponding
to each leaf of T') is:

NULL

== =]
Owm OO
(= ==]
OO0

OO OO0

The following algorithm computes the structure matching for an sp graph G,
working on its parse-tree. It is based on an implementation of results in Theorems
2.5and 2.6.

()0 Ao 2.1 1A pue 7] jo uonendwod ayy, *((4)O st O ur $93ps Jo soquinu
1)) Swn-Tesu] Ul PajoNAsuod aq ued san-osred e ‘o ydesd ds ue uoarn :joord

‘ouy ()0 ur pajuswardust 9q ued dS~HILYVIN UOHOUTY oYL °L'T W0,
‘wnpiuoSe 2a0qe 3 Jo A1xojdwod-own oY) SOSSAIPPE MO[3q UIAIS WAIOSYS SY L

pug
aspapuy
dojpuy
TINGTX*INCIX+HIN-X=IN"X
AN TX N IX +HTIN - TX M- IXH
PN TX N IX AT XN IX M X=X
PIN-TX*IN-IX+TIN-TX* - IX+A X=X
FIN- TX*IN-IX+1IN- X+ 1IX +¥30-X ="N-X
1010=1404
0=N'X=MM"X=N-X=""X
Sno1g=ya104
s
Jipug
Jogpuy
PIN - TX*IN - IX+
PN TX N IXHTIN G TX AN IXHINX=INCX
I TX M IX+
PIM-TX 10 IXHTA - TX D IX I X =M X
PIM- TX*IN - IX+
PU-TX*IN-IX+TT - TX* A IX+A-X =X
IN- TX M- X+
PIN - oX*'0- IX+170-oX+ - X+ - X =10-X
1010=1404
0=N-X="M-X=N-X="N"X
Sno10=44104
“s”=ds'xn
uidog
X Sumyorow ((8uryoouwt T IX)INOD wondung
pug

((P1D WBDJS HOLVIN
“(PIYD W DAS"HOLVIN)ANOD = dS"HOLVIA 3s19
2amnass s1spq = JSTHDILVIA udy)
Jes[=1001 J1
wdag
umyiput :(9an 2sxed Jo 1001)dS"HOLVIA Ronduny

time. Ateachinternal node, Uy and V;, are computed for all values of k in the range
0and v¢. This makes the time-complexity for computing the structure matching at
each internal node O(x2). The entire computation is proceeds bottom-up walking
thru all of the nodes in T'. Since there are O(n) intemnal nodes in T', the total time-
complexity is O(n*). B

" 3. Chromatic Polynomial

The chromatic polynomial P(G;1t) of a graph G, evaluated at t = &, gives the
number of ways of properly coloring G using at most & colors. We call such a
coloring a k-coloring of G. It does not seem possible to adopt the same strategy
for computing the number of k-colorings for various values of k, as we did for the
k-matchings. We will therefore, follow a different approach as follows: Using the
parse-tree we compute P(G; t) atn+ 1 distinct values of k, where nis the number
of vertices of G. Using these values we interpolate to obtain the polynomial of
degree n, which is really the P(G; t).

Definition 3.1: A k-coloring of a graph G = (V, F) is defined as a function f
from V to the set C of k colors such that: '

(z,9) € F = f(2) # f(y).

Consider the following classes over the instances of a k-colored sp graph G =
(V,F,u,v).

[ENQ) = {(G, f) : f(v) = f(v)}.

[NI(G) = {(G, f) : f(w) # f(v)}.

The proof of the following lemma is straightforward.

Lemma3.2. Let «, 8,7 € C. Let |[Elo(G)| denote the number of colorings in
[E] suchthat f(u) = f(v) = a. Let |[Nlag(G)| denote the number of colorings
in [N) such that f(u) = a and f(v) = 8. Then we have,

B = LA

(M@ = J L

LetG = (V,E, ",v), Gl = (Vi)Eliulnvl) and G2 = (V2’E2i “2.”2) besp
graphs such that G = G 0, G2. Let f, fi and f be the respective colorings. The
composition o, is feasible only if fi(v1) = fa(uz) since v; and uy are glued.
Now consider the result of a parallel composition operation i.e., G = G op G2.
The composition o, is feasible only if fi(u1) = f2(u2) and fi(v1) = fo(v2).

We will now describe the approach for computing the cardinalities of [E] and
[N] via following theorems.

27

Theorem 3.3. Given G = G o, G2 where G, G\, G are sp graphs, we have:

e = (L. pmyant) + (IHEN paant) @

k-(k-1)
and
IINI(®)| = (M : |[N](G‘z)|) + (umwm : _IIEI(szN)
NG
¥ (_lk[(]k(Ol e, N) | ®
Proof:

(a): Consider G = G o, G, such that G € [E], then G can be obtained in one of
the following ways:
L filw) = «a, fi(n) = i(u2) = o, o(n) = a.
I(El(GD)| = '—l
l[E]a(GZ)I
= I[E] (G)l IE](GI |, |E](Gz |
= l[E](G)l — IE](Gl] . |B](G: |, k

2. filw) =, filn) = f(u2) = B, r(wn) = a.
[NJas(G1)| = L4

|[NJg.o(G2)| = LS

|INI(G:. NI(G2)
= |[EL(G)] = TG . [l

= (EXG)| = THE - LS - (k- (k- 1)

@ can fall in either of these categories, so

exr| = (LEKGDL LEKGa)L)
[INI(G)| _ [INI(Ga)|
s Bar RCHCRY)

(b): Now consider G = G o, G2, where G € [N]. Then G can be obtained in
one of the following ways:

1. fi(w) = q, fi(v1) = fa(u2) = @, f2(v2) = B, in which case
[IN)(G)] = LENEOL . IFUG . (. (k — 1))

2. filw) = o, fi(v1) = f1(u2) = B, f2(v2) = B, in which case

IIN)(G)| = IEFEERL . IBEL. (. (k - 1))

3. filw) = a, fi(v1) = fo(u2) =4, f2(v2) = B, in which case
IIN1(@)| = RGP LHC . (k- (k~ 1) - (k—2)), since a 7 & B.

28

Sum of these three terms gives the expression for |[N](G)| in the case of series
composition. B

Theorem 3.4. Given G = G\ o, G2 where G, G\, G2 are sp graphs, we have:

ILEI(®)| = ———I[;Gl)l - [LEN(G2)| (a)
. [INI(GY)]
= LAVROUL
NGO = Er) - [TMIG) ®)
Proof:

(a): Consider G = G) o, G such that G € [E]. Then fi(u;) = fa(uz) =
a, fi(v1) = f2(v2) = a in which case

ENGDI (EXG)I _,
k k

(b): Consider G = G) o, G such that G € [N]. Then fi(u) = fo(u2) =
a, fi(v1) = f2(v2) = B in which case

[INI(G1)| [[N1(Ga)|
k-(k—1)k-(k—1)

\
|
The above recursive equations can be employed to compute the number of k-
colorings. We are now equipped to present the algorithm for computing the num-
ber of k-colorings for 3 < k& < n+ 2, where nis the number of vertices of G. It
is well known that any sp graph can be properly colored using 3 colors.

I(EX&)| =

IIN®|= (k-(k=1))

3.1. Algorithm

LetG = (V, E, u, v) be an sp graph. Define the structure Colors associated with
each node of the parse-tree of G as:

Es E4 e En2)

SPG
(N3 N4 ses Nm-z

where Ey denotes the number of colorings of G using at most k distinct colors,
when u and v are colored by the same color, and N; denotes the number of col-
orings of G using at most k distinct colors, when u and v are colored by different
colors. The field “SP” can take three possible values viz. “s”, or “p” depending
on whether the operation at the particular node is series or parallel respectively.
In order to get the total number of colorings of graph G using atmost & colors for
arbitrary k, we need to compute the value of Colors associated with the root of the

29

decomposition tree for G. The total number of colorings using atmost & colors is
given by E + N;. The algorithm takes as input, the structure Colors associated
with the leaves of the decomposition tree which are single edges. We refer to this
as the basis structure as before. Itis easy tosee that By = 0 and N = kx(k—1),
3 < k < n+ 2 when the graph consists of just a single edge. After we get the
values of E; + Ni for 3 < k < n+ 2, which is the same as P(G;t) evaluated
at n+ 1 distinct points, we can use these values to interpolate the polynomial of
degree n. The time-complexity for computing the n+ 1 values is O(72). We can

use a simple method of polynomial interpolation such as thé Newton’s taking an
additional O(n#) time, for a total of O(n?) time. We give below the algorithm

for computing the k-colorings.

Function COLOR_SP(root of parse tree): Colors
Begin
If root = leaf
then COLOR_SP = basis vector
else COLOR_SP = COMP(COLOR_SP(Left Child),

COLOR_SP(Right Child))
End
Function COMP(X1,X2;: COLORING): Colors X
Begin
Ifx 'SP =“S”
Fork=3ton+2
X - By = XLEsX2 B o XUNpsX2-Nys(k—1)
X -Ny= x1-a,;x2-~, 4 XLNwX2 B
: +X1 ‘N‘;it(i -Nl,).; k=2)
Endfor
Endif

Elseif X-SP =“p”

Fork=3ton+2
X 'Ek = X1.EpsX2-E

Endfor
Endelse
End.

3.2, Parallel Algorithms

Results in [1, 4] show in general, how to obtain fast parallel algorithms for bottom-
up binary tree (parse-tree) computations using the tree contraction technique.
Briefly, the tree contraction technique reduces a binary tree into a 3 node (or a
single node) tree by means of repeated shunt operations performed carefully on
the leaves of the tree. The number of steps for this reduction is O(log n) using

30

O(n/ log m) processors on an Exclusive Read Exclusive Write (EREW) PRAM.
This technique can be used even when the computations at each internal node tale
more than O(1) time, as in the case of computing the matching and chromatic
polynomials, for example. The parse-tree of an sp graph can be obtained using

O(n) processors in O(log? n) time on an EREW PRAM [9]. Using the tree
contraction technique on the parse-tree, it is a standard exercise to obtain a fast
parallel algorithm using O(n*) processors in O(log? n) time for computing the
coefficients of the matching polynomial. In the same manner, using O(#?) pro-
cessors and in O(log?) time, we can compute the number of ways of coloring
an sp graph using k& colors, where 3 < k < n+ 2. Furthermore, polynomial
interpolation can be performed in O(log? n) time using O(n/ log n) processors
[10].

Acknowledgements:

We thank the referee for many excellent suggestions which helped improve the
paper significatly and also the editor for much timely help.

References

1. K.Abramhson,N.Dadoun and T.Przytycka, A Simple Parallel Tree Contrac-
tion Algorithm, Journal of Algorithms 10 2 (1989), 287-302.

2. Bari, R., Chromatically equivalent grqphs, in “Graphs and Combinatorics”,
Lecture Notes in Mathematics 406, 1974, pp. 186-200.

3. Chandrasekharan, N., S. Hedetniemi and T. Wimer, Enumeration Techniques
Jor Certain k-terminal Graphs, submitted.

4. Chandrasekharan, N. and Shier D., Algorithms for Computing the Chromatic
Polynomial, Journal of Combinatorial Mathematics and Combinatorial Com-
puting 4 (1988), 213-222,

5. Chandrasekharan, N., Fast parallel Algorithms and Enumeration Techniques
Jor partial k-Trees, Ph.D. Dissertation (1989), Clemson University.

6. Duffin, J., Topology of Series Parallel Networks, Journal of Mathematical
Analysis and Applications 10 (1965), 303-318.

7. Harary, F., “Graph Theory”, Addisson-Wesley, 1969.

8. Golumbic, M.C., “Algorithmic Graph Theory and Perfect Graphs”, Aca-
demic Press, 1986.

9. He, X. and Y. Yesha, Parallel Recognition and Decomposition of two-terminal
series-parallel graphs, Information and Computation 74 (1988).

10. JaJa, Joseph, “An Introduction to Parallel Algorithms”, Addison-Wesley,
1992,

11. Korfhage, R., o-polynomials and graph coloring, J. Combin. Theory B, 24
(1978), 137-153.

31

12, Lawler, L., Sequencing jobs to Minimize Total Weighted Completion time
Subject to Precedence Constraints, Annals of Discrete Mathematics 2 (1978),
75-90.

13. Lovasz, L. and M. Plummer, “Matching Theory”, North-Holland, Amster-
dam, 1986.

14. G.Miller and J.Reif, Parallel Tree Contraction Part I. Fundamentals, Ad-
vances in Computing Research § (1989), 47-72.)

15. Monma, L., Sidney, B. A General Algorithm for Optimal Job Sequence with
Series-Parallel Constraints, Tech. Rept. No. 347 (1977), School of OR and
IE, Comell University.

16. Naor, J., M. Naor and A.A. Schaffer, Fast parallel Algorithms for Chordal
Graphs, SIAM J. Computing 32 (1989).

17. Oxley, J.G., and D.J.A. Welsh, Tutte Polynomials Computable in Polynomial
Time, Manuscript, Dept. of Mathematics, Louisiana State University, 1992,

18. Ravi, S.S., Hunt ITI, and Stearns, R. Separators, Graph Homomorphisms and
Chromatic Polynomials, in *“Proc. 26th Annual Allerton Conference on Com-
muniCation, Control and Computing”, Urbana-Champaign, Illinois, 1988.

19. Takamizawa, T., Nishizeki, N. Saito, Linear-Time Computability of Combi-
natorial Problems on Series-Parallel Graphs, JACM 29 3 (1982), 623-641.

20. Tarjan, R., Valdes, The Recognition of Series-parallel graphs, Proc. 11th
ACM STOC, 1979, 1-12.

21. Temperley, H., “Graph Theory and Applications”, Ellis Horwood, 1981.

22. Tutte, W., A contribution to the theory of Chromatic polynomials, Canadian
J. Mathematics 6 (1954), 80-91.

23, Valiant, L., The Complexity of Enumeration and Reliability Problems, SIA
M J. Computing 8 3 (1984), 410—421.

24. Wimer, T., Linear Algorithms on k-Terminal Graphs, Ph.D. Thesis, Clemson
University, Aug. 1987.

32

